3636 lines
93 KiB
C
3636 lines
93 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright © 2008,2010 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/dma-resv.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sync_file.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <drm/drm_syncobj.h>
|
|
|
|
#include "display/intel_frontbuffer.h"
|
|
|
|
#include "gem/i915_gem_ioctls.h"
|
|
#include "gt/intel_context.h"
|
|
#include "gt/intel_gpu_commands.h"
|
|
#include "gt/intel_gt.h"
|
|
#include "gt/intel_gt_buffer_pool.h"
|
|
#include "gt/intel_gt_pm.h"
|
|
#include "gt/intel_ring.h"
|
|
|
|
#include "pxp/intel_pxp.h"
|
|
|
|
#include "i915_cmd_parser.h"
|
|
#include "i915_drv.h"
|
|
#include "i915_file_private.h"
|
|
#include "i915_gem_clflush.h"
|
|
#include "i915_gem_context.h"
|
|
#include "i915_gem_evict.h"
|
|
#include "i915_gem_ioctls.h"
|
|
#include "i915_reg.h"
|
|
#include "i915_trace.h"
|
|
#include "i915_user_extensions.h"
|
|
|
|
struct eb_vma {
|
|
struct i915_vma *vma;
|
|
unsigned int flags;
|
|
|
|
/** This vma's place in the execbuf reservation list */
|
|
struct drm_i915_gem_exec_object2 *exec;
|
|
struct list_head bind_link;
|
|
struct list_head reloc_link;
|
|
|
|
struct hlist_node node;
|
|
u32 handle;
|
|
};
|
|
|
|
enum {
|
|
FORCE_CPU_RELOC = 1,
|
|
FORCE_GTT_RELOC,
|
|
FORCE_GPU_RELOC,
|
|
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
|
|
};
|
|
|
|
/* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
|
|
#define __EXEC_OBJECT_HAS_PIN BIT(29)
|
|
#define __EXEC_OBJECT_HAS_FENCE BIT(28)
|
|
#define __EXEC_OBJECT_USERPTR_INIT BIT(27)
|
|
#define __EXEC_OBJECT_NEEDS_MAP BIT(26)
|
|
#define __EXEC_OBJECT_NEEDS_BIAS BIT(25)
|
|
#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */
|
|
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
|
|
|
|
#define __EXEC_HAS_RELOC BIT(31)
|
|
#define __EXEC_ENGINE_PINNED BIT(30)
|
|
#define __EXEC_USERPTR_USED BIT(29)
|
|
#define __EXEC_INTERNAL_FLAGS (~0u << 29)
|
|
#define UPDATE PIN_OFFSET_FIXED
|
|
|
|
#define BATCH_OFFSET_BIAS (256*1024)
|
|
|
|
#define __I915_EXEC_ILLEGAL_FLAGS \
|
|
(__I915_EXEC_UNKNOWN_FLAGS | \
|
|
I915_EXEC_CONSTANTS_MASK | \
|
|
I915_EXEC_RESOURCE_STREAMER)
|
|
|
|
/* Catch emission of unexpected errors for CI! */
|
|
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
|
|
#undef EINVAL
|
|
#define EINVAL ({ \
|
|
DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
|
|
22; \
|
|
})
|
|
#endif
|
|
|
|
/**
|
|
* DOC: User command execution
|
|
*
|
|
* Userspace submits commands to be executed on the GPU as an instruction
|
|
* stream within a GEM object we call a batchbuffer. This instructions may
|
|
* refer to other GEM objects containing auxiliary state such as kernels,
|
|
* samplers, render targets and even secondary batchbuffers. Userspace does
|
|
* not know where in the GPU memory these objects reside and so before the
|
|
* batchbuffer is passed to the GPU for execution, those addresses in the
|
|
* batchbuffer and auxiliary objects are updated. This is known as relocation,
|
|
* or patching. To try and avoid having to relocate each object on the next
|
|
* execution, userspace is told the location of those objects in this pass,
|
|
* but this remains just a hint as the kernel may choose a new location for
|
|
* any object in the future.
|
|
*
|
|
* At the level of talking to the hardware, submitting a batchbuffer for the
|
|
* GPU to execute is to add content to a buffer from which the HW
|
|
* command streamer is reading.
|
|
*
|
|
* 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
|
|
* Execlists, this command is not placed on the same buffer as the
|
|
* remaining items.
|
|
*
|
|
* 2. Add a command to invalidate caches to the buffer.
|
|
*
|
|
* 3. Add a batchbuffer start command to the buffer; the start command is
|
|
* essentially a token together with the GPU address of the batchbuffer
|
|
* to be executed.
|
|
*
|
|
* 4. Add a pipeline flush to the buffer.
|
|
*
|
|
* 5. Add a memory write command to the buffer to record when the GPU
|
|
* is done executing the batchbuffer. The memory write writes the
|
|
* global sequence number of the request, ``i915_request::global_seqno``;
|
|
* the i915 driver uses the current value in the register to determine
|
|
* if the GPU has completed the batchbuffer.
|
|
*
|
|
* 6. Add a user interrupt command to the buffer. This command instructs
|
|
* the GPU to issue an interrupt when the command, pipeline flush and
|
|
* memory write are completed.
|
|
*
|
|
* 7. Inform the hardware of the additional commands added to the buffer
|
|
* (by updating the tail pointer).
|
|
*
|
|
* Processing an execbuf ioctl is conceptually split up into a few phases.
|
|
*
|
|
* 1. Validation - Ensure all the pointers, handles and flags are valid.
|
|
* 2. Reservation - Assign GPU address space for every object
|
|
* 3. Relocation - Update any addresses to point to the final locations
|
|
* 4. Serialisation - Order the request with respect to its dependencies
|
|
* 5. Construction - Construct a request to execute the batchbuffer
|
|
* 6. Submission (at some point in the future execution)
|
|
*
|
|
* Reserving resources for the execbuf is the most complicated phase. We
|
|
* neither want to have to migrate the object in the address space, nor do
|
|
* we want to have to update any relocations pointing to this object. Ideally,
|
|
* we want to leave the object where it is and for all the existing relocations
|
|
* to match. If the object is given a new address, or if userspace thinks the
|
|
* object is elsewhere, we have to parse all the relocation entries and update
|
|
* the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
|
|
* all the target addresses in all of its objects match the value in the
|
|
* relocation entries and that they all match the presumed offsets given by the
|
|
* list of execbuffer objects. Using this knowledge, we know that if we haven't
|
|
* moved any buffers, all the relocation entries are valid and we can skip
|
|
* the update. (If userspace is wrong, the likely outcome is an impromptu GPU
|
|
* hang.) The requirement for using I915_EXEC_NO_RELOC are:
|
|
*
|
|
* The addresses written in the objects must match the corresponding
|
|
* reloc.presumed_offset which in turn must match the corresponding
|
|
* execobject.offset.
|
|
*
|
|
* Any render targets written to in the batch must be flagged with
|
|
* EXEC_OBJECT_WRITE.
|
|
*
|
|
* To avoid stalling, execobject.offset should match the current
|
|
* address of that object within the active context.
|
|
*
|
|
* The reservation is done is multiple phases. First we try and keep any
|
|
* object already bound in its current location - so as long as meets the
|
|
* constraints imposed by the new execbuffer. Any object left unbound after the
|
|
* first pass is then fitted into any available idle space. If an object does
|
|
* not fit, all objects are removed from the reservation and the process rerun
|
|
* after sorting the objects into a priority order (more difficult to fit
|
|
* objects are tried first). Failing that, the entire VM is cleared and we try
|
|
* to fit the execbuf once last time before concluding that it simply will not
|
|
* fit.
|
|
*
|
|
* A small complication to all of this is that we allow userspace not only to
|
|
* specify an alignment and a size for the object in the address space, but
|
|
* we also allow userspace to specify the exact offset. This objects are
|
|
* simpler to place (the location is known a priori) all we have to do is make
|
|
* sure the space is available.
|
|
*
|
|
* Once all the objects are in place, patching up the buried pointers to point
|
|
* to the final locations is a fairly simple job of walking over the relocation
|
|
* entry arrays, looking up the right address and rewriting the value into
|
|
* the object. Simple! ... The relocation entries are stored in user memory
|
|
* and so to access them we have to copy them into a local buffer. That copy
|
|
* has to avoid taking any pagefaults as they may lead back to a GEM object
|
|
* requiring the struct_mutex (i.e. recursive deadlock). So once again we split
|
|
* the relocation into multiple passes. First we try to do everything within an
|
|
* atomic context (avoid the pagefaults) which requires that we never wait. If
|
|
* we detect that we may wait, or if we need to fault, then we have to fallback
|
|
* to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
|
|
* bells yet?) Dropping the mutex means that we lose all the state we have
|
|
* built up so far for the execbuf and we must reset any global data. However,
|
|
* we do leave the objects pinned in their final locations - which is a
|
|
* potential issue for concurrent execbufs. Once we have left the mutex, we can
|
|
* allocate and copy all the relocation entries into a large array at our
|
|
* leisure, reacquire the mutex, reclaim all the objects and other state and
|
|
* then proceed to update any incorrect addresses with the objects.
|
|
*
|
|
* As we process the relocation entries, we maintain a record of whether the
|
|
* object is being written to. Using NORELOC, we expect userspace to provide
|
|
* this information instead. We also check whether we can skip the relocation
|
|
* by comparing the expected value inside the relocation entry with the target's
|
|
* final address. If they differ, we have to map the current object and rewrite
|
|
* the 4 or 8 byte pointer within.
|
|
*
|
|
* Serialising an execbuf is quite simple according to the rules of the GEM
|
|
* ABI. Execution within each context is ordered by the order of submission.
|
|
* Writes to any GEM object are in order of submission and are exclusive. Reads
|
|
* from a GEM object are unordered with respect to other reads, but ordered by
|
|
* writes. A write submitted after a read cannot occur before the read, and
|
|
* similarly any read submitted after a write cannot occur before the write.
|
|
* Writes are ordered between engines such that only one write occurs at any
|
|
* time (completing any reads beforehand) - using semaphores where available
|
|
* and CPU serialisation otherwise. Other GEM access obey the same rules, any
|
|
* write (either via mmaps using set-domain, or via pwrite) must flush all GPU
|
|
* reads before starting, and any read (either using set-domain or pread) must
|
|
* flush all GPU writes before starting. (Note we only employ a barrier before,
|
|
* we currently rely on userspace not concurrently starting a new execution
|
|
* whilst reading or writing to an object. This may be an advantage or not
|
|
* depending on how much you trust userspace not to shoot themselves in the
|
|
* foot.) Serialisation may just result in the request being inserted into
|
|
* a DAG awaiting its turn, but most simple is to wait on the CPU until
|
|
* all dependencies are resolved.
|
|
*
|
|
* After all of that, is just a matter of closing the request and handing it to
|
|
* the hardware (well, leaving it in a queue to be executed). However, we also
|
|
* offer the ability for batchbuffers to be run with elevated privileges so
|
|
* that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
|
|
* Before any batch is given extra privileges we first must check that it
|
|
* contains no nefarious instructions, we check that each instruction is from
|
|
* our whitelist and all registers are also from an allowed list. We first
|
|
* copy the user's batchbuffer to a shadow (so that the user doesn't have
|
|
* access to it, either by the CPU or GPU as we scan it) and then parse each
|
|
* instruction. If everything is ok, we set a flag telling the hardware to run
|
|
* the batchbuffer in trusted mode, otherwise the ioctl is rejected.
|
|
*/
|
|
|
|
struct eb_fence {
|
|
struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
|
|
struct dma_fence *dma_fence;
|
|
u64 value;
|
|
struct dma_fence_chain *chain_fence;
|
|
};
|
|
|
|
struct i915_execbuffer {
|
|
struct drm_i915_private *i915; /** i915 backpointer */
|
|
struct drm_file *file; /** per-file lookup tables and limits */
|
|
struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
|
|
struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
|
|
struct eb_vma *vma;
|
|
|
|
struct intel_gt *gt; /* gt for the execbuf */
|
|
struct intel_context *context; /* logical state for the request */
|
|
struct i915_gem_context *gem_context; /** caller's context */
|
|
|
|
/** our requests to build */
|
|
struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
|
|
/** identity of the batch obj/vma */
|
|
struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
|
|
struct i915_vma *trampoline; /** trampoline used for chaining */
|
|
|
|
/** used for excl fence in dma_resv objects when > 1 BB submitted */
|
|
struct dma_fence *composite_fence;
|
|
|
|
/** actual size of execobj[] as we may extend it for the cmdparser */
|
|
unsigned int buffer_count;
|
|
|
|
/* number of batches in execbuf IOCTL */
|
|
unsigned int num_batches;
|
|
|
|
/** list of vma not yet bound during reservation phase */
|
|
struct list_head unbound;
|
|
|
|
/** list of vma that have execobj.relocation_count */
|
|
struct list_head relocs;
|
|
|
|
struct i915_gem_ww_ctx ww;
|
|
|
|
/**
|
|
* Track the most recently used object for relocations, as we
|
|
* frequently have to perform multiple relocations within the same
|
|
* obj/page
|
|
*/
|
|
struct reloc_cache {
|
|
struct drm_mm_node node; /** temporary GTT binding */
|
|
unsigned long vaddr; /** Current kmap address */
|
|
unsigned long page; /** Currently mapped page index */
|
|
unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
|
|
bool use_64bit_reloc : 1;
|
|
bool has_llc : 1;
|
|
bool has_fence : 1;
|
|
bool needs_unfenced : 1;
|
|
} reloc_cache;
|
|
|
|
u64 invalid_flags; /** Set of execobj.flags that are invalid */
|
|
|
|
/** Length of batch within object */
|
|
u64 batch_len[MAX_ENGINE_INSTANCE + 1];
|
|
u32 batch_start_offset; /** Location within object of batch */
|
|
u32 batch_flags; /** Flags composed for emit_bb_start() */
|
|
struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
|
|
|
|
/**
|
|
* Indicate either the size of the hastable used to resolve
|
|
* relocation handles, or if negative that we are using a direct
|
|
* index into the execobj[].
