linux-zen-desktop/drivers/gpu/drm/i915/display/intel_tc.c

1869 lines
49 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_atomic.h"
#include "intel_cx0_phy_regs.h"
#include "intel_ddi.h"
#include "intel_de.h"
#include "intel_display.h"
#include "intel_display_driver.h"
#include "intel_display_power_map.h"
#include "intel_display_types.h"
#include "intel_dkl_phy_regs.h"
#include "intel_dp.h"
#include "intel_dp_mst.h"
#include "intel_mg_phy_regs.h"
#include "intel_modeset_lock.h"
#include "intel_tc.h"
#define DP_PIN_ASSIGNMENT_C 0x3
#define DP_PIN_ASSIGNMENT_D 0x4
#define DP_PIN_ASSIGNMENT_E 0x5
enum tc_port_mode {
TC_PORT_DISCONNECTED,
TC_PORT_TBT_ALT,
TC_PORT_DP_ALT,
TC_PORT_LEGACY,
};
struct intel_tc_port;
struct intel_tc_phy_ops {
enum intel_display_power_domain (*cold_off_domain)(struct intel_tc_port *tc);
u32 (*hpd_live_status)(struct intel_tc_port *tc);
bool (*is_ready)(struct intel_tc_port *tc);
bool (*is_owned)(struct intel_tc_port *tc);
void (*get_hw_state)(struct intel_tc_port *tc);
bool (*connect)(struct intel_tc_port *tc, int required_lanes);
void (*disconnect)(struct intel_tc_port *tc);
void (*init)(struct intel_tc_port *tc);
};
struct intel_tc_port {
struct intel_digital_port *dig_port;
const struct intel_tc_phy_ops *phy_ops;
struct mutex lock; /* protects the TypeC port mode */
intel_wakeref_t lock_wakeref;
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
enum intel_display_power_domain lock_power_domain;
#endif
struct delayed_work disconnect_phy_work;
struct delayed_work link_reset_work;
int link_refcount;
bool legacy_port:1;
char port_name[8];
enum tc_port_mode mode;
enum tc_port_mode init_mode;
enum phy_fia phy_fia;
u8 phy_fia_idx;
};
static enum intel_display_power_domain
tc_phy_cold_off_domain(struct intel_tc_port *);
static u32 tc_phy_hpd_live_status(struct intel_tc_port *tc);
static bool tc_phy_is_ready(struct intel_tc_port *tc);
static bool tc_phy_wait_for_ready(struct intel_tc_port *tc);
static enum tc_port_mode tc_phy_get_current_mode(struct intel_tc_port *tc);
static const char *tc_port_mode_name(enum tc_port_mode mode)
{
static const char * const names[] = {
[TC_PORT_DISCONNECTED] = "disconnected",
[TC_PORT_TBT_ALT] = "tbt-alt",
[TC_PORT_DP_ALT] = "dp-alt",
[TC_PORT_LEGACY] = "legacy",
};
if (WARN_ON(mode >= ARRAY_SIZE(names)))
mode = TC_PORT_DISCONNECTED;
return names[mode];
}
static struct intel_tc_port *to_tc_port(struct intel_digital_port *dig_port)
{
return dig_port->tc;
}
static struct drm_i915_private *tc_to_i915(struct intel_tc_port *tc)
{
return to_i915(tc->dig_port->base.base.dev);
}
static bool intel_tc_port_in_mode(struct intel_digital_port *dig_port,
enum tc_port_mode mode)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
struct intel_tc_port *tc = to_tc_port(dig_port);
return intel_phy_is_tc(i915, phy) && tc->mode == mode;
}
bool intel_tc_port_in_tbt_alt_mode(struct intel_digital_port *dig_port)
{
return intel_tc_port_in_mode(dig_port, TC_PORT_TBT_ALT);
}
bool intel_tc_port_in_dp_alt_mode(struct intel_digital_port *dig_port)
{
return intel_tc_port_in_mode(dig_port, TC_PORT_DP_ALT);
}
bool intel_tc_port_in_legacy_mode(struct intel_digital_port *dig_port)
{
return intel_tc_port_in_mode(dig_port, TC_PORT_LEGACY);
}
/*
* The display power domains used for TC ports depending on the
* platform and TC mode (legacy, DP-alt, TBT):
*
* POWER_DOMAIN_DISPLAY_CORE:
* --------------------------
* ADLP/all modes:
* - TCSS/IOM access for PHY ready state.
* ADLP+/all modes:
* - DE/north-,south-HPD ISR access for HPD live state.
*
* POWER_DOMAIN_PORT_DDI_LANES_<port>:
* -----------------------------------
* ICL+/all modes:
* - DE/DDI_BUF access for port enabled state.
* ADLP/all modes:
* - DE/DDI_BUF access for PHY owned state.
*
* POWER_DOMAIN_AUX_USBC<TC port index>:
* -------------------------------------
* ICL/legacy mode:
* - TCSS/IOM,FIA access for PHY ready, owned and HPD live state
* - TCSS/PHY: block TC-cold power state for using the PHY AUX and
* main lanes.
* ADLP/legacy, DP-alt modes:
* - TCSS/PHY: block TC-cold power state for using the PHY AUX and
* main lanes.
*
* POWER_DOMAIN_TC_COLD_OFF:
* -------------------------
* ICL/DP-alt, TBT mode:
* - TCSS/TBT: block TC-cold power state for using the (direct or
* TBT DP-IN) AUX and main lanes.
*
* TGL/all modes:
* - TCSS/IOM,FIA access for PHY ready, owned and HPD live state
* - TCSS/PHY: block TC-cold power state for using the (direct or
* TBT DP-IN) AUX and main lanes.
*
* ADLP/TBT mode:
* - TCSS/TBT: block TC-cold power state for using the (TBT DP-IN)
* AUX and main lanes.
*
* XELPDP+/all modes:
* - TCSS/IOM,FIA access for PHY ready, owned state
* - TCSS/PHY: block TC-cold power state for using the (direct or
* TBT DP-IN) AUX and main lanes.