|
|
*/
|
|
int lut_size;
|
|
struct hlist_head *buckets; /** ht for relocation handles */
|
|
|
|
struct eb_fence *fences;
|
|
unsigned long num_fences;
|
|
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
|
|
struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
|
|
#endif
|
|
};
|
|
|
|
static int eb_parse(struct i915_execbuffer *eb);
|
|
static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
|
|
static void eb_unpin_engine(struct i915_execbuffer *eb);
|
|
static void eb_capture_release(struct i915_execbuffer *eb);
|
|
|
|
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
|
|
{
|
|
return intel_engine_requires_cmd_parser(eb->context->engine) ||
|
|
(intel_engine_using_cmd_parser(eb->context->engine) &&
|
|
eb->args->batch_len);
|
|
}
|
|
|
|
static int eb_create(struct i915_execbuffer *eb)
|
|
{
|
|
if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
|
|
unsigned int size = 1 + ilog2(eb->buffer_count);
|
|
|
|
/*
|
|
* Without a 1:1 association between relocation handles and
|
|
* the execobject[] index, we instead create a hashtable.
|
|
* We size it dynamically based on available memory, starting
|
|
* first with 1:1 assocative hash and scaling back until
|
|
* the allocation succeeds.
|
|
*
|
|
* Later on we use a positive lut_size to indicate we are
|
|
* using this hashtable, and a negative value to indicate a
|
|
* direct lookup.
|
|
*/
|
|
do {
|
|
gfp_t flags;
|
|
|
|
/* While we can still reduce the allocation size, don't
|
|
* raise a warning and allow the allocation to fail.
|
|
* On the last pass though, we want to try as hard
|
|
* as possible to perform the allocation and warn
|
|
* if it fails.
|
|
*/
|
|
flags = GFP_KERNEL;
|
|
if (size > 1)
|
|
flags |= __GFP_NORETRY | __GFP_NOWARN;
|
|
|
|
eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
|
|
flags);
|
|
if (eb->buckets)
|
|
break;
|
|
} while (--size);
|
|
|
|
if (unlikely(!size))
|
|
return -ENOMEM;
|
|
|
|
eb->lut_size = size;
|
|
} else {
|
|
eb->lut_size = -eb->buffer_count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
|
|
const struct i915_vma *vma,
|
|
unsigned int flags)
|
|
{
|
|
const u64 start = i915_vma_offset(vma);
|
|
const u64 size = i915_vma_size(vma);
|
|
|
|
if (size < entry->pad_to_size)
|
|
return true;
|
|
|
|
if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
|
|
return true;
|
|
|
|
if (flags & EXEC_OBJECT_PINNED &&
|
|
start != entry->offset)
|
|
return true;
|
|
|
|
if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
|
|
start < BATCH_OFFSET_BIAS)
|
|
return true;
|
|
|
|
if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
|
|
(start + size + 4095) >> 32)
|
|
return true;
|
|
|
|
if (flags & __EXEC_OBJECT_NEEDS_MAP &&
|
|
!i915_vma_is_map_and_fenceable(vma))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
|
|
unsigned int exec_flags)
|
|
{
|
|
u64 pin_flags = 0;
|
|
|
|
if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
|
|
pin_flags |= PIN_GLOBAL;
|
|
|
|
/*
|
|
* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
|
|
* limit address to the first 4GBs for unflagged objects.
|
|
*/
|
|
if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
|
|
pin_flags |= PIN_ZONE_4G;
|
|
|
|
if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
|
|
pin_flags |= PIN_MAPPABLE;
|
|
|
|
if (exec_flags & EXEC_OBJECT_PINNED)
|
|
pin_flags |= entry->offset | PIN_OFFSET_FIXED;
|
|
else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
|
|
pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
|
|
|
|
return pin_flags;
|
|
}
|
|
|
|
static inline int
|
|
eb_pin_vma(struct i915_execbuffer *eb,
|
|
const struct drm_i915_gem_exec_object2 *entry,
|
|
struct eb_vma *ev)
|
|
{
|
|
struct i915_vma *vma = ev->vma;
|
|
u64 pin_flags;
|
|
int err;
|
|
|
|
if (vma->node.size)
|
|
pin_flags = __i915_vma_offset(vma);
|
|
else
|
|
pin_flags = entry->offset & PIN_OFFSET_MASK;
|
|
|
|
pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
|
|
if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
|
|
pin_flags |= PIN_GLOBAL;
|
|
|
|
/* Attempt to reuse the current location if available */
|
|
err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
|
|
if (err == -EDEADLK)
|
|
return err;
|
|
|
|
if (unlikely(err)) {
|
|
if (entry->flags & EXEC_OBJECT_PINNED)
|
|
return err;
|
|
|
|
/* Failing that pick any _free_ space if suitable */
|
|
err = i915_vma_pin_ww(vma, &eb->ww,
|
|
entry->pad_to_size,
|
|
entry->alignment,
|
|
eb_pin_flags(entry, ev->flags) |
|
|
PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
|
|
if (unlikely(err))
|
|
return err;
|
|
}
|
|
|
|
if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
|
|
err = i915_vma_pin_fence(vma);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
if (vma->fence)
|
|
ev->flags |= __EXEC_OBJECT_HAS_FENCE;
|
|
}
|
|
|
|
ev->flags |= __EXEC_OBJECT_HAS_PIN;
|
|
if (eb_vma_misplaced(entry, vma, ev->flags))
|
|
return -EBADSLT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
eb_unreserve_vma(struct eb_vma *ev)
|
|
{
|
|
if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
|
|
__i915_vma_unpin_fence(ev->vma);
|
|
|
|
ev->flags &= ~__EXEC_OBJECT_RESERVED;
|
|
}
|
|
|
|
static int
|
|
eb_validate_vma(struct i915_execbuffer *eb,
|
|
struct drm_i915_gem_exec_object2 *entry,
|
|
struct i915_vma *vma)
|
|
{
|
|
/* Relocations are disallowed for all platforms after TGL-LP. This
|
|
* also covers all platforms with local memory.
|
|
*/
|
|
if (entry->relocation_count &&
|
|
GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(entry->flags & eb->invalid_flags))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(entry->alignment &&
|
|
!is_power_of_2_u64(entry->alignment)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Offset can be used as input (EXEC_OBJECT_PINNED), reject
|
|
* any non-page-aligned or non-canonical addresses.
|
|
*/
|
|
if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
|
|
entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
|
|
return -EINVAL;
|
|
|
|
/* pad_to_size was once a reserved field, so sanitize it */
|
|
if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
|
|
if (unlikely(offset_in_page(entry->pad_to_size)))
|
|
return -EINVAL;
|
|
} else {
|
|
entry->pad_to_size = 0;
|
|
}
|
|
/*
|
|
* From drm_mm perspective address space is continuous,
|
|
* so from this point we're always using non-canonical
|
|
* form internally.
|
|
*/
|
|
entry->offset = gen8_noncanonical_addr(entry->offset);
|
|
|
|
if (!eb->reloc_cache.has_fence) {
|
|
entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
|
|
} else {
|
|
if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
|
|
eb->reloc_cache.needs_unfenced) &&
|
|
i915_gem_object_is_tiled(vma->obj))
|
|
entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool
|
|
is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
|
|
{
|
|
return eb->args->flags & I915_EXEC_BATCH_FIRST ?
|
|
buffer_idx < eb->num_batches :
|
|
buffer_idx >= eb->args->buffer_count - eb->num_batches;
|
|
}
|
|
|
|
static int
|
|
eb_add_vma(struct i915_execbuffer *eb,
|
|
unsigned int *current_batch,
|
|
unsigned int i,
|
|
struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_private *i915 = eb->i915;
|
|
struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
|
|
ev->vma = vma;
|
|
ev->exec = entry;
|
|
ev->flags = entry->flags;
|
|
|
|
if (eb->lut_size > 0) {
|
|
ev->handle = entry->handle;
|
|
hlist_add_head(&ev->node,
|
|
&eb->buckets[hash_32(entry->handle,
|
|
eb->lut_size)]);
|
|
}
|
|
|
|
if (entry->relocation_count)
|
|
list_add_tail(&ev->reloc_link, &eb->relocs);
|
|
|
|
/*
|
|
* SNA is doing fancy tricks with compressing batch buffers, which leads
|
|
* to negative relocation deltas. Usually that works out ok since the
|
|
* relocate address is still positive, except when the batch is placed
|
|
* very low in the GTT. Ensure this doesn't happen.
|
|
*
|
|
* Note that actual hangs have only been observed on gen7, but for
|
|
* paranoia do it everywhere.
|
|
*/
|
|
if (is_batch_buffer(eb, i)) {
|
|
if (entry->relocation_count &&
|
|
!(ev->flags & EXEC_OBJECT_PINNED))
|
|
ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
|
|
if (eb->reloc_cache.has_fence)
|
|
ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
|
|
|
|
eb->batches[*current_batch] = ev;
|
|
|
|
if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
|
|
drm_dbg(&i915->drm,
|
|
"Attempting to use self-modifying batch buffer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (range_overflows_t(u64,
|
|
eb->batch_start_offset,
|
|
eb->args->batch_len,
|
|
ev->vma->size)) {
|
|
drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (eb->args->batch_len == 0)
|
|
eb->batch_len[*current_batch] = ev->vma->size -
|
|
eb->batch_start_offset;
|
|
else
|
|
eb->batch_len[*current_batch] = eb->args->batch_len;
|
|
if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
|
|
drm_dbg(&i915->drm, "Invalid batch length\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
++*current_batch;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int use_cpu_reloc(const struct reloc_cache *cache,
|
|
const struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!i915_gem_object_has_struct_page(obj))
|
|
return false;
|
|
|
|
if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
|
|
return true;
|
|
|
|
if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
|
|
return false;
|
|
|
|
/*
|
|
* For objects created by userspace through GEM_CREATE with pat_index
|
|
* set by set_pat extension, i915_gem_object_has_cache_level() always
|
|
* return true, otherwise the call would fall back to checking whether
|
|
* the object is un-cached.
|
|
*/
|
|
return (cache->has_llc ||
|
|
obj->cache_dirty ||
|
|
!i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
|
|
}
|
|
|
|
static int eb_reserve_vma(struct i915_execbuffer *eb,
|
|
struct eb_vma *ev,
|
|
u64 pin_flags)
|
|
{
|
|
struct drm_i915_gem_exec_object2 *entry = ev->exec;
|
|
struct i915_vma *vma = ev->vma;
|
|
int err;
|
|
|
|
if (drm_mm_node_allocated(&vma->node) &&
|
|
eb_vma_misplaced(entry, vma, ev->flags)) {
|
|
err = i915_vma_unbind(vma);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = i915_vma_pin_ww(vma, &eb->ww,
|
|
entry->pad_to_size, entry->alignment,
|
|
eb_pin_flags(entry, ev->flags) | pin_flags);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->offset != i915_vma_offset(vma)) {
|
|
entry->offset = i915_vma_offset(vma) | UPDATE;
|
|
eb->args->flags |= __EXEC_HAS_RELOC;
|
|
}
|
|
|
|
if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
|
|
err = i915_vma_pin_fence(vma);
|
|
if (unlikely(err))
|
|
return err;
|
|
|
|
if (vma->fence)
|
|
ev->flags |= __EXEC_OBJECT_HAS_FENCE;
|
|
}
|
|
|
|
ev->flags |= __EXEC_OBJECT_HAS_PIN;
|
|
GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool eb_unbind(struct i915_execbuffer *eb, bool force)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
struct list_head last;
|
|
bool unpinned = false;
|
|
|
|
/* Resort *all* the objects into priority order */
|
|
INIT_LIST_HEAD(&eb->unbound);
|
|
INIT_LIST_HEAD(&last);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
unsigned int flags = ev->flags;
|
|
|
|
if (!force && flags & EXEC_OBJECT_PINNED &&
|
|
flags & __EXEC_OBJECT_HAS_PIN)
|
|
continue;
|
|
|
|
unpinned = true;
|
|
eb_unreserve_vma(ev);
|
|
|
|
if (flags & EXEC_OBJECT_PINNED)
|
|
/* Pinned must have their slot */
|
|
list_add(&ev->bind_link, &eb->unbound);
|
|
else if (flags & __EXEC_OBJECT_NEEDS_MAP)
|
|
/* Map require the lowest 256MiB (aperture) */
|
|
list_add_tail(&ev->bind_link, &eb->unbound);
|
|
else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
|
|
/* Prioritise 4GiB region for restricted bo */
|
|
list_add(&ev->bind_link, &last);
|
|
else
|
|
list_add_tail(&ev->bind_link, &last);
|
|
}
|
|
|
|
list_splice_tail(&last, &eb->unbound);
|
|
return unpinned;
|
|
}
|
|
|
|
static int eb_reserve(struct i915_execbuffer *eb)
|
|
{
|
|
struct eb_vma *ev;
|
|
unsigned int pass;
|
|
int err = 0;
|
|
|
|
/*
|
|
* We have one more buffers that we couldn't bind, which could be due to
|
|
* various reasons. To resolve this we have 4 passes, with every next
|
|
* level turning the screws tighter:
|
|
*
|
|
* 0. Unbind all objects that do not match the GTT constraints for the
|
|
* execbuffer (fenceable, mappable, alignment etc). Bind all new
|
|
* objects. This avoids unnecessary unbinding of later objects in order
|
|
* to make room for the earlier objects *unless* we need to defragment.
|
|
*
|
|
* 1. Reorder the buffers, where objects with the most restrictive
|
|
* placement requirements go first (ignoring fixed location buffers for
|
|
* now). For example, objects needing the mappable aperture (the first
|
|
* 256M of GTT), should go first vs objects that can be placed just
|
|
* about anywhere. Repeat the previous pass.
|
|
*
|
|
* 2. Consider buffers that are pinned at a fixed location. Also try to
|
|
* evict the entire VM this time, leaving only objects that we were
|
|
* unable to lock. Try again to bind the buffers. (still using the new
|
|
* buffer order).
|
|
*
|
|
* 3. We likely have object lock contention for one or more stubborn
|
|
* objects in the VM, for which we need to evict to make forward
|
|
* progress (perhaps we are fighting the shrinker?). When evicting the
|
|
* VM this time around, anything that we can't lock we now track using
|
|
* the busy_bo, using the full lock (after dropping the vm->mutex to
|
|
* prevent deadlocks), instead of trylock. We then continue to evict the
|
|
* VM, this time with the stubborn object locked, which we can now
|
|
* hopefully unbind (if still bound in the VM). Repeat until the VM is
|
|
* evicted. Finally we should be able bind everything.
|
|
*/
|
|
for (pass = 0; pass <= 3; pass++) {
|
|
int pin_flags = PIN_USER | PIN_VALIDATE;
|
|
|
|
if (pass == 0)
|
|
pin_flags |= PIN_NONBLOCK;
|
|
|
|
if (pass >= 1)
|
|
eb_unbind(eb, pass >= 2);
|
|
|
|
if (pass == 2) {
|
|
err = mutex_lock_interruptible(&eb->context->vm->mutex);
|
|
if (!err) {
|
|
err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
|
|
mutex_unlock(&eb->context->vm->mutex);
|
|
}
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (pass == 3) {
|
|
retry:
|
|
err = mutex_lock_interruptible(&eb->context->vm->mutex);
|
|
if (!err) {
|
|
struct drm_i915_gem_object *busy_bo = NULL;
|
|
|
|
err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
|
|
mutex_unlock(&eb->context->vm->mutex);
|
|
if (err && busy_bo) {
|
|
err = i915_gem_object_lock(busy_bo, &eb->ww);
|
|
i915_gem_object_put(busy_bo);
|
|
if (!err)
|
|
goto retry;
|
|
}
|
|
}
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
list_for_each_entry(ev, &eb->unbound, bind_link) {
|
|
err = eb_reserve_vma(eb, ev, pin_flags);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
if (err != -ENOSPC)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int eb_select_context(struct i915_execbuffer *eb)
|
|
{
|
|
struct i915_gem_context *ctx;
|
|
|
|
ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
|
|
if (unlikely(IS_ERR(ctx)))
|
|
return PTR_ERR(ctx);
|
|
|
|
eb->gem_context = ctx;
|
|
if (i915_gem_context_has_full_ppgtt(ctx))
|
|
eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __eb_add_lut(struct i915_execbuffer *eb,
|
|
u32 handle, struct i915_vma *vma)
|
|
{
|
|
struct i915_gem_context *ctx = eb->gem_context;
|
|
struct i915_lut_handle *lut;
|
|
int err;
|
|
|
|
lut = i915_lut_handle_alloc();
|
|
if (unlikely(!lut))
|
|
return -ENOMEM;
|
|
|
|
i915_vma_get(vma);
|
|
if (!atomic_fetch_inc(&vma->open_count))
|
|
i915_vma_reopen(vma);
|
|
lut->handle = handle;
|
|
lut->ctx = ctx;
|
|
|
|
/* Check that the context hasn't been closed in the meantime */
|
|
err = -EINTR;
|
|
if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
|
|
if (likely(!i915_gem_context_is_closed(ctx)))
|
|
err = radix_tree_insert(&ctx->handles_vma, handle, vma);
|
|
else
|
|
err = -ENOENT;
|
|
if (err == 0) { /* And nor has this handle */
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
spin_lock(&obj->lut_lock);
|
|
if (idr_find(&eb->file->object_idr, handle) == obj) {
|
|
list_add(&lut->obj_link, &obj->lut_list);
|
|
} else {
|
|
radix_tree_delete(&ctx->handles_vma, handle);
|
|
err = -ENOENT;
|
|
}
|
|
spin_unlock(&obj->lut_lock);
|
|
}
|
|
mutex_unlock(&ctx->lut_mutex);
|
|
}
|
|
if (unlikely(err))
|
|
goto err;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
i915_vma_close(vma);
|
|
i915_vma_put(vma);
|
|
i915_lut_handle_free(lut);
|
|
return err;
|
|
}
|
|
|
|
static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
|
|
{
|
|
struct i915_address_space *vm = eb->context->vm;
|
|
|
|
do {
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
int err;
|
|
|
|
rcu_read_lock();
|
|
vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
|
|
if (likely(vma && vma->vm == vm))
|
|
vma = i915_vma_tryget(vma);
|
|
rcu_read_unlock();
|
|
if (likely(vma))
|
|
return vma;
|
|
|
|
obj = i915_gem_object_lookup(eb->file, handle);
|
|
if (unlikely(!obj))
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
/*
|
|
* If the user has opted-in for protected-object tracking, make
|
|
* sure the object encryption can be used.
|
|
* We only need to do this when the object is first used with
|
|
* this context, because the context itself will be banned when
|
|
* the protected objects become invalid.
|
|
*/
|
|
if (i915_gem_context_uses_protected_content(eb->gem_context) &&
|
|
i915_gem_object_is_protected(obj)) {
|
|
err = intel_pxp_key_check(eb->i915->pxp, obj, true);
|
|
if (err) {
|
|
i915_gem_object_put(obj);
|
|
return ERR_PTR(err);
|
|
}
|
|
}
|
|
|
|
vma = i915_vma_instance(obj, vm, NULL);
|
|
if (IS_ERR(vma)) {
|
|
i915_gem_object_put(obj);
|
|
return vma;
|
|
}
|
|
|
|
err = __eb_add_lut(eb, handle, vma);
|
|
if (likely(!err))
|
|
return vma;
|
|
|
|
i915_gem_object_put(obj);
|
|
if (err != -EEXIST)
|
|
return ERR_PTR(err);
|
|
} while (1);
|
|
}
|
|
|
|
static int eb_lookup_vmas(struct i915_execbuffer *eb)
|
|
{
|
|
unsigned int i, current_batch = 0;
|
|
int err = 0;
|
|
|
|
INIT_LIST_HEAD(&eb->relocs);
|
|
|
|
for (i = 0; i < eb->buffer_count; i++) {
|
|
struct i915_vma *vma;
|
|
|
|
vma = eb_lookup_vma(eb, eb->exec[i].handle);
|
|
if (IS_ERR(vma)) {
|
|
err = PTR_ERR(vma);
|
|
goto err;
|
|
}
|
|
|
|
err = eb_validate_vma(eb, &eb->exec[i], vma);
|
|
if (unlikely(err)) {
|
|
i915_vma_put(vma);
|
|
goto err;
|
|
}
|
|
|
|
err = eb_add_vma(eb, ¤t_batch, i, vma);
|
|
if (err)
|
|
return err;
|
|
|
|
if (i915_gem_object_is_userptr(vma->obj)) {
|
|
err = i915_gem_object_userptr_submit_init(vma->obj);
|
|
if (err) {
|
|
if (i + 1 < eb->buffer_count) {
|
|
/*
|
|
* Execbuffer code expects last vma entry to be NULL,
|
|
* since we already initialized this entry,
|
|
* set the next value to NULL or we mess up
|
|
* cleanup handling.
|
|
*/
|
|
eb->vma[i + 1].vma = NULL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
|
|
eb->args->flags |= __EXEC_USERPTR_USED;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
eb->vma[i].vma = NULL;
|
|
return err;
|
|
}
|
|
|
|
static int eb_lock_vmas(struct i915_execbuffer *eb)
|
|
{
|
|
unsigned int i;
|
|
int err;
|
|
|
|
for (i = 0; i < eb->buffer_count; i++) {
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
struct i915_vma *vma = ev->vma;
|
|
|
|
err = i915_gem_object_lock(vma->obj, &eb->ww);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eb_validate_vmas(struct i915_execbuffer *eb)
|
|
{
|
|
unsigned int i;
|
|
int err;
|
|
|
|
INIT_LIST_HEAD(&eb->unbound);
|
|
|
|
err = eb_lock_vmas(eb);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < eb->buffer_count; i++) {
|
|
struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
struct i915_vma *vma = ev->vma;
|
|
|
|
err = eb_pin_vma(eb, entry, ev);
|
|
if (err == -EDEADLK)
|
|
return err;
|
|
|
|
if (!err) {
|
|
if (entry->offset != i915_vma_offset(vma)) {
|
|
entry->offset = i915_vma_offset(vma) | UPDATE;
|
|
eb->args->flags |= __EXEC_HAS_RELOC;
|
|
}
|
|
} else {
|
|
eb_unreserve_vma(ev);
|
|
|
|
list_add_tail(&ev->bind_link, &eb->unbound);
|
|
if (drm_mm_node_allocated(&vma->node)) {
|
|
err = i915_vma_unbind(vma);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/* Reserve enough slots to accommodate composite fences */
|
|
err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
|
|
if (err)
|
|
return err;
|
|
|
|
GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
|
|
eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
|
|
}
|
|
|
|
if (!list_empty(&eb->unbound))
|
|
return eb_reserve(eb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct eb_vma *
|
|
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
|
|
{
|
|
if (eb->lut_size < 0) {
|
|
if (handle >= -eb->lut_size)
|
|
return NULL;
|
|
return &eb->vma[handle];
|
|
} else {
|
|
struct hlist_head *head;
|
|
struct eb_vma *ev;
|
|
|
|
head = &eb->buckets[hash_32(handle, eb->lut_size)];
|
|
hlist_for_each_entry(ev, head, node) {
|
|
if (ev->handle == handle)
|
|
return ev;
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
struct i915_vma *vma = ev->vma;
|
|
|
|
if (!vma)
|
|
break;
|
|
|
|
eb_unreserve_vma(ev);
|
|
|
|
if (final)
|
|
i915_vma_put(vma);
|
|
}
|
|
|
|
eb_capture_release(eb);
|
|
eb_unpin_engine(eb);
|
|
}
|
|
|
|
static void eb_destroy(const struct i915_execbuffer *eb)
|
|
{
|
|
if (eb->lut_size > 0)
|
|
kfree(eb->buckets);
|
|
}
|
|
|
|
static inline u64
|
|
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
|
|
const struct i915_vma *target)
|
|
{
|
|
return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
|
|
}
|
|
|
|
static void reloc_cache_init(struct reloc_cache *cache,
|
|
struct drm_i915_private *i915)
|
|
{
|
|
cache->page = -1;
|
|
cache->vaddr = 0;
|
|
/* Must be a variable in the struct to allow GCC to unroll. */
|
|
cache->graphics_ver = GRAPHICS_VER(i915);
|
|
cache->has_llc = HAS_LLC(i915);
|
|
cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
|
|
cache->has_fence = cache->graphics_ver < 4;
|
|
cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
|
|
cache->node.flags = 0;
|
|
}
|
|
|
|
static inline void *unmask_page(unsigned long p)
|
|
{
|
|
return (void *)(uintptr_t)(p & PAGE_MASK);
|
|
}
|
|
|
|
static inline unsigned int unmask_flags(unsigned long p)
|
|
{
|
|
return p & ~PAGE_MASK;
|
|
}
|
|
|
|
#define KMAP 0x4 /* after CLFLUSH_FLAGS */
|
|
|
|
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
|
|
{
|
|
struct drm_i915_private *i915 =
|
|
container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
|
|
return to_gt(i915)->ggtt;
|
|
}
|
|
|
|
static void reloc_cache_unmap(struct reloc_cache *cache)
|
|
{
|
|
void *vaddr;
|
|
|
|
if (!cache->vaddr)
|
|
return;
|
|
|
|
vaddr = unmask_page(cache->vaddr);
|
|
if (cache->vaddr & KMAP)
|
|
kunmap_atomic(vaddr);
|
|
else
|
|
io_mapping_unmap_atomic((void __iomem *)vaddr);
|
|
}
|
|
|
|
static void reloc_cache_remap(struct reloc_cache *cache,
|
|
struct drm_i915_gem_object *obj)
|
|
{
|
|
void *vaddr;
|
|
|
|
if (!cache->vaddr)
|
|
return;
|
|
|
|
if (cache->vaddr & KMAP) {
|
|
struct page *page = i915_gem_object_get_page(obj, cache->page);
|
|
|
|
vaddr = kmap_atomic(page);
|
|
cache->vaddr = unmask_flags(cache->vaddr) |
|
|
(unsigned long)vaddr;
|
|
} else {
|
|
struct i915_ggtt *ggtt = cache_to_ggtt(cache);
|
|
unsigned long offset;
|
|
|
|
offset = cache->node.start;
|
|
if (!drm_mm_node_allocated(&cache->node))
|
|
offset += cache->page << PAGE_SHIFT;
|
|
|
|
cache->vaddr = (unsigned long)
|
|
io_mapping_map_atomic_wc(&ggtt->iomap, offset);
|
|
}
|
|
}
|
|
|
|
static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
|
|
{
|
|
void *vaddr;
|
|
|
|
if (!cache->vaddr)
|
|
return;
|
|
|
|
vaddr = unmask_page(cache->vaddr);
|
|
if (cache->vaddr & KMAP) {
|
|
struct drm_i915_gem_object *obj =
|
|
(struct drm_i915_gem_object *)cache->node.mm;
|
|
if (cache->vaddr & CLFLUSH_AFTER)
|
|
mb();
|
|
|
|
kunmap_atomic(vaddr);
|
|
i915_gem_object_finish_access(obj);
|
|
} else {
|
|
struct i915_ggtt *ggtt = cache_to_ggtt(cache);
|
|
|
|
intel_gt_flush_ggtt_writes(ggtt->vm.gt);
|
|
io_mapping_unmap_atomic((void __iomem *)vaddr);
|
|
|
|
if (drm_mm_node_allocated(&cache->node)) {
|
|
ggtt->vm.clear_range(&ggtt->vm,
|
|
cache->node.start,
|
|
cache->node.size);
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
drm_mm_remove_node(&cache->node);
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
} else {
|
|
i915_vma_unpin((struct i915_vma *)cache->node.mm);
|
|
}
|
|
}
|
|
|
|
cache->vaddr = 0;
|
|
cache->page = -1;
|
|
}
|
|
|
|
static void *reloc_kmap(struct drm_i915_gem_object *obj,
|
|
struct reloc_cache *cache,
|
|
unsigned long pageno)
|
|
{
|
|
void *vaddr;
|
|
struct page *page;
|
|
|
|
if (cache->vaddr) {
|
|
kunmap_atomic(unmask_page(cache->vaddr));
|
|
} else {
|
|
unsigned int flushes;
|
|
int err;
|
|
|
|
err = i915_gem_object_prepare_write(obj, &flushes);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
|
|
BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
|
|
|
|
cache->vaddr = flushes | KMAP;
|
|
cache->node.mm = (void *)obj;
|
|
if (flushes)
|
|
mb();
|
|
}
|
|
|
|
page = i915_gem_object_get_page(obj, pageno);
|
|
if (!obj->mm.dirty)
|
|
set_page_dirty(page);
|
|
|
|
vaddr = kmap_atomic(page);
|
|
cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
|
|
cache->page = pageno;
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void *reloc_iomap(struct i915_vma *batch,
|
|
struct i915_execbuffer *eb,
|
|
unsigned long page)
|
|
{
|
|
struct drm_i915_gem_object *obj = batch->obj;
|
|
struct reloc_cache *cache = &eb->reloc_cache;
|
|
struct i915_ggtt *ggtt = cache_to_ggtt(cache);
|
|
unsigned long offset;
|
|
void *vaddr;
|
|
|
|
if (cache->vaddr) {
|
|
intel_gt_flush_ggtt_writes(ggtt->vm.gt);
|
|
io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
|
|
} else {
|
|
struct i915_vma *vma = ERR_PTR(-ENODEV);
|
|
int err;
|
|
|
|
if (i915_gem_object_is_tiled(obj))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (use_cpu_reloc(cache, obj))
|
|
return NULL;
|
|
|
|
err = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
/*
|
|
* i915_gem_object_ggtt_pin_ww may attempt to remove the batch
|
|
* VMA from the object list because we no longer pin.