*/
bool intel_tc_cold_requires_aux_pw(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc = to_tc_port(dig_port);
return tc_phy_cold_off_domain(tc) ==
intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch);
}
static intel_wakeref_t
__tc_cold_block(struct intel_tc_port *tc, enum intel_display_power_domain *domain)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
*domain = tc_phy_cold_off_domain(tc);
return intel_display_power_get(i915, *domain);
}
static intel_wakeref_t
tc_cold_block(struct intel_tc_port *tc)
{
enum intel_display_power_domain domain;
intel_wakeref_t wakeref;
wakeref = __tc_cold_block(tc, &domain);
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
tc->lock_power_domain = domain;
#endif
return wakeref;
}
static void
__tc_cold_unblock(struct intel_tc_port *tc, enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
intel_display_power_put(i915, domain, wakeref);
}
static void
tc_cold_unblock(struct intel_tc_port *tc, intel_wakeref_t wakeref)
{
enum intel_display_power_domain domain = tc_phy_cold_off_domain(tc);
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
drm_WARN_ON(&tc_to_i915(tc)->drm, tc->lock_power_domain != domain);
#endif
__tc_cold_unblock(tc, domain, wakeref);
}
static void
assert_display_core_power_enabled(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
drm_WARN_ON(&i915->drm,
!intel_display_power_is_enabled(i915, POWER_DOMAIN_DISPLAY_CORE));
}
static void
assert_tc_cold_blocked(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
bool enabled;
enabled = intel_display_power_is_enabled(i915,
tc_phy_cold_off_domain(tc));
drm_WARN_ON(&i915->drm, !enabled);
}
static enum intel_display_power_domain
tc_port_power_domain(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum tc_port tc_port = intel_port_to_tc(i915, tc->dig_port->base.port);
return POWER_DOMAIN_PORT_DDI_LANES_TC1 + tc_port - TC_PORT_1;
}
static void
assert_tc_port_power_enabled(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
drm_WARN_ON(&i915->drm,
!intel_display_power_is_enabled(i915, tc_port_power_domain(tc)));
}
u32 intel_tc_port_get_lane_mask(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc = to_tc_port(dig_port);
u32 lane_mask;
lane_mask = intel_de_read(i915, PORT_TX_DFLEXDPSP(tc->phy_fia));
drm_WARN_ON(&i915->drm, lane_mask == 0xffffffff);
assert_tc_cold_blocked(tc);
lane_mask &= DP_LANE_ASSIGNMENT_MASK(tc->phy_fia_idx);
return lane_mask >> DP_LANE_ASSIGNMENT_SHIFT(tc->phy_fia_idx);
}
u32 intel_tc_port_get_pin_assignment_mask(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc = to_tc_port(dig_port);
u32 pin_mask;
pin_mask = intel_de_read(i915, PORT_TX_DFLEXPA1(tc->phy_fia));
drm_WARN_ON(&i915->drm, pin_mask == 0xffffffff);
assert_tc_cold_blocked(tc);
return (pin_mask & DP_PIN_ASSIGNMENT_MASK(tc->phy_fia_idx)) >>
DP_PIN_ASSIGNMENT_SHIFT(tc->phy_fia_idx);
}
static int mtl_tc_port_get_pin_assignment_mask(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
intel_wakeref_t wakeref;
u32 pin_mask;
with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref)
pin_mask = intel_tc_port_get_pin_assignment_mask(dig_port);
switch (pin_mask) {
default:
MISSING_CASE(pin_mask);
fallthrough;
case DP_PIN_ASSIGNMENT_D:
return 2;
case DP_PIN_ASSIGNMENT_C:
case DP_PIN_ASSIGNMENT_E:
return 4;
}
}
int intel_tc_port_fia_max_lane_count(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc = to_tc_port(dig_port);
enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
intel_wakeref_t wakeref;
u32 lane_mask;
if (!intel_phy_is_tc(i915, phy) || tc->mode != TC_PORT_DP_ALT)
return 4;
assert_tc_cold_blocked(tc);
if (DISPLAY_VER(i915) >= 14)
return mtl_tc_port_get_pin_assignment_mask(dig_port);
lane_mask = 0;
with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref)
lane_mask = intel_tc_port_get_lane_mask(dig_port);
switch (lane_mask) {
default:
MISSING_CASE(lane_mask);
fallthrough;
case 0x1:
case 0x2:
case 0x4:
case 0x8:
return 1;
case 0x3:
case 0xc:
return 2;
case 0xf:
return 4;
}
}
void intel_tc_port_set_fia_lane_count(struct intel_digital_port *dig_port,
int required_lanes)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc = to_tc_port(dig_port);
bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
u32 val;
drm_WARN_ON(&i915->drm,
lane_reversal && tc->mode != TC_PORT_LEGACY);
assert_tc_cold_blocked(tc);
val = intel_de_read(i915, PORT_TX_DFLEXDPMLE1(tc->phy_fia));
val &= ~DFLEXDPMLE1_DPMLETC_MASK(tc->phy_fia_idx);
switch (required_lanes) {
case 1:
val |= lane_reversal ?
DFLEXDPMLE1_DPMLETC_ML3(tc->phy_fia_idx) :
DFLEXDPMLE1_DPMLETC_ML0(tc->phy_fia_idx);
break;
case 2:
val |= lane_reversal ?
DFLEXDPMLE1_DPMLETC_ML3_2(tc->phy_fia_idx) :
DFLEXDPMLE1_DPMLETC_ML1_0(tc->phy_fia_idx);
break;
case 4:
val |= DFLEXDPMLE1_DPMLETC_ML3_0(tc->phy_fia_idx);
break;
default:
MISSING_CASE(required_lanes);
}
intel_de_write(i915, PORT_TX_DFLEXDPMLE1(tc->phy_fia), val);
}
static void tc_port_fixup_legacy_flag(struct intel_tc_port *tc,
u32 live_status_mask)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
u32 valid_hpd_mask;
drm_WARN_ON(&i915->drm, tc->mode != TC_PORT_DISCONNECTED);
if (hweight32(live_status_mask) != 1)
return;
if (tc->legacy_port)
valid_hpd_mask = BIT(TC_PORT_LEGACY);
else
valid_hpd_mask = BIT(TC_PORT_DP_ALT) |
BIT(TC_PORT_TBT_ALT);
if (!(live_status_mask & ~valid_hpd_mask))
return;
/* If live status mismatches the VBT flag, trust the live status. */
drm_dbg_kms(&i915->drm,
"Port %s: live status %08x mismatches the legacy port flag %08x, fixing flag\n",
tc->port_name, live_status_mask, valid_hpd_mask);
tc->legacy_port = !tc->legacy_port;
}
static void tc_phy_load_fia_params(struct intel_tc_port *tc, bool modular_fia)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum port port = tc->dig_port->base.port;
enum tc_port tc_port = intel_port_to_tc(i915, port);
/*
* Each Modular FIA instance houses 2 TC ports. In SOC that has more
* than two TC ports, there are multiple instances of Modular FIA.
*/
if (modular_fia) {
tc->phy_fia = tc_port / 2;
tc->phy_fia_idx = tc_port % 2;
} else {
tc->phy_fia = FIA1;
tc->phy_fia_idx = tc_port;
}
}
/*
* ICL TC PHY handlers
* -------------------
*/
static enum intel_display_power_domain
icl_tc_phy_cold_off_domain(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
if (tc->legacy_port)
return intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch);
return POWER_DOMAIN_TC_COLD_OFF;
}
static u32 icl_tc_phy_hpd_live_status(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
u32 isr_bit = i915->display.hotplug.pch_hpd[dig_port->base.hpd_pin];
intel_wakeref_t wakeref;
u32 fia_isr;
u32 pch_isr;
u32 mask = 0;
with_intel_display_power(i915, tc_phy_cold_off_domain(tc), wakeref) {
fia_isr = intel_de_read(i915, PORT_TX_DFLEXDPSP(tc->phy_fia));
pch_isr = intel_de_read(i915, SDEISR);
}
if (fia_isr == 0xffffffff) {
drm_dbg_kms(&i915->drm,
"Port %s: PHY in TCCOLD, nothing connected\n",
tc->port_name);
return mask;
}
if (fia_isr & TC_LIVE_STATE_TBT(tc->phy_fia_idx))
mask |= BIT(TC_PORT_TBT_ALT);
if (fia_isr & TC_LIVE_STATE_TC(tc->phy_fia_idx))
mask |= BIT(TC_PORT_DP_ALT);
if (pch_isr & isr_bit)
mask |= BIT(TC_PORT_LEGACY);
return mask;
}
/*
* Return the PHY status complete flag indicating that display can acquire the
* PHY ownership. The IOM firmware sets this flag when a DP-alt or legacy sink
* is connected and it's ready to switch the ownership to display. The flag
* will be left cleared when a TBT-alt sink is connected, where the PHY is
* owned by the TBT subsystem and so switching the ownership to display is not
* required.