|
|
*
|
|
* Only attempt to pin the batch buffer to ggtt if the current batch
|
|
* is not inside ggtt, or the batch buffer is not misplaced.
|
|
*/
|
|
if (!i915_is_ggtt(batch->vm) ||
|
|
!i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
|
|
vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
|
|
PIN_MAPPABLE |
|
|
PIN_NONBLOCK /* NOWARN */ |
|
|
PIN_NOEVICT);
|
|
}
|
|
|
|
if (vma == ERR_PTR(-EDEADLK))
|
|
return vma;
|
|
|
|
if (IS_ERR(vma)) {
|
|
memset(&cache->node, 0, sizeof(cache->node));
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
err = drm_mm_insert_node_in_range
|
|
(&ggtt->vm.mm, &cache->node,
|
|
PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
|
|
0, ggtt->mappable_end,
|
|
DRM_MM_INSERT_LOW);
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
if (err) /* no inactive aperture space, use cpu reloc */
|
|
return NULL;
|
|
} else {
|
|
cache->node.start = i915_ggtt_offset(vma);
|
|
cache->node.mm = (void *)vma;
|
|
}
|
|
}
|
|
|
|
offset = cache->node.start;
|
|
if (drm_mm_node_allocated(&cache->node)) {
|
|
ggtt->vm.insert_page(&ggtt->vm,
|
|
i915_gem_object_get_dma_address(obj, page),
|
|
offset,
|
|
i915_gem_get_pat_index(ggtt->vm.i915,
|
|
I915_CACHE_NONE),
|
|
0);
|
|
} else {
|
|
offset += page << PAGE_SHIFT;
|
|
}
|
|
|
|
vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
|
|
offset);
|
|
cache->page = page;
|
|
cache->vaddr = (unsigned long)vaddr;
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void *reloc_vaddr(struct i915_vma *vma,
|
|
struct i915_execbuffer *eb,
|
|
unsigned long page)
|
|
{
|
|
struct reloc_cache *cache = &eb->reloc_cache;
|
|
void *vaddr;
|
|
|
|
if (cache->page == page) {
|
|
vaddr = unmask_page(cache->vaddr);
|
|
} else {
|
|
vaddr = NULL;
|
|
if ((cache->vaddr & KMAP) == 0)
|
|
vaddr = reloc_iomap(vma, eb, page);
|
|
if (!vaddr)
|
|
vaddr = reloc_kmap(vma->obj, cache, page);
|
|
}
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
|
|
{
|
|
if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
|
|
if (flushes & CLFLUSH_BEFORE)
|
|
drm_clflush_virt_range(addr, sizeof(*addr));
|
|
|
|
*addr = value;
|
|
|
|
/*
|
|
* Writes to the same cacheline are serialised by the CPU
|
|
* (including clflush). On the write path, we only require
|
|
* that it hits memory in an orderly fashion and place
|
|
* mb barriers at the start and end of the relocation phase
|
|
* to ensure ordering of clflush wrt to the system.
|
|
*/
|
|
if (flushes & CLFLUSH_AFTER)
|
|
drm_clflush_virt_range(addr, sizeof(*addr));
|
|
} else
|
|
*addr = value;
|
|
}
|
|
|
|
static u64
|
|
relocate_entry(struct i915_vma *vma,
|
|
const struct drm_i915_gem_relocation_entry *reloc,
|
|
struct i915_execbuffer *eb,
|
|
const struct i915_vma *target)
|
|
{
|
|
u64 target_addr = relocation_target(reloc, target);
|
|
u64 offset = reloc->offset;
|
|
bool wide = eb->reloc_cache.use_64bit_reloc;
|
|
void *vaddr;
|
|
|
|
repeat:
|
|
vaddr = reloc_vaddr(vma, eb,
|
|
offset >> PAGE_SHIFT);
|
|
if (IS_ERR(vaddr))
|
|
return PTR_ERR(vaddr);
|
|
|
|
GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
|
|
clflush_write32(vaddr + offset_in_page(offset),
|
|
lower_32_bits(target_addr),
|
|
eb->reloc_cache.vaddr);
|
|
|
|
if (wide) {
|
|
offset += sizeof(u32);
|
|
target_addr >>= 32;
|
|
wide = false;
|
|
goto repeat;
|
|
}
|
|
|
|
return target->node.start | UPDATE;
|
|
}
|
|
|
|
static u64
|
|
eb_relocate_entry(struct i915_execbuffer *eb,
|
|
struct eb_vma *ev,
|
|
const struct drm_i915_gem_relocation_entry *reloc)
|
|
{
|
|
struct drm_i915_private *i915 = eb->i915;
|
|
struct eb_vma *target;
|
|
int err;
|
|
|
|
/* we've already hold a reference to all valid objects */
|
|
target = eb_get_vma(eb, reloc->target_handle);
|
|
if (unlikely(!target))
|
|
return -ENOENT;
|
|
|
|
/* Validate that the target is in a valid r/w GPU domain */
|
|
if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
|
|
drm_dbg(&i915->drm, "reloc with multiple write domains: "
|
|
"target %d offset %d "
|
|
"read %08x write %08x",
|
|
reloc->target_handle,
|
|
(int) reloc->offset,
|
|
reloc->read_domains,
|
|
reloc->write_domain);
|
|
return -EINVAL;
|
|
}
|
|
if (unlikely((reloc->write_domain | reloc->read_domains)
|
|
& ~I915_GEM_GPU_DOMAINS)) {
|
|
drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
|
|
"target %d offset %d "
|
|
"read %08x write %08x",
|
|
reloc->target_handle,
|
|
(int) reloc->offset,
|
|
reloc->read_domains,
|
|
reloc->write_domain);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reloc->write_domain) {
|
|
target->flags |= EXEC_OBJECT_WRITE;
|
|
|
|
/*
|
|
* Sandybridge PPGTT errata: We need a global gtt mapping
|
|
* for MI and pipe_control writes because the gpu doesn't
|
|
* properly redirect them through the ppgtt for non_secure
|
|
* batchbuffers.
|
|
*/
|
|
if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
|
|
GRAPHICS_VER(eb->i915) == 6 &&
|
|
!i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
|
|
struct i915_vma *vma = target->vma;
|
|
|
|
reloc_cache_unmap(&eb->reloc_cache);
|
|
mutex_lock(&vma->vm->mutex);
|
|
err = i915_vma_bind(target->vma,
|
|
target->vma->obj->pat_index,
|
|
PIN_GLOBAL, NULL, NULL);
|
|
mutex_unlock(&vma->vm->mutex);
|
|
reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the relocation already has the right value in it, no
|
|
* more work needs to be done.
|
|
*/
|
|
if (!DBG_FORCE_RELOC &&
|
|
gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
|
|
return 0;
|
|
|
|
/* Check that the relocation address is valid... */
|
|
if (unlikely(reloc->offset >
|
|
ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
|
|
drm_dbg(&i915->drm, "Relocation beyond object bounds: "
|
|
"target %d offset %d size %d.\n",
|
|
reloc->target_handle,
|
|
(int)reloc->offset,
|
|
(int)ev->vma->size);
|
|
return -EINVAL;
|
|
}
|
|
if (unlikely(reloc->offset & 3)) {
|
|
drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
|
|
"target %d offset %d.\n",
|
|
reloc->target_handle,
|
|
(int)reloc->offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If we write into the object, we need to force the synchronisation
|
|
* barrier, either with an asynchronous clflush or if we executed the
|
|
* patching using the GPU (though that should be serialised by the
|
|
* timeline). To be completely sure, and since we are required to
|
|
* do relocations we are already stalling, disable the user's opt
|
|
* out of our synchronisation.
|
|
*/
|
|
ev->flags &= ~EXEC_OBJECT_ASYNC;
|
|
|
|
/* and update the user's relocation entry */
|
|
return relocate_entry(ev->vma, reloc, eb, target->vma);
|
|
}
|
|
|
|
static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
|
|
{
|
|
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
|
|
struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
|
|
const struct drm_i915_gem_exec_object2 *entry = ev->exec;
|
|
struct drm_i915_gem_relocation_entry __user *urelocs =
|
|
u64_to_user_ptr(entry->relocs_ptr);
|
|
unsigned long remain = entry->relocation_count;
|
|
|
|
if (unlikely(remain > N_RELOC(ULONG_MAX)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We must check that the entire relocation array is safe
|
|
* to read. However, if the array is not writable the user loses
|
|
* the updated relocation values.
|
|
*/
|
|
if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
|
|
return -EFAULT;
|
|
|
|
do {
|
|
struct drm_i915_gem_relocation_entry *r = stack;
|
|
unsigned int count =
|
|
min_t(unsigned long, remain, ARRAY_SIZE(stack));
|
|
unsigned int copied;
|
|
|
|
/*
|
|
* This is the fast path and we cannot handle a pagefault
|
|
* whilst holding the struct mutex lest the user pass in the
|
|
* relocations contained within a mmaped bo. For in such a case
|
|
* we, the page fault handler would call i915_gem_fault() and
|
|
* we would try to acquire the struct mutex again. Obviously
|
|
* this is bad and so lockdep complains vehemently.
|
|
*/
|
|
pagefault_disable();
|
|
copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
|
|
pagefault_enable();
|
|
if (unlikely(copied)) {
|
|
remain = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
remain -= count;
|
|
do {
|
|
u64 offset = eb_relocate_entry(eb, ev, r);
|
|
|
|
if (likely(offset == 0)) {
|
|
} else if ((s64)offset < 0) {
|
|
remain = (int)offset;
|
|
goto out;
|
|
} else {
|
|
/*
|
|
* Note that reporting an error now
|
|
* leaves everything in an inconsistent
|
|
* state as we have *already* changed
|
|
* the relocation value inside the
|
|
* object. As we have not changed the
|
|
* reloc.presumed_offset or will not
|
|
* change the execobject.offset, on the
|
|
* call we may not rewrite the value
|
|
* inside the object, leaving it
|
|
* dangling and causing a GPU hang. Unless
|
|
* userspace dynamically rebuilds the
|
|
* relocations on each execbuf rather than
|
|
* presume a static tree.
|
|
*
|
|
* We did previously check if the relocations
|
|
* were writable (access_ok), an error now
|
|
* would be a strange race with mprotect,
|
|
* having already demonstrated that we
|
|
* can read from this userspace address.
|
|
*/
|
|
offset = gen8_canonical_addr(offset & ~UPDATE);
|
|
__put_user(offset,
|
|
&urelocs[r - stack].presumed_offset);
|
|
}
|
|
} while (r++, --count);
|
|
urelocs += ARRAY_SIZE(stack);
|
|
} while (remain);
|
|
out:
|
|
reloc_cache_reset(&eb->reloc_cache, eb);
|
|
return remain;
|
|
}
|
|
|
|
static int
|
|
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
|
|
{
|
|
const struct drm_i915_gem_exec_object2 *entry = ev->exec;
|
|
struct drm_i915_gem_relocation_entry *relocs =
|
|
u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
|
|
unsigned int i;
|
|
int err;
|
|
|
|
for (i = 0; i < entry->relocation_count; i++) {
|
|
u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
|
|
|
|
if ((s64)offset < 0) {
|
|
err = (int)offset;
|
|
goto err;
|
|
}
|
|
}
|
|
err = 0;
|
|
err:
|
|
reloc_cache_reset(&eb->reloc_cache, eb);
|
|
return err;
|
|
}
|
|
|
|
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
|
|
{
|
|
const char __user *addr, *end;
|
|
unsigned long size;
|
|
char __maybe_unused c;
|
|
|
|
size = entry->relocation_count;
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
if (size > N_RELOC(ULONG_MAX))
|
|
return -EINVAL;
|
|
|
|
addr = u64_to_user_ptr(entry->relocs_ptr);
|
|
size *= sizeof(struct drm_i915_gem_relocation_entry);
|
|
if (!access_ok(addr, size))
|
|
return -EFAULT;
|
|
|
|
end = addr + size;
|
|
for (; addr < end; addr += PAGE_SIZE) {
|
|
int err = __get_user(c, addr);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return __get_user(c, end - 1);
|
|
}
|
|
|
|
static int eb_copy_relocations(const struct i915_execbuffer *eb)
|
|
{
|
|
struct drm_i915_gem_relocation_entry *relocs;
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
const unsigned int nreloc = eb->exec[i].relocation_count;
|
|
struct drm_i915_gem_relocation_entry __user *urelocs;
|
|
unsigned long size;
|
|
unsigned long copied;
|
|
|
|
if (nreloc == 0)
|
|
continue;
|
|
|
|
err = check_relocations(&eb->exec[i]);
|
|
if (err)
|
|
goto err;
|
|
|
|
urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
|
|
size = nreloc * sizeof(*relocs);
|
|
|
|
relocs = kvmalloc_array(size, 1, GFP_KERNEL);
|
|
if (!relocs) {
|
|
err = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
/* copy_from_user is limited to < 4GiB */
|
|
copied = 0;
|
|
do {
|
|
unsigned int len =
|
|
min_t(u64, BIT_ULL(31), size - copied);
|
|
|
|
if (__copy_from_user((char *)relocs + copied,
|
|
(char __user *)urelocs + copied,
|
|
len))
|
|
goto end;
|
|
|
|
copied += len;
|
|
} while (copied < size);
|
|
|
|
/*
|
|
* As we do not update the known relocation offsets after
|
|
* relocating (due to the complexities in lock handling),
|
|
* we need to mark them as invalid now so that we force the
|
|
* relocation processing next time. Just in case the target
|
|
* object is evicted and then rebound into its old
|
|
* presumed_offset before the next execbuffer - if that
|
|
* happened we would make the mistake of assuming that the
|
|
* relocations were valid.
|
|
*/
|
|
if (!user_access_begin(urelocs, size))
|
|
goto end;
|
|
|
|
for (copied = 0; copied < nreloc; copied++)
|
|
unsafe_put_user(-1,
|
|
&urelocs[copied].presumed_offset,
|
|
end_user);
|
|
user_access_end();
|
|
|
|
eb->exec[i].relocs_ptr = (uintptr_t)relocs;
|
|
}
|
|
|
|
return 0;
|
|
|
|
end_user:
|
|
user_access_end();
|
|
end:
|
|
kvfree(relocs);
|
|
err = -EFAULT;
|
|
err:
|
|
while (i--) {
|
|
relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
|
|
if (eb->exec[i].relocation_count)
|
|
kvfree(relocs);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
int err;
|
|
|
|
err = check_relocations(&eb->exec[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eb_reinit_userptr(struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
|
|
return 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
|
|
if (!i915_gem_object_is_userptr(ev->vma->obj))
|
|
continue;
|
|
|
|
ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
|
|
{
|
|
bool have_copy = false;
|
|
struct eb_vma *ev;
|
|
int err = 0;
|
|
|
|
repeat:
|
|
if (signal_pending(current)) {
|
|
err = -ERESTARTSYS;
|
|
goto out;
|
|
}
|
|
|
|
/* We may process another execbuffer during the unlock... */
|
|
eb_release_vmas(eb, false);
|
|
i915_gem_ww_ctx_fini(&eb->ww);
|
|
|
|
/*
|
|
* We take 3 passes through the slowpatch.
|
|
*
|
|
* 1 - we try to just prefault all the user relocation entries and
|
|
* then attempt to reuse the atomic pagefault disabled fast path again.
|
|
*
|
|
* 2 - we copy the user entries to a local buffer here outside of the
|
|
* local and allow ourselves to wait upon any rendering before
|
|
* relocations
|
|
*
|
|
* 3 - we already have a local copy of the relocation entries, but
|
|
* were interrupted (EAGAIN) whilst waiting for the objects, try again.
|
|
*/
|
|
if (!err) {
|
|
err = eb_prefault_relocations(eb);
|
|
} else if (!have_copy) {
|
|
err = eb_copy_relocations(eb);
|
|
have_copy = err == 0;
|
|
} else {
|
|
cond_resched();
|
|
err = 0;
|
|
}
|
|
|
|
if (!err)
|
|
err = eb_reinit_userptr(eb);
|
|
|
|
i915_gem_ww_ctx_init(&eb->ww, true);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* reacquire the objects */
|
|
repeat_validate:
|
|
err = eb_pin_engine(eb, false);
|
|
if (err)
|
|
goto err;
|
|
|
|
err = eb_validate_vmas(eb);
|
|
if (err)
|
|
goto err;
|
|
|
|
GEM_BUG_ON(!eb->batches[0]);
|
|
|
|
list_for_each_entry(ev, &eb->relocs, reloc_link) {
|
|
if (!have_copy) {
|
|
err = eb_relocate_vma(eb, ev);
|
|
if (err)
|
|
break;
|
|
} else {
|
|
err = eb_relocate_vma_slow(eb, ev);
|
|
if (err)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err == -EDEADLK)
|
|
goto err;
|
|
|
|
if (err && !have_copy)
|
|
goto repeat;
|
|
|
|
if (err)
|
|
goto err;
|
|
|
|
/* as last step, parse the command buffer */
|
|
err = eb_parse(eb);
|
|
if (err)
|
|
goto err;
|
|
|
|
/*
|
|
* Leave the user relocations as are, this is the painfully slow path,
|
|
* and we want to avoid the complication of dropping the lock whilst
|
|
* having buffers reserved in the aperture and so causing spurious
|
|
* ENOSPC for random operations.
|
|
*/
|
|
|
|
err:
|
|
if (err == -EDEADLK) {
|
|
eb_release_vmas(eb, false);
|
|
err = i915_gem_ww_ctx_backoff(&eb->ww);
|
|
if (!err)
|
|
goto repeat_validate;
|
|
}
|
|
|
|
if (err == -EAGAIN)
|
|
goto repeat;
|
|
|
|
out:
|
|
if (have_copy) {
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
const struct drm_i915_gem_exec_object2 *entry =
|
|
&eb->exec[i];
|
|
struct drm_i915_gem_relocation_entry *relocs;
|
|
|
|
if (!entry->relocation_count)
|
|
continue;
|
|
|
|
relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
|
|
kvfree(relocs);
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int eb_relocate_parse(struct i915_execbuffer *eb)
|
|
{
|
|
int err;
|
|
bool throttle = true;
|
|
|
|
retry:
|
|
err = eb_pin_engine(eb, throttle);
|
|
if (err) {
|
|
if (err != -EDEADLK)
|
|
return err;
|
|
|
|
goto err;
|
|
}
|
|
|
|
/* only throttle once, even if we didn't need to throttle */
|
|
throttle = false;
|
|
|
|
err = eb_validate_vmas(eb);
|
|
if (err == -EAGAIN)
|
|
goto slow;
|
|
else if (err)
|
|
goto err;
|
|
|
|
/* The objects are in their final locations, apply the relocations. */
|
|
if (eb->args->flags & __EXEC_HAS_RELOC) {
|
|
struct eb_vma *ev;
|
|
|
|
list_for_each_entry(ev, &eb->relocs, reloc_link) {
|
|
err = eb_relocate_vma(eb, ev);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
if (err == -EDEADLK)
|
|
goto err;
|
|
else if (err)
|
|
goto slow;
|
|
}
|
|
|
|
if (!err)
|
|
err = eb_parse(eb);
|
|
|
|
err:
|
|
if (err == -EDEADLK) {
|
|
eb_release_vmas(eb, false);
|
|
err = i915_gem_ww_ctx_backoff(&eb->ww);
|
|
if (!err)
|
|
goto retry;
|
|
}
|
|
|
|
return err;
|
|
|
|
slow:
|
|
err = eb_relocate_parse_slow(eb);
|
|
if (err)
|
|
/*
|
|
* If the user expects the execobject.offset and
|
|
* reloc.presumed_offset to be an exact match,
|
|
* as for using NO_RELOC, then we cannot update
|
|
* the execobject.offset until we have completed
|
|
* relocation.
|
|
*/
|
|
eb->args->flags &= ~__EXEC_HAS_RELOC;
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Using two helper loops for the order of which requests / batches are created
|
|
* and added the to backend. Requests are created in order from the parent to
|
|
* the last child. Requests are added in the reverse order, from the last child
|
|
* to parent. This is done for locking reasons as the timeline lock is acquired
|
|
* during request creation and released when the request is added to the
|
|
* backend. To make lockdep happy (see intel_context_timeline_lock) this must be
|
|
* the ordering.
|
|
*/
|
|
#define for_each_batch_create_order(_eb, _i) \
|
|
for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
|
|
#define for_each_batch_add_order(_eb, _i) \
|
|
BUILD_BUG_ON(!typecheck(int, _i)); \
|
|
for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
|
|
|
|
static struct i915_request *
|
|
eb_find_first_request_added(struct i915_execbuffer *eb)
|
|
{
|
|
int i;
|
|
|
|
for_each_batch_add_order(eb, i)
|
|
if (eb->requests[i])
|
|
return eb->requests[i];
|
|
|
|
GEM_BUG_ON("Request not found");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
|
|
|
|
/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
|
|
static int eb_capture_stage(struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i = count, j;
|
|
|
|
while (i--) {
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
struct i915_vma *vma = ev->vma;
|
|
unsigned int flags = ev->flags;
|
|
|
|
if (!(flags & EXEC_OBJECT_CAPTURE))
|
|
continue;
|
|
|
|
if (i915_gem_context_is_recoverable(eb->gem_context) &&
|
|
(IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
|
|
return -EINVAL;
|
|
|
|
for_each_batch_create_order(eb, j) {
|
|
struct i915_capture_list *capture;
|
|
|
|
capture = kmalloc(sizeof(*capture), GFP_KERNEL);
|
|
if (!capture)
|
|
continue;
|
|
|
|
capture->next = eb->capture_lists[j];
|
|
capture->vma_res = i915_vma_resource_get(vma->resource);
|
|
eb->capture_lists[j] = capture;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Commit once we're in the critical path */
|
|
static void eb_capture_commit(struct i915_execbuffer *eb)
|
|
{
|
|
unsigned int j;
|
|
|
|
for_each_batch_create_order(eb, j) {
|
|
struct i915_request *rq = eb->requests[j];
|
|
|
|
if (!rq)
|
|
break;
|
|
|
|
rq->capture_list = eb->capture_lists[j];
|
|
eb->capture_lists[j] = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release anything that didn't get committed due to errors.
|
|
* The capture_list will otherwise be freed at request retire.
|
|
*/
|
|
static void eb_capture_release(struct i915_execbuffer *eb)
|
|
{
|
|
unsigned int j;
|
|
|
|
for_each_batch_create_order(eb, j) {
|
|
if (eb->capture_lists[j]) {
|
|
i915_request_free_capture_list(eb->capture_lists[j]);
|
|
eb->capture_lists[j] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void eb_capture_list_clear(struct i915_execbuffer *eb)
|
|
{
|
|
memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
|
|
}
|
|
|
|
#else
|
|
|
|
static int eb_capture_stage(struct i915_execbuffer *eb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void eb_capture_commit(struct i915_execbuffer *eb)
|
|
{
|
|
}
|
|
|
|
static void eb_capture_release(struct i915_execbuffer *eb)
|
|
{
|
|
}
|
|
|
|
static void eb_capture_list_clear(struct i915_execbuffer *eb)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
static int eb_move_to_gpu(struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i = count;
|
|
int err = 0, j;
|
|
|
|
while (i--) {
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
struct i915_vma *vma = ev->vma;
|
|
unsigned int flags = ev->flags;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
assert_vma_held(vma);
|
|
|
|
/*
|
|
* If the GPU is not _reading_ through the CPU cache, we need
|
|
* to make sure that any writes (both previous GPU writes from
|
|
* before a change in snooping levels and normal CPU writes)
|
|
* caught in that cache are flushed to main memory.
|
|
*
|
|
* We want to say
|
|
* obj->cache_dirty &&
|
|
* !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
|
|
* but gcc's optimiser doesn't handle that as well and emits
|
|
* two jumps instead of one. Maybe one day...
|
|
*
|
|
* FIXME: There is also sync flushing in set_pages(), which
|
|
* serves a different purpose(some of the time at least).
|
|
*
|
|
* We should consider:
|
|
*
|
|
* 1. Rip out the async flush code.
|
|
*
|
|
* 2. Or make the sync flushing use the async clflush path
|
|
* using mandatory fences underneath. Currently the below
|
|
* async flush happens after we bind the object.
|
|
*/
|
|
if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
|
|
if (i915_gem_clflush_object(obj, 0))
|
|
flags &= ~EXEC_OBJECT_ASYNC;
|
|
}
|
|
|
|
/* We only need to await on the first request */
|
|
if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
|
|
err = i915_request_await_object
|
|
(eb_find_first_request_added(eb), obj,
|
|
flags & EXEC_OBJECT_WRITE);
|
|
}
|
|
|
|
for_each_batch_add_order(eb, j) {
|
|
if (err)
|
|
break;
|
|
if (!eb->requests[j])
|
|
continue;
|
|
|
|
err = _i915_vma_move_to_active(vma, eb->requests[j],
|
|
j ? NULL :
|
|
eb->composite_fence ?
|
|
eb->composite_fence :
|
|
&eb->requests[j]->fence,
|
|
flags | __EXEC_OBJECT_NO_RESERVE |
|
|
__EXEC_OBJECT_NO_REQUEST_AWAIT);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MMU_NOTIFIER
|
|
if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
|
|
read_lock(&eb->i915->mm.notifier_lock);
|
|
|
|
/*
|
|
* count is always at least 1, otherwise __EXEC_USERPTR_USED
|
|
* could not have been set
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
struct eb_vma *ev = &eb->vma[i];
|
|
struct drm_i915_gem_object *obj = ev->vma->obj;
|
|
|
|
if (!i915_gem_object_is_userptr(obj))
|
|
continue;
|
|
|
|
err = i915_gem_object_userptr_submit_done(obj);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
read_unlock(&eb->i915->mm.notifier_lock);
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(err))
|
|
goto err_skip;
|
|
|
|
/* Unconditionally flush any chipset caches (for streaming writes). */
|
|
intel_gt_chipset_flush(eb->gt);
|
|
eb_capture_commit(eb);
|
|
|
|
return 0;
|
|
|
|
err_skip:
|
|
for_each_batch_create_order(eb, j) {
|
|
if (!eb->requests[j])
|
|
break;
|
|
|
|
i915_request_set_error_once(eb->requests[j], err);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
|
|
struct drm_i915_gem_execbuffer2 *exec)
|
|
{
|
|
if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
|
|
return -EINVAL;
|
|
|
|
/* Kernel clipping was a DRI1 misfeature */
|
|
if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
|
|
I915_EXEC_USE_EXTENSIONS))) {
|
|
if (exec->num_cliprects || exec->cliprects_ptr)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (exec->DR4 == 0xffffffff) {
|
|
drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
|
|
exec->DR4 = 0;
|
|
}
|
|
if (exec->DR1 || exec->DR4)
|
|
return -EINVAL;
|
|
|
|
if ((exec->batch_start_offset | exec->batch_len) & 0x7)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
|
|
{
|
|
u32 *cs;
|
|
int i;
|
|
|
|
if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
|
|
drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 4 * 2 + 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_LOAD_REGISTER_IMM(4);
|
|
for (i = 0; i < 4; i++) {
|
|
*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
|
|
*cs++ = 0;
|
|
}
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_vma *
|
|
shadow_batch_pin(struct i915_execbuffer *eb,
|
|
struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm,
|
|
unsigned int flags)
|
|
{
|
|
struct i915_vma *vma;
|
|
int err;
|
|
|
|
vma = i915_vma_instance(obj, vm, NULL);
|
|
if (IS_ERR(vma))
|
|
return vma;
|
|
|
|
err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
return vma;
|
|
}
|
|
|
|
static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
|
|
{
|
|
/*
|
|
* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
|
|
* batch" bit. Hence we need to pin secure batches into the global gtt.