*/
static bool icl_tc_phy_is_ready(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
u32 val;
assert_tc_cold_blocked(tc);
val = intel_de_read(i915, PORT_TX_DFLEXDPPMS(tc->phy_fia));
if (val == 0xffffffff) {
drm_dbg_kms(&i915->drm,
"Port %s: PHY in TCCOLD, assuming not ready\n",
tc->port_name);
return false;
}
return val & DP_PHY_MODE_STATUS_COMPLETED(tc->phy_fia_idx);
}
static bool icl_tc_phy_take_ownership(struct intel_tc_port *tc,
bool take)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
u32 val;
assert_tc_cold_blocked(tc);
val = intel_de_read(i915, PORT_TX_DFLEXDPCSSS(tc->phy_fia));
if (val == 0xffffffff) {
drm_dbg_kms(&i915->drm,
"Port %s: PHY in TCCOLD, can't %s ownership\n",
tc->port_name, take ? "take" : "release");
return false;
}
val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc->phy_fia_idx);
if (take)
val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc->phy_fia_idx);
intel_de_write(i915, PORT_TX_DFLEXDPCSSS(tc->phy_fia), val);
return true;
}
static bool icl_tc_phy_is_owned(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
u32 val;
assert_tc_cold_blocked(tc);
val = intel_de_read(i915, PORT_TX_DFLEXDPCSSS(tc->phy_fia));
if (val == 0xffffffff) {
drm_dbg_kms(&i915->drm,
"Port %s: PHY in TCCOLD, assume not owned\n",
tc->port_name);
return false;
}
return val & DP_PHY_MODE_STATUS_NOT_SAFE(tc->phy_fia_idx);
}
static void icl_tc_phy_get_hw_state(struct intel_tc_port *tc)
{
enum intel_display_power_domain domain;
intel_wakeref_t tc_cold_wref;
tc_cold_wref = __tc_cold_block(tc, &domain);
tc->mode = tc_phy_get_current_mode(tc);
if (tc->mode != TC_PORT_DISCONNECTED)
tc->lock_wakeref = tc_cold_block(tc);
__tc_cold_unblock(tc, domain, tc_cold_wref);
}
/*
* This function implements the first part of the Connect Flow described by our
* specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
* lanes, EDID, etc) is done as needed in the typical places.
*
* Unlike the other ports, type-C ports are not available to use as soon as we
* get a hotplug. The type-C PHYs can be shared between multiple controllers:
* display, USB, etc. As a result, handshaking through FIA is required around
* connect and disconnect to cleanly transfer ownership with the controller and
* set the type-C power state.
*/
static bool tc_phy_verify_legacy_or_dp_alt_mode(struct intel_tc_port *tc,
int required_lanes)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
int max_lanes;
max_lanes = intel_tc_port_fia_max_lane_count(dig_port);
if (tc->mode == TC_PORT_LEGACY) {
drm_WARN_ON(&i915->drm, max_lanes != 4);
return true;
}
drm_WARN_ON(&i915->drm, tc->mode != TC_PORT_DP_ALT);
/*
* Now we have to re-check the live state, in case the port recently
* became disconnected. Not necessary for legacy mode.
*/
if (!(tc_phy_hpd_live_status(tc) & BIT(TC_PORT_DP_ALT))) {
drm_dbg_kms(&i915->drm, "Port %s: PHY sudden disconnect\n",
tc->port_name);
return false;
}
if (max_lanes < required_lanes) {
drm_dbg_kms(&i915->drm,
"Port %s: PHY max lanes %d < required lanes %d\n",
tc->port_name,
max_lanes, required_lanes);
return false;
}
return true;
}
static bool icl_tc_phy_connect(struct intel_tc_port *tc,
int required_lanes)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
tc->lock_wakeref = tc_cold_block(tc);
if (tc->mode == TC_PORT_TBT_ALT)
return true;
if ((!tc_phy_is_ready(tc) ||
!icl_tc_phy_take_ownership(tc, true)) &&
!drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_LEGACY)) {
drm_dbg_kms(&i915->drm, "Port %s: can't take PHY ownership (ready %s)\n",
tc->port_name,
str_yes_no(tc_phy_is_ready(tc)));
goto out_unblock_tc_cold;
}
if (!tc_phy_verify_legacy_or_dp_alt_mode(tc, required_lanes))
goto out_release_phy;
return true;
out_release_phy:
icl_tc_phy_take_ownership(tc, false);
out_unblock_tc_cold:
tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref));
return false;
}
/*
* See the comment at the connect function. This implements the Disconnect
* Flow.
*/
static void icl_tc_phy_disconnect(struct intel_tc_port *tc)
{
switch (tc->mode) {
case TC_PORT_LEGACY:
case TC_PORT_DP_ALT:
icl_tc_phy_take_ownership(tc, false);
fallthrough;
case TC_PORT_TBT_ALT:
tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref));
break;
default:
MISSING_CASE(tc->mode);
}
}
static void icl_tc_phy_init(struct intel_tc_port *tc)
{
tc_phy_load_fia_params(tc, false);
}
static const struct intel_tc_phy_ops icl_tc_phy_ops = {
.cold_off_domain = icl_tc_phy_cold_off_domain,
.hpd_live_status = icl_tc_phy_hpd_live_status,
.is_ready = icl_tc_phy_is_ready,
.is_owned = icl_tc_phy_is_owned,
.get_hw_state = icl_tc_phy_get_hw_state,
.connect = icl_tc_phy_connect,
.disconnect = icl_tc_phy_disconnect,
.init = icl_tc_phy_init,
};
/*
* TGL TC PHY handlers
* -------------------
*/
static enum intel_display_power_domain
tgl_tc_phy_cold_off_domain(struct intel_tc_port *tc)
{
return POWER_DOMAIN_TC_COLD_OFF;
}
static void tgl_tc_phy_init(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
intel_wakeref_t wakeref;
u32 val;
with_intel_display_power(i915, tc_phy_cold_off_domain(tc), wakeref)
val = intel_de_read(i915, PORT_TX_DFLEXDPSP(FIA1));
drm_WARN_ON(&i915->drm, val == 0xffffffff);
tc_phy_load_fia_params(tc, val & MODULAR_FIA_MASK);
}
static const struct intel_tc_phy_ops tgl_tc_phy_ops = {
.cold_off_domain = tgl_tc_phy_cold_off_domain,
.hpd_live_status = icl_tc_phy_hpd_live_status,
.is_ready = icl_tc_phy_is_ready,
.is_owned = icl_tc_phy_is_owned,
.get_hw_state = icl_tc_phy_get_hw_state,
.connect = icl_tc_phy_connect,
.disconnect = icl_tc_phy_disconnect,
.init = tgl_tc_phy_init,
};
/*
* ADLP TC PHY handlers
* --------------------
*/
static enum intel_display_power_domain
adlp_tc_phy_cold_off_domain(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
if (tc->mode != TC_PORT_TBT_ALT)
return intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch);
return POWER_DOMAIN_TC_COLD_OFF;
}
static u32 adlp_tc_phy_hpd_live_status(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
enum hpd_pin hpd_pin = dig_port->base.hpd_pin;
u32 cpu_isr_bits = i915->display.hotplug.hpd[hpd_pin];
u32 pch_isr_bit = i915->display.hotplug.pch_hpd[hpd_pin];
intel_wakeref_t wakeref;
u32 cpu_isr;
u32 pch_isr;
u32 mask = 0;
with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref) {
cpu_isr = intel_de_read(i915, GEN11_DE_HPD_ISR);
pch_isr = intel_de_read(i915, SDEISR);
}
if (cpu_isr & (cpu_isr_bits & GEN11_DE_TC_HOTPLUG_MASK))
mask |= BIT(TC_PORT_DP_ALT);
if (cpu_isr & (cpu_isr_bits & GEN11_DE_TBT_HOTPLUG_MASK))
mask |= BIT(TC_PORT_TBT_ALT);
if (pch_isr & pch_isr_bit)
mask |= BIT(TC_PORT_LEGACY);
return mask;
}
/*
* Return the PHY status complete flag indicating that display can acquire the
* PHY ownership. The IOM firmware sets this flag when it's ready to switch
* the ownership to display, regardless of what sink is connected (TBT-alt,
* DP-alt, legacy or nothing). For TBT-alt sinks the PHY is owned by the TBT
* subsystem and so switching the ownership to display is not required.
*/
static bool adlp_tc_phy_is_ready(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum tc_port tc_port = intel_port_to_tc(i915, tc->dig_port->base.port);
u32 val;
assert_display_core_power_enabled(tc);
val = intel_de_read(i915, TCSS_DDI_STATUS(tc_port));
if (val == 0xffffffff) {
drm_dbg_kms(&i915->drm,
"Port %s: PHY in TCCOLD, assuming not ready\n",
tc->port_name);
return false;
}
return val & TCSS_DDI_STATUS_READY;
}
static bool adlp_tc_phy_take_ownership(struct intel_tc_port *tc,
bool take)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum port port = tc->dig_port->base.port;
assert_tc_port_power_enabled(tc);
intel_de_rmw(i915, DDI_BUF_CTL(port), DDI_BUF_CTL_TC_PHY_OWNERSHIP,
take ? DDI_BUF_CTL_TC_PHY_OWNERSHIP : 0);
return true;
}
static bool adlp_tc_phy_is_owned(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum port port = tc->dig_port->base.port;
u32 val;
assert_tc_port_power_enabled(tc);
val = intel_de_read(i915, DDI_BUF_CTL(port));
return val & DDI_BUF_CTL_TC_PHY_OWNERSHIP;
}
static void adlp_tc_phy_get_hw_state(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum intel_display_power_domain port_power_domain =
tc_port_power_domain(tc);
intel_wakeref_t port_wakeref;
port_wakeref = intel_display_power_get(i915, port_power_domain);
tc->mode = tc_phy_get_current_mode(tc);
if (tc->mode != TC_PORT_DISCONNECTED)
tc->lock_wakeref = tc_cold_block(tc);
intel_display_power_put(i915, port_power_domain, port_wakeref);
}
static bool adlp_tc_phy_connect(struct intel_tc_port *tc, int required_lanes)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum intel_display_power_domain port_power_domain =
tc_port_power_domain(tc);
intel_wakeref_t port_wakeref;
if (tc->mode == TC_PORT_TBT_ALT) {
tc->lock_wakeref = tc_cold_block(tc);
return true;
}
port_wakeref = intel_display_power_get(i915, port_power_domain);
if (!adlp_tc_phy_take_ownership(tc, true) &&
!drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_LEGACY)) {
drm_dbg_kms(&i915->drm, "Port %s: can't take PHY ownership\n",
tc->port_name);
goto out_put_port_power;
}
if (!tc_phy_is_ready(tc) &&
!drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_LEGACY)) {
drm_dbg_kms(&i915->drm, "Port %s: PHY not ready\n",
tc->port_name);
goto out_release_phy;
}
tc->lock_wakeref = tc_cold_block(tc);
if (!tc_phy_verify_legacy_or_dp_alt_mode(tc, required_lanes))
goto out_unblock_tc_cold;
intel_display_power_put(i915, port_power_domain, port_wakeref);
return true;
out_unblock_tc_cold:
tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref));
out_release_phy:
adlp_tc_phy_take_ownership(tc, false);
out_put_port_power:
intel_display_power_put(i915, port_power_domain, port_wakeref);
return false;
}
static void adlp_tc_phy_disconnect(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum intel_display_power_domain port_power_domain =
tc_port_power_domain(tc);
intel_wakeref_t port_wakeref;
port_wakeref = intel_display_power_get(i915, port_power_domain);
tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref));
switch (tc->mode) {
case TC_PORT_LEGACY:
case TC_PORT_DP_ALT:
adlp_tc_phy_take_ownership(tc, false);
fallthrough;
case TC_PORT_TBT_ALT:
break;
default:
MISSING_CASE(tc->mode);
}