|
|
* hsw should have this fixed, but bdw mucks it up again. */
|
|
if (eb->batch_flags & I915_DISPATCH_SECURE)
|
|
return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int eb_parse(struct i915_execbuffer *eb)
|
|
{
|
|
struct drm_i915_private *i915 = eb->i915;
|
|
struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
|
|
struct i915_vma *shadow, *trampoline, *batch;
|
|
unsigned long len;
|
|
int err;
|
|
|
|
if (!eb_use_cmdparser(eb)) {
|
|
batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
|
|
if (IS_ERR(batch))
|
|
return PTR_ERR(batch);
|
|
|
|
goto secure_batch;
|
|
}
|
|
|
|
if (intel_context_is_parallel(eb->context))
|
|
return -EINVAL;
|
|
|
|
len = eb->batch_len[0];
|
|
if (!CMDPARSER_USES_GGTT(eb->i915)) {
|
|
/*
|
|
* ppGTT backed shadow buffers must be mapped RO, to prevent
|
|
* post-scan tampering
|
|
*/
|
|
if (!eb->context->vm->has_read_only) {
|
|
drm_dbg(&i915->drm,
|
|
"Cannot prevent post-scan tampering without RO capable vm\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
|
|
}
|
|
if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
|
|
return -EINVAL;
|
|
|
|
if (!pool) {
|
|
pool = intel_gt_get_buffer_pool(eb->gt, len,
|
|
I915_MAP_WB);
|
|
if (IS_ERR(pool))
|
|
return PTR_ERR(pool);
|
|
eb->batch_pool = pool;
|
|
}
|
|
|
|
err = i915_gem_object_lock(pool->obj, &eb->ww);
|
|
if (err)
|
|
return err;
|
|
|
|
shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
|
|
if (IS_ERR(shadow))
|
|
return PTR_ERR(shadow);
|
|
|
|
intel_gt_buffer_pool_mark_used(pool);
|
|
i915_gem_object_set_readonly(shadow->obj);
|
|
shadow->private = pool;
|
|
|
|
trampoline = NULL;
|
|
if (CMDPARSER_USES_GGTT(eb->i915)) {
|
|
trampoline = shadow;
|
|
|
|
shadow = shadow_batch_pin(eb, pool->obj,
|
|
&eb->gt->ggtt->vm,
|
|
PIN_GLOBAL);
|
|
if (IS_ERR(shadow))
|
|
return PTR_ERR(shadow);
|
|
|
|
shadow->private = pool;
|
|
|
|
eb->batch_flags |= I915_DISPATCH_SECURE;
|
|
}
|
|
|
|
batch = eb_dispatch_secure(eb, shadow);
|
|
if (IS_ERR(batch))
|
|
return PTR_ERR(batch);
|
|
|
|
err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = intel_engine_cmd_parser(eb->context->engine,
|
|
eb->batches[0]->vma,
|
|
eb->batch_start_offset,
|
|
eb->batch_len[0],
|
|
shadow, trampoline);
|
|
if (err)
|
|
return err;
|
|
|
|
eb->batches[0] = &eb->vma[eb->buffer_count++];
|
|
eb->batches[0]->vma = i915_vma_get(shadow);
|
|
eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
|
|
|
|
eb->trampoline = trampoline;
|
|
eb->batch_start_offset = 0;
|
|
|
|
secure_batch:
|
|
if (batch) {
|
|
if (intel_context_is_parallel(eb->context))
|
|
return -EINVAL;
|
|
|
|
eb->batches[0] = &eb->vma[eb->buffer_count++];
|
|
eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
|
|
eb->batches[0]->vma = i915_vma_get(batch);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int eb_request_submit(struct i915_execbuffer *eb,
|
|
struct i915_request *rq,
|
|
struct i915_vma *batch,
|
|
u64 batch_len)
|
|
{
|
|
int err;
|
|
|
|
if (intel_context_nopreempt(rq->context))
|
|
__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
|
|
|
|
if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
|
|
err = i915_reset_gen7_sol_offsets(rq);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* After we completed waiting for other engines (using HW semaphores)
|
|
* then we can signal that this request/batch is ready to run. This
|
|
* allows us to determine if the batch is still waiting on the GPU
|
|
* or actually running by checking the breadcrumb.
|
|
*/
|
|
if (rq->context->engine->emit_init_breadcrumb) {
|
|
err = rq->context->engine->emit_init_breadcrumb(rq);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = rq->context->engine->emit_bb_start(rq,
|
|
i915_vma_offset(batch) +
|
|
eb->batch_start_offset,
|
|
batch_len,
|
|
eb->batch_flags);
|
|
if (err)
|
|
return err;
|
|
|
|
if (eb->trampoline) {
|
|
GEM_BUG_ON(intel_context_is_parallel(rq->context));
|
|
GEM_BUG_ON(eb->batch_start_offset);
|
|
err = rq->context->engine->emit_bb_start(rq,
|
|
i915_vma_offset(eb->trampoline) +
|
|
batch_len, 0, 0);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eb_submit(struct i915_execbuffer *eb)
|
|
{
|
|
unsigned int i;
|
|
int err;
|
|
|
|
err = eb_move_to_gpu(eb);
|
|
|
|
for_each_batch_create_order(eb, i) {
|
|
if (!eb->requests[i])
|
|
break;
|
|
|
|
trace_i915_request_queue(eb->requests[i], eb->batch_flags);
|
|
if (!err)
|
|
err = eb_request_submit(eb, eb->requests[i],
|
|
eb->batches[i]->vma,
|
|
eb->batch_len[i]);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Find one BSD ring to dispatch the corresponding BSD command.
|
|
* The engine index is returned.
|
|
*/
|
|
static unsigned int
|
|
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
|
|
/* Check whether the file_priv has already selected one ring. */
|
|
if ((int)file_priv->bsd_engine < 0)
|
|
file_priv->bsd_engine =
|
|
get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
|
|
|
|
return file_priv->bsd_engine;
|
|
}
|
|
|
|
static const enum intel_engine_id user_ring_map[] = {
|
|
[I915_EXEC_DEFAULT] = RCS0,
|
|
[I915_EXEC_RENDER] = RCS0,
|
|
[I915_EXEC_BLT] = BCS0,
|
|
[I915_EXEC_BSD] = VCS0,
|
|
[I915_EXEC_VEBOX] = VECS0
|
|
};
|
|
|
|
static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
|
|
{
|
|
struct intel_ring *ring = ce->ring;
|
|
struct intel_timeline *tl = ce->timeline;
|
|
struct i915_request *rq;
|
|
|
|
/*
|
|
* Completely unscientific finger-in-the-air estimates for suitable
|
|
* maximum user request size (to avoid blocking) and then backoff.
|
|
*/
|
|
if (intel_ring_update_space(ring) >= PAGE_SIZE)
|
|
return NULL;
|
|
|
|
/*
|
|
* Find a request that after waiting upon, there will be at least half
|
|
* the ring available. The hysteresis allows us to compete for the
|
|
* shared ring and should mean that we sleep less often prior to
|
|
* claiming our resources, but not so long that the ring completely
|
|
* drains before we can submit our next request.
|
|
*/
|
|
list_for_each_entry(rq, &tl->requests, link) {
|
|
if (rq->ring != ring)
|
|
continue;
|
|
|
|
if (__intel_ring_space(rq->postfix,
|
|
ring->emit, ring->size) > ring->size / 2)
|
|
break;
|
|
}
|
|
if (&rq->link == &tl->requests)
|
|
return NULL; /* weird, we will check again later for real */
|
|
|
|
return i915_request_get(rq);
|
|
}
|
|
|
|
static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
|
|
bool throttle)
|
|
{
|
|
struct intel_timeline *tl;
|
|
struct i915_request *rq = NULL;
|
|
|
|
/*
|
|
* Take a local wakeref for preparing to dispatch the execbuf as
|
|
* we expect to access the hardware fairly frequently in the
|
|
* process, and require the engine to be kept awake between accesses.
|
|
* Upon dispatch, we acquire another prolonged wakeref that we hold
|
|
* until the timeline is idle, which in turn releases the wakeref
|
|
* taken on the engine, and the parent device.
|
|
*/
|
|
tl = intel_context_timeline_lock(ce);
|
|
if (IS_ERR(tl))
|
|
return PTR_ERR(tl);
|
|
|
|
intel_context_enter(ce);
|
|
if (throttle)
|
|
rq = eb_throttle(eb, ce);
|
|
intel_context_timeline_unlock(tl);
|
|
|
|
if (rq) {
|
|
bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
|
|
long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
|
|
|
|
if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
|
|
timeout) < 0) {
|
|
i915_request_put(rq);
|
|
|
|
/*
|
|
* Error path, cannot use intel_context_timeline_lock as
|
|
* that is user interruptable and this clean up step
|
|
* must be done.
|
|
*/
|
|
mutex_lock(&ce->timeline->mutex);
|
|
intel_context_exit(ce);
|
|
mutex_unlock(&ce->timeline->mutex);
|
|
|
|
if (nonblock)
|
|
return -EWOULDBLOCK;
|
|
else
|
|
return -EINTR;
|
|
}
|
|
i915_request_put(rq);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
|
|
{
|
|
struct intel_context *ce = eb->context, *child;
|
|
int err;
|
|
int i = 0, j = 0;
|
|
|
|
GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
|
|
|
|
if (unlikely(intel_context_is_banned(ce)))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Pinning the contexts may generate requests in order to acquire
|
|
* GGTT space, so do this first before we reserve a seqno for
|
|
* ourselves.
|
|
*/
|
|
err = intel_context_pin_ww(ce, &eb->ww);
|
|
if (err)
|
|
return err;
|
|
for_each_child(ce, child) {
|
|
err = intel_context_pin_ww(child, &eb->ww);
|
|
GEM_BUG_ON(err); /* perma-pinned should incr a counter */
|
|
}
|
|
|
|
for_each_child(ce, child) {
|
|
err = eb_pin_timeline(eb, child, throttle);
|
|
if (err)
|
|
goto unwind;
|
|
++i;
|
|
}
|
|
err = eb_pin_timeline(eb, ce, throttle);
|
|
if (err)
|
|
goto unwind;
|
|
|
|
eb->args->flags |= __EXEC_ENGINE_PINNED;
|
|
return 0;
|
|
|
|
unwind:
|
|
for_each_child(ce, child) {
|
|
if (j++ < i) {
|
|
mutex_lock(&child->timeline->mutex);
|
|
intel_context_exit(child);
|
|
mutex_unlock(&child->timeline->mutex);
|
|
}
|
|
}
|
|
for_each_child(ce, child)
|
|
intel_context_unpin(child);
|
|
intel_context_unpin(ce);
|
|
return err;
|
|
}
|
|
|
|
static void eb_unpin_engine(struct i915_execbuffer *eb)
|
|
{
|
|
struct intel_context *ce = eb->context, *child;
|
|
|
|
if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
|
|
return;
|
|
|
|
eb->args->flags &= ~__EXEC_ENGINE_PINNED;
|
|
|
|
for_each_child(ce, child) {
|
|
mutex_lock(&child->timeline->mutex);
|
|
intel_context_exit(child);
|
|
mutex_unlock(&child->timeline->mutex);
|
|
|
|
intel_context_unpin(child);
|
|
}
|
|
|
|
mutex_lock(&ce->timeline->mutex);
|
|
intel_context_exit(ce);
|
|
mutex_unlock(&ce->timeline->mutex);
|
|
|
|
intel_context_unpin(ce);
|
|
}
|
|
|
|
static unsigned int
|
|
eb_select_legacy_ring(struct i915_execbuffer *eb)
|
|
{
|
|
struct drm_i915_private *i915 = eb->i915;
|
|
struct drm_i915_gem_execbuffer2 *args = eb->args;
|
|
unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
|
|
|
|
if (user_ring_id != I915_EXEC_BSD &&
|
|
(args->flags & I915_EXEC_BSD_MASK)) {
|
|
drm_dbg(&i915->drm,
|
|
"execbuf with non bsd ring but with invalid "
|
|
"bsd dispatch flags: %d\n", (int)(args->flags));
|
|
return -1;
|
|
}
|
|
|
|
if (user_ring_id == I915_EXEC_BSD &&
|
|
i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
|
|
unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
|
|
|
|
if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
|
|
bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
|
|
} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
|
|
bsd_idx <= I915_EXEC_BSD_RING2) {
|
|
bsd_idx >>= I915_EXEC_BSD_SHIFT;
|
|
bsd_idx--;
|
|
} else {
|
|
drm_dbg(&i915->drm,
|
|
"execbuf with unknown bsd ring: %u\n",
|
|
bsd_idx);
|
|
return -1;
|
|
}
|
|
|
|
return _VCS(bsd_idx);
|
|
}
|
|
|
|
if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
|
|
drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
|
|
user_ring_id);
|
|
return -1;
|
|
}
|
|
|
|
return user_ring_map[user_ring_id];
|
|
}
|
|
|
|
static int
|
|
eb_select_engine(struct i915_execbuffer *eb)
|
|
{
|
|
struct intel_context *ce, *child;
|
|
unsigned int idx;
|
|
int err;
|
|
|
|
if (i915_gem_context_user_engines(eb->gem_context))
|
|
idx = eb->args->flags & I915_EXEC_RING_MASK;
|
|
else
|
|
idx = eb_select_legacy_ring(eb);
|
|
|
|
ce = i915_gem_context_get_engine(eb->gem_context, idx);
|
|
if (IS_ERR(ce))
|
|
return PTR_ERR(ce);
|
|
|
|
if (intel_context_is_parallel(ce)) {
|
|
if (eb->buffer_count < ce->parallel.number_children + 1) {
|
|
intel_context_put(ce);
|
|
return -EINVAL;
|
|
}
|
|
if (eb->batch_start_offset || eb->args->batch_len) {
|
|
intel_context_put(ce);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
eb->num_batches = ce->parallel.number_children + 1;
|
|
|
|
for_each_child(ce, child)
|
|
intel_context_get(child);
|
|
intel_gt_pm_get(ce->engine->gt);
|
|
|
|
if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
|
|
err = intel_context_alloc_state(ce);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
for_each_child(ce, child) {
|
|
if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
|
|
err = intel_context_alloc_state(child);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
|
|
* EIO if the GPU is already wedged.
|
|
*/
|
|
err = intel_gt_terminally_wedged(ce->engine->gt);
|
|
if (err)
|
|
goto err;
|
|
|
|
if (!i915_vm_tryget(ce->vm)) {
|
|
err = -ENOENT;
|
|
goto err;
|
|
}
|
|
|
|
eb->context = ce;
|
|
eb->gt = ce->engine->gt;
|
|
|
|
/*
|
|
* Make sure engine pool stays alive even if we call intel_context_put
|
|
* during ww handling. The pool is destroyed when last pm reference
|
|
* is dropped, which breaks our -EDEADLK handling.
|
|
*/
|
|
return err;
|
|
|
|
err:
|
|
intel_gt_pm_put(ce->engine->gt);
|
|
for_each_child(ce, child)
|
|
intel_context_put(child);
|
|
intel_context_put(ce);
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
eb_put_engine(struct i915_execbuffer *eb)
|
|
{
|
|
struct intel_context *child;
|
|
|
|
i915_vm_put(eb->context->vm);
|
|
intel_gt_pm_put(eb->gt);
|
|
for_each_child(eb->context, child)
|
|
intel_context_put(child);
|
|
intel_context_put(eb->context);
|
|
}
|
|
|
|
static void
|
|
__free_fence_array(struct eb_fence *fences, unsigned int n)
|
|
{
|
|
while (n--) {
|
|
drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
|
|
dma_fence_put(fences[n].dma_fence);
|
|
dma_fence_chain_free(fences[n].chain_fence);
|
|
}
|
|
kvfree(fences);
|
|
}
|
|
|
|
static int
|
|
add_timeline_fence_array(struct i915_execbuffer *eb,
|
|
const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
|
|
{
|
|
struct drm_i915_gem_exec_fence __user *user_fences;
|
|
u64 __user *user_values;
|
|
struct eb_fence *f;
|
|
u64 nfences;
|
|
int err = 0;
|
|
|
|
nfences = timeline_fences->fence_count;
|
|
if (!nfences)
|
|
return 0;
|
|
|
|
/* Check multiplication overflow for access_ok() and kvmalloc_array() */
|
|
BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
|
|
if (nfences > min_t(unsigned long,
|
|
ULONG_MAX / sizeof(*user_fences),
|
|
SIZE_MAX / sizeof(*f)) - eb->num_fences)
|
|
return -EINVAL;
|
|
|
|
user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
|
|
if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
|
|
return -EFAULT;
|
|
|
|
user_values = u64_to_user_ptr(timeline_fences->values_ptr);
|
|
if (!access_ok(user_values, nfences * sizeof(*user_values)))
|
|
return -EFAULT;
|
|
|
|
f = krealloc(eb->fences,
|
|
(eb->num_fences + nfences) * sizeof(*f),
|
|
__GFP_NOWARN | GFP_KERNEL);
|
|
if (!f)
|
|
return -ENOMEM;
|
|
|
|
eb->fences = f;
|
|
f += eb->num_fences;
|
|
|
|
BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
|
|
~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
|
|
|
|
while (nfences--) {
|
|
struct drm_i915_gem_exec_fence user_fence;
|
|
struct drm_syncobj *syncobj;
|
|
struct dma_fence *fence = NULL;
|
|
u64 point;
|
|
|
|
if (__copy_from_user(&user_fence,
|
|
user_fences++,
|
|
sizeof(user_fence)))
|
|
return -EFAULT;
|
|
|
|
if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
|
|
return -EINVAL;
|
|
|
|
if (__get_user(point, user_values++))
|
|
return -EFAULT;
|
|
|
|
syncobj = drm_syncobj_find(eb->file, user_fence.handle);
|
|
if (!syncobj) {
|
|
drm_dbg(&eb->i915->drm,
|
|
"Invalid syncobj handle provided\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
fence = drm_syncobj_fence_get(syncobj);
|
|
|
|
if (!fence && user_fence.flags &&
|
|
!(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
|
|
drm_dbg(&eb->i915->drm,
|
|
"Syncobj handle has no fence\n");
|
|
drm_syncobj_put(syncobj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fence)
|
|
err = dma_fence_chain_find_seqno(&fence, point);
|
|
|
|
if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
|
|
drm_dbg(&eb->i915->drm,
|
|
"Syncobj handle missing requested point %llu\n",
|
|
point);
|
|
dma_fence_put(fence);
|
|
drm_syncobj_put(syncobj);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* A point might have been signaled already and
|
|
* garbage collected from the timeline. In this case
|
|
* just ignore the point and carry on.
|
|
*/
|
|
if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
|
|
drm_syncobj_put(syncobj);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* For timeline syncobjs we need to preallocate chains for
|
|
* later signaling.
|
|
*/
|
|
if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
|
|
/*
|
|
* Waiting and signaling the same point (when point !=
|
|
* 0) would break the timeline.
|
|
*/
|
|
if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
|
|
drm_dbg(&eb->i915->drm,
|
|
"Trying to wait & signal the same timeline point.\n");
|
|
dma_fence_put(fence);
|
|
drm_syncobj_put(syncobj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
f->chain_fence = dma_fence_chain_alloc();
|
|
if (!f->chain_fence) {
|
|
drm_syncobj_put(syncobj);
|
|
dma_fence_put(fence);
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
f->chain_fence = NULL;
|
|
}
|
|
|
|
f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
|
|
f->dma_fence = fence;
|
|
f->value = point;
|
|
f++;
|
|
eb->num_fences++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int add_fence_array(struct i915_execbuffer *eb)
|
|
{
|
|
struct drm_i915_gem_execbuffer2 *args = eb->args;
|
|
struct drm_i915_gem_exec_fence __user *user;
|
|
unsigned long num_fences = args->num_cliprects;
|
|
struct eb_fence *f;
|
|
|
|
if (!(args->flags & I915_EXEC_FENCE_ARRAY))
|
|
return 0;
|
|
|
|
if (!num_fences)
|
|
return 0;
|
|
|
|
/* Check multiplication overflow for access_ok() and kvmalloc_array() */
|
|
BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
|
|
if (num_fences > min_t(unsigned long,
|
|
ULONG_MAX / sizeof(*user),
|
|
SIZE_MAX / sizeof(*f) - eb->num_fences))
|
|
return -EINVAL;
|
|
|
|
user = u64_to_user_ptr(args->cliprects_ptr);
|
|
if (!access_ok(user, num_fences * sizeof(*user)))
|
|
return -EFAULT;
|
|
|
|
f = krealloc(eb->fences,
|
|
(eb->num_fences + num_fences) * sizeof(*f),
|
|
__GFP_NOWARN | GFP_KERNEL);
|
|
if (!f)
|
|
return -ENOMEM;
|
|
|
|
eb->fences = f;
|
|
f += eb->num_fences;
|
|
while (num_fences--) {
|
|
struct drm_i915_gem_exec_fence user_fence;
|
|
struct drm_syncobj *syncobj;
|
|
struct dma_fence *fence = NULL;
|
|
|
|
if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
|
|
return -EFAULT;
|
|
|
|
if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
|
|
return -EINVAL;
|
|
|
|
syncobj = drm_syncobj_find(eb->file, user_fence.handle);
|
|
if (!syncobj) {
|
|
drm_dbg(&eb->i915->drm,
|
|
"Invalid syncobj handle provided\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
|
|
fence = drm_syncobj_fence_get(syncobj);
|
|
if (!fence) {
|
|
drm_dbg(&eb->i915->drm,
|
|
"Syncobj handle has no fence\n");
|
|
drm_syncobj_put(syncobj);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
|
|
~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
|
|
|
|
f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
|
|
f->dma_fence = fence;
|
|
f->value = 0;
|
|
f->chain_fence = NULL;
|
|
f++;
|
|
eb->num_fences++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void put_fence_array(struct eb_fence *fences, int num_fences)
|
|
{
|
|
if (fences)
|
|
__free_fence_array(fences, num_fences);
|
|
}
|
|
|
|
static int
|
|
await_fence_array(struct i915_execbuffer *eb,
|
|
struct i915_request *rq)
|
|
{
|
|
unsigned int n;
|
|
int err;
|
|
|
|
for (n = 0; n < eb->num_fences; n++) {
|
|
if (!eb->fences[n].dma_fence)
|
|
continue;
|
|
|
|
err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void signal_fence_array(const struct i915_execbuffer *eb,
|
|
struct dma_fence * const fence)
|
|
{
|
|
unsigned int n;
|
|
|
|
for (n = 0; n < eb->num_fences; n++) {
|
|
struct drm_syncobj *syncobj;
|
|
unsigned int flags;
|
|
|
|
syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
|
|
if (!(flags & I915_EXEC_FENCE_SIGNAL))
|
|
continue;
|
|
|
|
if (eb->fences[n].chain_fence) {
|
|
drm_syncobj_add_point(syncobj,
|
|
eb->fences[n].chain_fence,
|
|
fence,
|
|
eb->fences[n].value);
|
|
/*
|
|
* The chain's ownership is transferred to the
|
|
* timeline.
|
|
*/
|
|
eb->fences[n].chain_fence = NULL;
|
|
} else {
|
|
drm_syncobj_replace_fence(syncobj, fence);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
|
|
{
|
|
struct i915_execbuffer *eb = data;
|
|
struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
|
|
|
|
if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
|
|
return -EFAULT;
|
|
|
|
return add_timeline_fence_array(eb, &timeline_fences);
|
|
}
|
|
|
|
static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
|
|
{
|
|
struct i915_request *rq, *rn;
|
|
|
|
list_for_each_entry_safe(rq, rn, &tl->requests, link)
|
|
if (rq == end || !i915_request_retire(rq))
|
|
break;
|
|
}
|
|
|
|
static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
|
|
int err, bool last_parallel)
|
|
{
|
|
struct intel_timeline * const tl = i915_request_timeline(rq);
|
|
struct i915_sched_attr attr = {};
|
|
struct i915_request *prev;
|
|
|
|
lockdep_assert_held(&tl->mutex);
|
|
lockdep_unpin_lock(&tl->mutex, rq->cookie);
|
|
|
|
trace_i915_request_add(rq);
|
|
|
|
prev = __i915_request_commit(rq);
|
|
|
|
/* Check that the context wasn't destroyed before submission */
|
|
if (likely(!intel_context_is_closed(eb->context))) {
|
|
attr = eb->gem_context->sched;
|
|
} else {
|
|
/* Serialise with context_close via the add_to_timeline */
|
|
i915_request_set_error_once(rq, -ENOENT);
|
|
__i915_request_skip(rq);
|
|
err = -ENOENT; /* override any transient errors */
|
|
}
|
|
|
|
if (intel_context_is_parallel(eb->context)) {
|
|
if (err) {
|
|
__i915_request_skip(rq);
|
|
set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
|
|
&rq->fence.flags);
|
|
}
|
|
if (last_parallel)
|
|
set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
|
|
&rq->fence.flags);
|
|
}
|
|
|
|
__i915_request_queue(rq, &attr);
|
|
|
|
/* Try to clean up the client's timeline after submitting the request */
|
|
if (prev)
|
|
retire_requests(tl, prev);
|
|
|
|
mutex_unlock(&tl->mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int eb_requests_add(struct i915_execbuffer *eb, int err)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* We iterate in reverse order of creation to release timeline mutexes in
|
|
* same order.
|
|
*/
|
|
for_each_batch_add_order(eb, i) {
|
|
struct i915_request *rq = eb->requests[i];
|
|
|
|
if (!rq)
|
|
continue;
|
|
err |= eb_request_add(eb, rq, err, i == 0);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static const i915_user_extension_fn execbuf_extensions[] = {
|
|
[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
|
|
};
|
|
|
|
static int
|
|
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
|
|
struct i915_execbuffer *eb)
|
|
{
|
|
if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
|
|
return 0;
|
|
|
|
/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
|
|
* have another flag also using it at the same time.