intel_display_power_put(i915, port_power_domain, port_wakeref);
}
static void adlp_tc_phy_init(struct intel_tc_port *tc)
{
tc_phy_load_fia_params(tc, true);
}
static const struct intel_tc_phy_ops adlp_tc_phy_ops = {
.cold_off_domain = adlp_tc_phy_cold_off_domain,
.hpd_live_status = adlp_tc_phy_hpd_live_status,
.is_ready = adlp_tc_phy_is_ready,
.is_owned = adlp_tc_phy_is_owned,
.get_hw_state = adlp_tc_phy_get_hw_state,
.connect = adlp_tc_phy_connect,
.disconnect = adlp_tc_phy_disconnect,
.init = adlp_tc_phy_init,
};
/*
* XELPDP TC PHY handlers
* ----------------------
*/
static u32 xelpdp_tc_phy_hpd_live_status(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
enum hpd_pin hpd_pin = dig_port->base.hpd_pin;
u32 pica_isr_bits = i915->display.hotplug.hpd[hpd_pin];
u32 pch_isr_bit = i915->display.hotplug.pch_hpd[hpd_pin];
intel_wakeref_t wakeref;
u32 pica_isr;
u32 pch_isr;
u32 mask = 0;
with_intel_display_power(i915, POWER_DOMAIN_DISPLAY_CORE, wakeref) {
pica_isr = intel_de_read(i915, PICAINTERRUPT_ISR);
pch_isr = intel_de_read(i915, SDEISR);
}
if (pica_isr & (pica_isr_bits & XELPDP_DP_ALT_HOTPLUG_MASK))
mask |= BIT(TC_PORT_DP_ALT);
if (pica_isr & (pica_isr_bits & XELPDP_TBT_HOTPLUG_MASK))
mask |= BIT(TC_PORT_TBT_ALT);
if (tc->legacy_port && (pch_isr & pch_isr_bit))
mask |= BIT(TC_PORT_LEGACY);
return mask;
}
static bool
xelpdp_tc_phy_tcss_power_is_enabled(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum port port = tc->dig_port->base.port;
assert_tc_cold_blocked(tc);
return intel_de_read(i915, XELPDP_PORT_BUF_CTL1(port)) & XELPDP_TCSS_POWER_STATE;
}
static bool
xelpdp_tc_phy_wait_for_tcss_power(struct intel_tc_port *tc, bool enabled)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
if (wait_for(xelpdp_tc_phy_tcss_power_is_enabled(tc) == enabled, 5)) {
drm_dbg_kms(&i915->drm,
"Port %s: timeout waiting for TCSS power to get %s\n",
enabled ? "enabled" : "disabled",
tc->port_name);
return false;
}
return true;
}
static void __xelpdp_tc_phy_enable_tcss_power(struct intel_tc_port *tc, bool enable)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum port port = tc->dig_port->base.port;
u32 val;
assert_tc_cold_blocked(tc);
val = intel_de_read(i915, XELPDP_PORT_BUF_CTL1(port));
if (enable)
val |= XELPDP_TCSS_POWER_REQUEST;
else
val &= ~XELPDP_TCSS_POWER_REQUEST;
intel_de_write(i915, XELPDP_PORT_BUF_CTL1(port), val);
}
static bool xelpdp_tc_phy_enable_tcss_power(struct intel_tc_port *tc, bool enable)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
__xelpdp_tc_phy_enable_tcss_power(tc, enable);
if ((!tc_phy_wait_for_ready(tc) ||
!xelpdp_tc_phy_wait_for_tcss_power(tc, enable)) &&
!drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_LEGACY)) {
if (enable) {
__xelpdp_tc_phy_enable_tcss_power(tc, false);
xelpdp_tc_phy_wait_for_tcss_power(tc, false);
}
return false;
}
return true;
}
static void xelpdp_tc_phy_take_ownership(struct intel_tc_port *tc, bool take)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum port port = tc->dig_port->base.port;
u32 val;
assert_tc_cold_blocked(tc);
val = intel_de_read(i915, XELPDP_PORT_BUF_CTL1(port));
if (take)
val |= XELPDP_TC_PHY_OWNERSHIP;
else
val &= ~XELPDP_TC_PHY_OWNERSHIP;
intel_de_write(i915, XELPDP_PORT_BUF_CTL1(port), val);
}
static bool xelpdp_tc_phy_is_owned(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum port port = tc->dig_port->base.port;
assert_tc_cold_blocked(tc);
return intel_de_read(i915, XELPDP_PORT_BUF_CTL1(port)) & XELPDP_TC_PHY_OWNERSHIP;
}
static void xelpdp_tc_phy_get_hw_state(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
intel_wakeref_t tc_cold_wref;
enum intel_display_power_domain domain;
tc_cold_wref = __tc_cold_block(tc, &domain);
tc->mode = tc_phy_get_current_mode(tc);
if (tc->mode != TC_PORT_DISCONNECTED)
tc->lock_wakeref = tc_cold_block(tc);
drm_WARN_ON(&i915->drm,
(tc->mode == TC_PORT_DP_ALT || tc->mode == TC_PORT_LEGACY) &&
!xelpdp_tc_phy_tcss_power_is_enabled(tc));
__tc_cold_unblock(tc, domain, tc_cold_wref);
}
static bool xelpdp_tc_phy_connect(struct intel_tc_port *tc, int required_lanes)
{
tc->lock_wakeref = tc_cold_block(tc);
if (tc->mode == TC_PORT_TBT_ALT)
return true;
if (!xelpdp_tc_phy_enable_tcss_power(tc, true))
goto out_unblock_tccold;
xelpdp_tc_phy_take_ownership(tc, true);
if (!tc_phy_verify_legacy_or_dp_alt_mode(tc, required_lanes))
goto out_release_phy;
return true;
out_release_phy:
xelpdp_tc_phy_take_ownership(tc, false);
xelpdp_tc_phy_wait_for_tcss_power(tc, false);
out_unblock_tccold:
tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref));
return false;
}
static void xelpdp_tc_phy_disconnect(struct intel_tc_port *tc)
{
switch (tc->mode) {
case TC_PORT_LEGACY:
case TC_PORT_DP_ALT:
xelpdp_tc_phy_take_ownership(tc, false);
xelpdp_tc_phy_enable_tcss_power(tc, false);
fallthrough;
case TC_PORT_TBT_ALT:
tc_cold_unblock(tc, fetch_and_zero(&tc->lock_wakeref));
break;
default:
MISSING_CASE(tc->mode);
}
}
static const struct intel_tc_phy_ops xelpdp_tc_phy_ops = {
.cold_off_domain = tgl_tc_phy_cold_off_domain,
.hpd_live_status = xelpdp_tc_phy_hpd_live_status,
.is_ready = adlp_tc_phy_is_ready,
.is_owned = xelpdp_tc_phy_is_owned,
.get_hw_state = xelpdp_tc_phy_get_hw_state,
.connect = xelpdp_tc_phy_connect,
.disconnect = xelpdp_tc_phy_disconnect,
.init = adlp_tc_phy_init,
};
/*
* Generic TC PHY handlers
* -----------------------
*/
static enum intel_display_power_domain
tc_phy_cold_off_domain(struct intel_tc_port *tc)
{
return tc->phy_ops->cold_off_domain(tc);
}
static u32 tc_phy_hpd_live_status(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
u32 mask;
mask = tc->phy_ops->hpd_live_status(tc);
/* The sink can be connected only in a single mode. */
drm_WARN_ON_ONCE(&i915->drm, hweight32(mask) > 1);
return mask;
}
static bool tc_phy_is_ready(struct intel_tc_port *tc)
{
return tc->phy_ops->is_ready(tc);
}
static bool tc_phy_is_owned(struct intel_tc_port *tc)
{
return tc->phy_ops->is_owned(tc);
}
static void tc_phy_get_hw_state(struct intel_tc_port *tc)
{
tc->phy_ops->get_hw_state(tc);
}
static bool tc_phy_is_ready_and_owned(struct intel_tc_port *tc,
bool phy_is_ready, bool phy_is_owned)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
drm_WARN_ON(&i915->drm, phy_is_owned && !phy_is_ready);
return phy_is_ready && phy_is_owned;
}
static bool tc_phy_is_connected(struct intel_tc_port *tc,
enum icl_port_dpll_id port_pll_type)
{
struct intel_encoder *encoder = &tc->dig_port->base;
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
bool phy_is_ready = tc_phy_is_ready(tc);
bool phy_is_owned = tc_phy_is_owned(tc);
bool is_connected;
if (tc_phy_is_ready_and_owned(tc, phy_is_ready, phy_is_owned))
is_connected = port_pll_type == ICL_PORT_DPLL_MG_PHY;
else
is_connected = port_pll_type == ICL_PORT_DPLL_DEFAULT;
drm_dbg_kms(&i915->drm,
"Port %s: PHY connected: %s (ready: %s, owned: %s, pll_type: %s)\n",
tc->port_name,
str_yes_no(is_connected),
str_yes_no(phy_is_ready),
str_yes_no(phy_is_owned),
port_pll_type == ICL_PORT_DPLL_DEFAULT ? "tbt" : "non-tbt");
return is_connected;
}
static bool tc_phy_wait_for_ready(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
if (wait_for(tc_phy_is_ready(tc), 500)) {
drm_err(&i915->drm, "Port %s: timeout waiting for PHY ready\n",
tc->port_name);
return false;
}
return true;
}
static enum tc_port_mode
hpd_mask_to_tc_mode(u32 live_status_mask)
{
if (live_status_mask)
return fls(live_status_mask) - 1;
return TC_PORT_DISCONNECTED;
}
static enum tc_port_mode
tc_phy_hpd_live_mode(struct intel_tc_port *tc)
{
u32 live_status_mask = tc_phy_hpd_live_status(tc);
return hpd_mask_to_tc_mode(live_status_mask);
}
static enum tc_port_mode
get_tc_mode_in_phy_owned_state(struct intel_tc_port *tc,
enum tc_port_mode live_mode)
{
switch (live_mode) {
case TC_PORT_LEGACY:
case TC_PORT_DP_ALT:
return live_mode;
default:
MISSING_CASE(live_mode);
fallthrough;
case TC_PORT_TBT_ALT:
case TC_PORT_DISCONNECTED:
if (tc->legacy_port)
return TC_PORT_LEGACY;
else
return TC_PORT_DP_ALT;
}
}
static enum tc_port_mode
get_tc_mode_in_phy_not_owned_state(struct intel_tc_port *tc,
enum tc_port_mode live_mode)
{
switch (live_mode) {
case TC_PORT_LEGACY:
return TC_PORT_DISCONNECTED;
case TC_PORT_DP_ALT:
case TC_PORT_TBT_ALT:
return TC_PORT_TBT_ALT;
default:
MISSING_CASE(live_mode);
fallthrough;
case TC_PORT_DISCONNECTED:
if (tc->legacy_port)
return TC_PORT_DISCONNECTED;
else
return TC_PORT_TBT_ALT;
}
}
static enum tc_port_mode
tc_phy_get_current_mode(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
enum tc_port_mode live_mode = tc_phy_hpd_live_mode(tc);
bool phy_is_ready;
bool phy_is_owned;
enum tc_port_mode mode;
/*
* For legacy ports the IOM firmware initializes the PHY during boot-up
* and system resume whether or not a sink is connected. Wait here for
* the initialization to get ready.
*/
if (tc->legacy_port)
tc_phy_wait_for_ready(tc);
phy_is_ready = tc_phy_is_ready(tc);
phy_is_owned = tc_phy_is_owned(tc);
if (!tc_phy_is_ready_and_owned(tc, phy_is_ready, phy_is_owned)) {
mode = get_tc_mode_in_phy_not_owned_state(tc, live_mode);
} else {
drm_WARN_ON(&i915->drm, live_mode == TC_PORT_TBT_ALT);
mode = get_tc_mode_in_phy_owned_state(tc, live_mode);
}
drm_dbg_kms(&i915->drm,
"Port %s: PHY mode: %s (ready: %s, owned: %s, HPD: %s)\n",
tc->port_name,
tc_port_mode_name(mode),
str_yes_no(phy_is_ready),
str_yes_no(phy_is_owned),
tc_port_mode_name(live_mode));
return mode;
}
static enum tc_port_mode default_tc_mode(struct intel_tc_port *tc)
{
if (tc->legacy_port)
return TC_PORT_LEGACY;
return TC_PORT_TBT_ALT;
}
static enum tc_port_mode
hpd_mask_to_target_mode(struct intel_tc_port *tc, u32 live_status_mask)
{
enum tc_port_mode mode = hpd_mask_to_tc_mode(live_status_mask);
if (mode != TC_PORT_DISCONNECTED)
return mode;
return default_tc_mode(tc);
}
static enum tc_port_mode
tc_phy_get_target_mode(struct intel_tc_port *tc)
{
u32 live_status_mask = tc_phy_hpd_live_status(tc);
return hpd_mask_to_target_mode(tc, live_status_mask);
}
static void tc_phy_connect(struct intel_tc_port *tc, int required_lanes)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
u32 live_status_mask = tc_phy_hpd_live_status(tc);
bool connected;
tc_port_fixup_legacy_flag(tc, live_status_mask);
tc->mode = hpd_mask_to_target_mode(tc, live_status_mask);
connected = tc->phy_ops->connect(tc, required_lanes);
if (!connected && tc->mode != default_tc_mode(tc)) {
tc->mode = default_tc_mode(tc);
connected = tc->phy_ops->connect(tc, required_lanes);
}
drm_WARN_ON(&i915->drm, !connected);
}
static void tc_phy_disconnect(struct intel_tc_port *tc)
{
if (tc->mode != TC_PORT_DISCONNECTED) {
tc->phy_ops->disconnect(tc);
tc->mode = TC_PORT_DISCONNECTED;
}
}
static void tc_phy_init(struct intel_tc_port *tc)
{
mutex_lock(&tc->lock);
tc->phy_ops->init(tc);
mutex_unlock(&tc->lock);
}
static void intel_tc_port_reset_mode(struct intel_tc_port *tc,
int required_lanes, bool force_disconnect)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
enum tc_port_mode old_tc_mode = tc->mode;
intel_display_power_flush_work(i915);
if (!intel_tc_cold_requires_aux_pw(dig_port)) {
enum intel_display_power_domain aux_domain;
bool aux_powered;
aux_domain = intel_aux_power_domain(dig_port);
aux_powered = intel_display_power_is_enabled(i915, aux_domain);
drm_WARN_ON(&i915->drm, aux_powered);
}
tc_phy_disconnect(tc);
if (!force_disconnect)
tc_phy_connect(tc, required_lanes);
drm_dbg_kms(&i915->drm, "Port %s: TC port mode reset (%s -> %s)\n",
tc->port_name,
tc_port_mode_name(old_tc_mode),
tc_port_mode_name(tc->mode));
}
static bool intel_tc_port_needs_reset(struct intel_tc_port *tc)
{
return tc_phy_get_target_mode(tc) != tc->mode;
}
static void intel_tc_port_update_mode(struct intel_tc_port *tc,
int required_lanes, bool force_disconnect)
{
if (force_disconnect ||
intel_tc_port_needs_reset(tc))
intel_tc_port_reset_mode(tc, required_lanes, force_disconnect);
}
static void __intel_tc_port_get_link(struct intel_tc_port *tc)
{
tc->link_refcount++;
}
static void __intel_tc_port_put_link(struct intel_tc_port *tc)
{
tc->link_refcount--;
}
static bool tc_port_is_enabled(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
assert_tc_port_power_enabled(tc);
return intel_de_read(i915, DDI_BUF_CTL(dig_port->base.port)) &
DDI_BUF_CTL_ENABLE;
}
/**
* intel_tc_port_init_mode: Read out HW state and init the given port's TypeC mode
* @dig_port: digital port
*
* Read out the HW state and initialize the TypeC mode of @dig_port. The mode
* will be locked until intel_tc_port_sanitize_mode() is called.