|
|
*/
|
|
if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
|
|
return -EINVAL;
|
|
|
|
if (args->num_cliprects != 0)
|
|
return -EINVAL;
|
|
|
|
return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
|
|
execbuf_extensions,
|
|
ARRAY_SIZE(execbuf_extensions),
|
|
eb);
|
|
}
|
|
|
|
static void eb_requests_get(struct i915_execbuffer *eb)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_batch_create_order(eb, i) {
|
|
if (!eb->requests[i])
|
|
break;
|
|
|
|
i915_request_get(eb->requests[i]);
|
|
}
|
|
}
|
|
|
|
static void eb_requests_put(struct i915_execbuffer *eb)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_batch_create_order(eb, i) {
|
|
if (!eb->requests[i])
|
|
break;
|
|
|
|
i915_request_put(eb->requests[i]);
|
|
}
|
|
}
|
|
|
|
static struct sync_file *
|
|
eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
|
|
{
|
|
struct sync_file *out_fence = NULL;
|
|
struct dma_fence_array *fence_array;
|
|
struct dma_fence **fences;
|
|
unsigned int i;
|
|
|
|
GEM_BUG_ON(!intel_context_is_parent(eb->context));
|
|
|
|
fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
|
|
if (!fences)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for_each_batch_create_order(eb, i) {
|
|
fences[i] = &eb->requests[i]->fence;
|
|
__set_bit(I915_FENCE_FLAG_COMPOSITE,
|
|
&eb->requests[i]->fence.flags);
|
|
}
|
|
|
|
fence_array = dma_fence_array_create(eb->num_batches,
|
|
fences,
|
|
eb->context->parallel.fence_context,
|
|
eb->context->parallel.seqno++,
|
|
false);
|
|
if (!fence_array) {
|
|
kfree(fences);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/* Move ownership to the dma_fence_array created above */
|
|
for_each_batch_create_order(eb, i)
|
|
dma_fence_get(fences[i]);
|
|
|
|
if (out_fence_fd != -1) {
|
|
out_fence = sync_file_create(&fence_array->base);
|
|
/* sync_file now owns fence_arry, drop creation ref */
|
|
dma_fence_put(&fence_array->base);
|
|
if (!out_fence)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
eb->composite_fence = &fence_array->base;
|
|
|
|
return out_fence;
|
|
}
|
|
|
|
static struct sync_file *
|
|
eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
|
|
struct dma_fence *in_fence, int out_fence_fd)
|
|
{
|
|
struct sync_file *out_fence = NULL;
|
|
int err;
|
|
|
|
if (unlikely(eb->gem_context->syncobj)) {
|
|
struct dma_fence *fence;
|
|
|
|
fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
|
|
err = i915_request_await_dma_fence(rq, fence);
|
|
dma_fence_put(fence);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
if (in_fence) {
|
|
if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
|
|
err = i915_request_await_execution(rq, in_fence);
|
|
else
|
|
err = i915_request_await_dma_fence(rq, in_fence);
|
|
if (err < 0)
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
if (eb->fences) {
|
|
err = await_fence_array(eb, rq);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
if (intel_context_is_parallel(eb->context)) {
|
|
out_fence = eb_composite_fence_create(eb, out_fence_fd);
|
|
if (IS_ERR(out_fence))
|
|
return ERR_PTR(-ENOMEM);
|
|
} else if (out_fence_fd != -1) {
|
|
out_fence = sync_file_create(&rq->fence);
|
|
if (!out_fence)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return out_fence;
|
|
}
|
|
|
|
static struct intel_context *
|
|
eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
|
|
{
|
|
struct intel_context *child;
|
|
|
|
if (likely(context_number == 0))
|
|
return eb->context;
|
|
|
|
for_each_child(eb->context, child)
|
|
if (!--context_number)
|
|
return child;
|
|
|
|
GEM_BUG_ON("Context not found");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct sync_file *
|
|
eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
|
|
int out_fence_fd)
|
|
{
|
|
struct sync_file *out_fence = NULL;
|
|
unsigned int i;
|
|
|
|
for_each_batch_create_order(eb, i) {
|
|
/* Allocate a request for this batch buffer nice and early. */
|
|
eb->requests[i] = i915_request_create(eb_find_context(eb, i));
|
|
if (IS_ERR(eb->requests[i])) {
|
|
out_fence = ERR_CAST(eb->requests[i]);
|
|
eb->requests[i] = NULL;
|
|
return out_fence;
|
|
}
|
|
|
|
/*
|
|
* Only the first request added (committed to backend) has to
|
|
* take the in fences into account as all subsequent requests
|
|
* will have fences inserted inbetween them.
|
|
*/
|
|
if (i + 1 == eb->num_batches) {
|
|
out_fence = eb_fences_add(eb, eb->requests[i],
|
|
in_fence, out_fence_fd);
|
|
if (IS_ERR(out_fence))
|
|
return out_fence;
|
|
}
|
|
|
|
/*
|
|
* Not really on stack, but we don't want to call
|
|
* kfree on the batch_snapshot when we put it, so use the
|
|
* _onstack interface.
|
|
*/
|
|
if (eb->batches[i]->vma)
|
|
eb->requests[i]->batch_res =
|
|
i915_vma_resource_get(eb->batches[i]->vma->resource);
|
|
if (eb->batch_pool) {
|
|
GEM_BUG_ON(intel_context_is_parallel(eb->context));
|
|
intel_gt_buffer_pool_mark_active(eb->batch_pool,
|
|
eb->requests[i]);
|
|
}
|
|
}
|
|
|
|
return out_fence;
|
|
}
|
|
|
|
static int
|
|
i915_gem_do_execbuffer(struct drm_device *dev,
|
|
struct drm_file *file,
|
|
struct drm_i915_gem_execbuffer2 *args,
|
|
struct drm_i915_gem_exec_object2 *exec)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dev);
|
|
struct i915_execbuffer eb;
|
|
struct dma_fence *in_fence = NULL;
|
|
struct sync_file *out_fence = NULL;
|
|
int out_fence_fd = -1;
|
|
int err;
|
|
|
|
BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
|
|
BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
|
|
~__EXEC_OBJECT_UNKNOWN_FLAGS);
|
|
|
|
eb.i915 = i915;
|
|
eb.file = file;
|
|
eb.args = args;
|
|
if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
|
|
args->flags |= __EXEC_HAS_RELOC;
|
|
|
|
eb.exec = exec;
|
|
eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
|
|
eb.vma[0].vma = NULL;
|
|
eb.batch_pool = NULL;
|
|
|
|
eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
|
|
reloc_cache_init(&eb.reloc_cache, eb.i915);
|
|
|
|
eb.buffer_count = args->buffer_count;
|
|
eb.batch_start_offset = args->batch_start_offset;
|
|
eb.trampoline = NULL;
|
|
|
|
eb.fences = NULL;
|
|
eb.num_fences = 0;
|
|
|
|
eb_capture_list_clear(&eb);
|
|
|
|
memset(eb.requests, 0, sizeof(struct i915_request *) *
|
|
ARRAY_SIZE(eb.requests));
|
|
eb.composite_fence = NULL;
|
|
|
|
eb.batch_flags = 0;
|
|
if (args->flags & I915_EXEC_SECURE) {
|
|
if (GRAPHICS_VER(i915) >= 11)
|
|
return -ENODEV;
|
|
|
|
/* Return -EPERM to trigger fallback code on old binaries. */
|
|
if (!HAS_SECURE_BATCHES(i915))
|
|
return -EPERM;
|
|
|
|
if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
eb.batch_flags |= I915_DISPATCH_SECURE;
|
|
}
|
|
if (args->flags & I915_EXEC_IS_PINNED)
|
|
eb.batch_flags |= I915_DISPATCH_PINNED;
|
|
|
|
err = parse_execbuf2_extensions(args, &eb);
|
|
if (err)
|
|
goto err_ext;
|
|
|
|
err = add_fence_array(&eb);
|
|
if (err)
|
|
goto err_ext;
|
|
|
|
#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
|
|
if (args->flags & IN_FENCES) {
|
|
if ((args->flags & IN_FENCES) == IN_FENCES)
|
|
return -EINVAL;
|
|
|
|
in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
|
|
if (!in_fence) {
|
|
err = -EINVAL;
|
|
goto err_ext;
|
|
}
|
|
}
|
|
#undef IN_FENCES
|
|
|
|
if (args->flags & I915_EXEC_FENCE_OUT) {
|
|
out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
|
|
if (out_fence_fd < 0) {
|
|
err = out_fence_fd;
|
|
goto err_in_fence;
|
|
}
|
|
}
|
|
|
|
err = eb_create(&eb);
|
|
if (err)
|
|
goto err_out_fence;
|
|
|
|
GEM_BUG_ON(!eb.lut_size);
|
|
|
|
err = eb_select_context(&eb);
|
|
if (unlikely(err))
|
|
goto err_destroy;
|
|
|
|
err = eb_select_engine(&eb);
|
|
if (unlikely(err))
|
|
goto err_context;
|
|
|
|
err = eb_lookup_vmas(&eb);
|
|
if (err) {
|
|
eb_release_vmas(&eb, true);
|
|
goto err_engine;
|
|
}
|
|
|
|
i915_gem_ww_ctx_init(&eb.ww, true);
|
|
|
|
err = eb_relocate_parse(&eb);
|
|
if (err) {
|
|
/*
|
|
* If the user expects the execobject.offset and
|
|
* reloc.presumed_offset to be an exact match,
|
|
* as for using NO_RELOC, then we cannot update
|
|
* the execobject.offset until we have completed
|
|
* relocation.
|
|
*/
|
|
args->flags &= ~__EXEC_HAS_RELOC;
|
|
goto err_vma;
|
|
}
|
|
|
|
ww_acquire_done(&eb.ww.ctx);
|
|
err = eb_capture_stage(&eb);
|
|
if (err)
|
|
goto err_vma;
|
|
|
|
out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
|
|
if (IS_ERR(out_fence)) {
|
|
err = PTR_ERR(out_fence);
|
|
out_fence = NULL;
|
|
if (eb.requests[0])
|
|
goto err_request;
|
|
else
|
|
goto err_vma;
|
|
}
|
|
|
|
err = eb_submit(&eb);
|
|
|
|
err_request:
|
|
eb_requests_get(&eb);
|
|
err = eb_requests_add(&eb, err);
|
|
|
|
if (eb.fences)
|
|
signal_fence_array(&eb, eb.composite_fence ?
|
|
eb.composite_fence :
|
|
&eb.requests[0]->fence);
|
|
|
|
if (unlikely(eb.gem_context->syncobj)) {
|
|
drm_syncobj_replace_fence(eb.gem_context->syncobj,
|
|
eb.composite_fence ?
|
|
eb.composite_fence :
|
|
&eb.requests[0]->fence);
|
|
}
|
|
|
|
if (out_fence) {
|
|
if (err == 0) {
|
|
fd_install(out_fence_fd, out_fence->file);
|
|
args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
|
|
args->rsvd2 |= (u64)out_fence_fd << 32;
|
|
out_fence_fd = -1;
|
|
} else {
|
|
fput(out_fence->file);
|
|
}
|
|
}
|
|
|
|
if (!out_fence && eb.composite_fence)
|
|
dma_fence_put(eb.composite_fence);
|
|
|
|
eb_requests_put(&eb);
|
|
|
|
err_vma:
|
|
eb_release_vmas(&eb, true);
|
|
WARN_ON(err == -EDEADLK);
|
|
i915_gem_ww_ctx_fini(&eb.ww);
|
|
|
|
if (eb.batch_pool)
|
|
intel_gt_buffer_pool_put(eb.batch_pool);
|
|
err_engine:
|
|
eb_put_engine(&eb);
|
|
err_context:
|
|
i915_gem_context_put(eb.gem_context);
|
|
err_destroy:
|
|
eb_destroy(&eb);
|
|
err_out_fence:
|
|
if (out_fence_fd != -1)
|
|
put_unused_fd(out_fence_fd);
|
|
err_in_fence:
|
|
dma_fence_put(in_fence);
|
|
err_ext:
|
|
put_fence_array(eb.fences, eb.num_fences);
|
|
return err;
|
|
}
|
|
|
|
static size_t eb_element_size(void)
|
|
{
|
|
return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
|
|
}
|
|
|
|
static bool check_buffer_count(size_t count)
|
|
{
|
|
const size_t sz = eb_element_size();
|
|
|
|
/*
|
|
* When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
|
|
* array size (see eb_create()). Otherwise, we can accept an array as
|
|
* large as can be addressed (though use large arrays at your peril)!
|
|
*/
|
|
|
|
return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
|
|
}
|
|
|
|
int
|
|
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dev);
|
|
struct drm_i915_gem_execbuffer2 *args = data;
|
|
struct drm_i915_gem_exec_object2 *exec2_list;
|
|
const size_t count = args->buffer_count;
|
|
int err;
|
|
|
|
if (!check_buffer_count(count)) {
|
|
drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = i915_gem_check_execbuffer(i915, args);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Allocate extra slots for use by the command parser */
|
|
exec2_list = kvmalloc_array(count + 2, eb_element_size(),
|
|
__GFP_NOWARN | GFP_KERNEL);
|
|
if (exec2_list == NULL) {
|
|
drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
|
|
count);
|
|
return -ENOMEM;
|
|
}
|
|
if (copy_from_user(exec2_list,
|
|
u64_to_user_ptr(args->buffers_ptr),
|
|
sizeof(*exec2_list) * count)) {
|
|
drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
|
|
kvfree(exec2_list);
|
|
return -EFAULT;
|
|
}
|
|
|
|
err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
|
|
|
|
/*
|
|
* Now that we have begun execution of the batchbuffer, we ignore
|
|
* any new error after this point. Also given that we have already
|
|
* updated the associated relocations, we try to write out the current
|
|
* object locations irrespective of any error.
|
|
*/
|
|
if (args->flags & __EXEC_HAS_RELOC) {
|
|
struct drm_i915_gem_exec_object2 __user *user_exec_list =
|
|
u64_to_user_ptr(args->buffers_ptr);
|
|
unsigned int i;
|
|
|
|
/* Copy the new buffer offsets back to the user's exec list. */
|
|
/*
|
|
* Note: count * sizeof(*user_exec_list) does not overflow,
|
|
* because we checked 'count' in check_buffer_count().
|
|
*
|
|
* And this range already got effectively checked earlier
|
|
* when we did the "copy_from_user()" above.
|
|
*/
|
|
if (!user_write_access_begin(user_exec_list,
|
|
count * sizeof(*user_exec_list)))
|
|
goto end;
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
if (!(exec2_list[i].offset & UPDATE))
|
|
continue;
|
|
|
|
exec2_list[i].offset =
|
|
gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
|
|
unsafe_put_user(exec2_list[i].offset,
|
|
&user_exec_list[i].offset,
|
|
end_user);
|
|
}
|
|
end_user:
|
|
user_write_access_end();
|
|
end:;
|
|
}
|
|
|
|
args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
|
|
kvfree(exec2_list);
|
|
return err;
|
|
}
|