*/
void intel_tc_port_init_mode(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc = to_tc_port(dig_port);
bool update_mode = false;
mutex_lock(&tc->lock);
drm_WARN_ON(&i915->drm, tc->mode != TC_PORT_DISCONNECTED);
drm_WARN_ON(&i915->drm, tc->lock_wakeref);
drm_WARN_ON(&i915->drm, tc->link_refcount);
tc_phy_get_hw_state(tc);
/*
* Save the initial mode for the state check in
* intel_tc_port_sanitize_mode().
*/
tc->init_mode = tc->mode;
/*
* The PHY needs to be connected for AUX to work during HW readout and
* MST topology resume, but the PHY mode can only be changed if the
* port is disabled.
*
* An exception is the case where BIOS leaves the PHY incorrectly
* disconnected on an enabled legacy port. Work around that by
* connecting the PHY even though the port is enabled. This doesn't
* cause a problem as the PHY ownership state is ignored by the
* IOM/TCSS firmware (only display can own the PHY in that case).
*/
if (!tc_port_is_enabled(tc)) {
update_mode = true;
} else if (tc->mode == TC_PORT_DISCONNECTED) {
drm_WARN_ON(&i915->drm, !tc->legacy_port);
drm_err(&i915->drm,
"Port %s: PHY disconnected on enabled port, connecting it\n",
tc->port_name);
update_mode = true;
}
if (update_mode)
intel_tc_port_update_mode(tc, 1, false);
/* Prevent changing tc->mode until intel_tc_port_sanitize_mode() is called. */
__intel_tc_port_get_link(tc);
mutex_unlock(&tc->lock);
}
static bool tc_port_has_active_links(struct intel_tc_port *tc,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
enum icl_port_dpll_id pll_type = ICL_PORT_DPLL_DEFAULT;
int active_links = 0;
if (dig_port->dp.is_mst) {
/* TODO: get the PLL type for MST, once HW readout is done for it. */
active_links = intel_dp_mst_encoder_active_links(dig_port);
} else if (crtc_state && crtc_state->hw.active) {
pll_type = intel_ddi_port_pll_type(&dig_port->base, crtc_state);
active_links = 1;
}
if (active_links && !tc_phy_is_connected(tc, pll_type))
drm_err(&i915->drm,
"Port %s: PHY disconnected with %d active link(s)\n",
tc->port_name, active_links);
return active_links;
}
/**
* intel_tc_port_sanitize_mode: Sanitize the given port's TypeC mode
* @dig_port: digital port
* @crtc_state: atomic state of CRTC connected to @dig_port
*
* Sanitize @dig_port's TypeC mode wrt. the encoder's state right after driver
* loading and system resume:
* If the encoder is enabled keep the TypeC mode/PHY connected state locked until
* the encoder is disabled.
* If the encoder is disabled make sure the PHY is disconnected.
* @crtc_state is valid if @dig_port is enabled, NULL otherwise.
*/
void intel_tc_port_sanitize_mode(struct intel_digital_port *dig_port,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc = to_tc_port(dig_port);
mutex_lock(&tc->lock);
drm_WARN_ON(&i915->drm, tc->link_refcount != 1);
if (!tc_port_has_active_links(tc, crtc_state)) {
/*
* TBT-alt is the default mode in any case the PHY ownership is not
* held (regardless of the sink's connected live state), so
* we'll just switch to disconnected mode from it here without
* a note.
*/
if (tc->init_mode != TC_PORT_TBT_ALT &&
tc->init_mode != TC_PORT_DISCONNECTED)
drm_dbg_kms(&i915->drm,
"Port %s: PHY left in %s mode on disabled port, disconnecting it\n",
tc->port_name,
tc_port_mode_name(tc->init_mode));
tc_phy_disconnect(tc);
__intel_tc_port_put_link(tc);
}
drm_dbg_kms(&i915->drm, "Port %s: sanitize mode (%s)\n",
tc->port_name,
tc_port_mode_name(tc->mode));
mutex_unlock(&tc->lock);
}
/*
* The type-C ports are different because even when they are connected, they may
* not be available/usable by the graphics driver: see the comment on
* icl_tc_phy_connect(). So in our driver instead of adding the additional
* concept of "usable" and make everything check for "connected and usable" we
* define a port as "connected" when it is not only connected, but also when it
* is usable by the rest of the driver. That maintains the old assumption that
* connected ports are usable, and avoids exposing to the users objects they
* can't really use.
*/
bool intel_tc_port_connected_locked(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc = to_tc_port(dig_port);
u32 mask = ~0;
drm_WARN_ON(&i915->drm, !intel_tc_port_ref_held(dig_port));
if (tc->mode != TC_PORT_DISCONNECTED)
mask = BIT(tc->mode);
return tc_phy_hpd_live_status(tc) & mask;
}
bool intel_tc_port_connected(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
struct intel_tc_port *tc = to_tc_port(dig_port);
bool is_connected;
mutex_lock(&tc->lock);
is_connected = intel_tc_port_connected_locked(encoder);
mutex_unlock(&tc->lock);
return is_connected;
}
static bool __intel_tc_port_link_needs_reset(struct intel_tc_port *tc)
{
bool ret;
mutex_lock(&tc->lock);
ret = tc->link_refcount &&
tc->mode == TC_PORT_DP_ALT &&
intel_tc_port_needs_reset(tc);
mutex_unlock(&tc->lock);
return ret;
}
bool intel_tc_port_link_needs_reset(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
if (!intel_phy_is_tc(i915, phy))
return false;
return __intel_tc_port_link_needs_reset(to_tc_port(dig_port));
}
static int reset_link_commit(struct intel_tc_port *tc,
struct intel_atomic_state *state,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct intel_digital_port *dig_port = tc->dig_port;
struct intel_dp *intel_dp = enc_to_intel_dp(&dig_port->base);
struct intel_crtc *crtc;
u8 pipe_mask;
int ret;
ret = drm_modeset_lock(&i915->drm.mode_config.connection_mutex, ctx);
if (ret)
return ret;
ret = intel_dp_get_active_pipes(intel_dp, ctx, &pipe_mask);
if (ret)
return ret;
if (!pipe_mask)
return 0;
for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, pipe_mask) {
struct intel_crtc_state *crtc_state;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
crtc_state->uapi.connectors_changed = true;
}
if (!__intel_tc_port_link_needs_reset(tc))
return 0;
return drm_atomic_commit(&state->base);
}
static int reset_link(struct intel_tc_port *tc)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
struct drm_modeset_acquire_ctx ctx;
struct drm_atomic_state *_state;
struct intel_atomic_state *state;
int ret;
_state = drm_atomic_state_alloc(&i915->drm);
if (!_state)
return -ENOMEM;
state = to_intel_atomic_state(_state);
state->internal = true;
intel_modeset_lock_ctx_retry(&ctx, state, 0, ret)
ret = reset_link_commit(tc, state, &ctx);
drm_atomic_state_put(&state->base);
return ret;
}
static void intel_tc_port_link_reset_work(struct work_struct *work)
{
struct intel_tc_port *tc =
container_of(work, struct intel_tc_port, link_reset_work.work);
struct drm_i915_private *i915 = tc_to_i915(tc);
int ret;
if (!__intel_tc_port_link_needs_reset(tc))
return;
mutex_lock(&i915->drm.mode_config.mutex);
drm_dbg_kms(&i915->drm,
"Port %s: TypeC DP-alt sink disconnected, resetting link\n",
tc->port_name);
ret = reset_link(tc);
drm_WARN_ON(&i915->drm, ret);
mutex_unlock(&i915->drm.mode_config.mutex);
}
bool intel_tc_port_link_reset(struct intel_digital_port *dig_port)
{
if (!intel_tc_port_link_needs_reset(dig_port))
return false;
queue_delayed_work(system_unbound_wq,
&to_tc_port(dig_port)->link_reset_work,
msecs_to_jiffies(2000));
return true;
}
void intel_tc_port_link_cancel_reset_work(struct intel_digital_port *dig_port)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
struct intel_tc_port *tc = to_tc_port(dig_port);
if (!intel_phy_is_tc(i915, phy))
return;
cancel_delayed_work(&tc->link_reset_work);
}
static void __intel_tc_port_lock(struct intel_tc_port *tc,
int required_lanes)
{
struct drm_i915_private *i915 = tc_to_i915(tc);
mutex_lock(&tc->lock);
cancel_delayed_work(&tc->disconnect_phy_work);
if (!tc->link_refcount)
intel_tc_port_update_mode(tc, required_lanes,
false);
drm_WARN_ON(&i915->drm, tc->mode == TC_PORT_DISCONNECTED);
drm_WARN_ON(&i915->drm, tc->mode != TC_PORT_TBT_ALT &&
!tc_phy_is_owned(tc));
}
void intel_tc_port_lock(struct intel_digital_port *dig_port)
{
__intel_tc_port_lock(to_tc_port(dig_port), 1);
}
/*
* Disconnect the given digital port from its TypeC PHY (handing back the
* control of the PHY to the TypeC subsystem). This will happen in a delayed
* manner after each aux transactions and modeset disables.
*/
static void intel_tc_port_disconnect_phy_work(struct work_struct *work)
{
struct intel_tc_port *tc =
container_of(work, struct intel_tc_port, disconnect_phy_work.work);
mutex_lock(&tc->lock);
if (!tc->link_refcount)
intel_tc_port_update_mode(tc, 1, true);
mutex_unlock(&tc->lock);
}
/**
* intel_tc_port_flush_work: flush the work disconnecting the PHY
* @dig_port: digital port
*
* Flush the delayed work disconnecting an idle PHY.
*/
static void intel_tc_port_flush_work(struct intel_digital_port *dig_port)
{
flush_delayed_work(&to_tc_port(dig_port)->disconnect_phy_work);
}
void intel_tc_port_suspend(struct intel_digital_port *dig_port)
{
struct intel_tc_port *tc = to_tc_port(dig_port);
cancel_delayed_work_sync(&tc->link_reset_work);
intel_tc_port_flush_work(dig_port);
}
void intel_tc_port_unlock(struct intel_digital_port *dig_port)
{
struct intel_tc_port *tc = to_tc_port(dig_port);
if (!tc->link_refcount && tc->mode != TC_PORT_DISCONNECTED)
queue_delayed_work(system_unbound_wq, &tc->disconnect_phy_work,
msecs_to_jiffies(1000));
mutex_unlock(&tc->lock);
}
bool intel_tc_port_ref_held(struct intel_digital_port *dig_port)
{
struct intel_tc_port *tc = to_tc_port(dig_port);
return mutex_is_locked(&tc->lock) ||
tc->link_refcount;
}
void intel_tc_port_get_link(struct intel_digital_port *dig_port,
int required_lanes)
{
struct intel_tc_port *tc = to_tc_port(dig_port);
__intel_tc_port_lock(tc, required_lanes);
__intel_tc_port_get_link(tc);
intel_tc_port_unlock(dig_port);
}
void intel_tc_port_put_link(struct intel_digital_port *dig_port)
{
struct intel_tc_port *tc = to_tc_port(dig_port);
intel_tc_port_lock(dig_port);
__intel_tc_port_put_link(tc);
intel_tc_port_unlock(dig_port);
/*
* The firmware will not update the HPD status of other TypeC ports
* that are active in DP-alt mode with their sink disconnected, until
* this port is disabled and its PHY gets disconnected. Make sure this
* happens in a timely manner by disconnecting the PHY synchronously.
*/
intel_tc_port_flush_work(dig_port);
}
int intel_tc_port_init(struct intel_digital_port *dig_port, bool is_legacy)
{
struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
struct intel_tc_port *tc;
enum port port = dig_port->base.port;
enum tc_port tc_port = intel_port_to_tc(i915, port);
if (drm_WARN_ON(&i915->drm, tc_port == TC_PORT_NONE))
return -EINVAL;
tc = kzalloc(sizeof(*tc), GFP_KERNEL);
if (!tc)
return -ENOMEM;
dig_port->tc = tc;
tc->dig_port = dig_port;
if (DISPLAY_VER(i915) >= 14)
tc->phy_ops = &xelpdp_tc_phy_ops;
else if (DISPLAY_VER(i915) >= 13)
tc->phy_ops = &adlp_tc_phy_ops;
else if (DISPLAY_VER(i915) >= 12)
tc->phy_ops = &tgl_tc_phy_ops;
else
tc->phy_ops = &icl_tc_phy_ops;
snprintf(tc->port_name, sizeof(tc->port_name),
"%c/TC#%d", port_name(port), tc_port + 1);
mutex_init(&tc->lock);
/* TODO: Combine the two works */
INIT_DELAYED_WORK(&tc->disconnect_phy_work, intel_tc_port_disconnect_phy_work);
INIT_DELAYED_WORK(&tc->link_reset_work, intel_tc_port_link_reset_work);
tc->legacy_port = is_legacy;
tc->mode = TC_PORT_DISCONNECTED;
tc->link_refcount = 0;
tc_phy_init(tc);
intel_tc_port_init_mode(dig_port);
return 0;
}
void intel_tc_port_cleanup(struct intel_digital_port *dig_port)
{
intel_tc_port_suspend(dig_port);
kfree(dig_port->tc);
dig_port->tc = NULL;
}