1140 lines
28 KiB
C
1140 lines
28 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2019 Intel Corporation
|
|
*/
|
|
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/intel-gtt.h>
|
|
|
|
#include "gem/i915_gem_internal.h"
|
|
#include "gem/i915_gem_lmem.h"
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_perf_oa_regs.h"
|
|
#include "i915_reg.h"
|
|
#include "intel_context.h"
|
|
#include "intel_engine_pm.h"
|
|
#include "intel_engine_regs.h"
|
|
#include "intel_ggtt_gmch.h"
|
|
#include "intel_gt.h"
|
|
#include "intel_gt_buffer_pool.h"
|
|
#include "intel_gt_clock_utils.h"
|
|
#include "intel_gt_debugfs.h"
|
|
#include "intel_gt_mcr.h"
|
|
#include "intel_gt_pm.h"
|
|
#include "intel_gt_print.h"
|
|
#include "intel_gt_regs.h"
|
|
#include "intel_gt_requests.h"
|
|
#include "intel_migrate.h"
|
|
#include "intel_mocs.h"
|
|
#include "intel_pci_config.h"
|
|
#include "intel_rc6.h"
|
|
#include "intel_renderstate.h"
|
|
#include "intel_rps.h"
|
|
#include "intel_sa_media.h"
|
|
#include "intel_gt_sysfs.h"
|
|
#include "intel_uncore.h"
|
|
#include "shmem_utils.h"
|
|
|
|
void intel_gt_common_init_early(struct intel_gt *gt)
|
|
{
|
|
spin_lock_init(gt->irq_lock);
|
|
|
|
INIT_LIST_HEAD(>->closed_vma);
|
|
spin_lock_init(>->closed_lock);
|
|
|
|
init_llist_head(>->watchdog.list);
|
|
INIT_WORK(>->watchdog.work, intel_gt_watchdog_work);
|
|
|
|
intel_gt_init_buffer_pool(gt);
|
|
intel_gt_init_reset(gt);
|
|
intel_gt_init_requests(gt);
|
|
intel_gt_init_timelines(gt);
|
|
mutex_init(>->tlb.invalidate_lock);
|
|
seqcount_mutex_init(>->tlb.seqno, >->tlb.invalidate_lock);
|
|
intel_gt_pm_init_early(gt);
|
|
|
|
intel_wopcm_init_early(>->wopcm);
|
|
intel_uc_init_early(>->uc);
|
|
intel_rps_init_early(>->rps);
|
|
}
|
|
|
|
/* Preliminary initialization of Tile 0 */
|
|
int intel_root_gt_init_early(struct drm_i915_private *i915)
|
|
{
|
|
struct intel_gt *gt = to_gt(i915);
|
|
|
|
gt->i915 = i915;
|
|
gt->uncore = &i915->uncore;
|
|
gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
|
|
if (!gt->irq_lock)
|
|
return -ENOMEM;
|
|
|
|
intel_gt_common_init_early(gt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_gt_probe_lmem(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
unsigned int instance = gt->info.id;
|
|
int id = INTEL_REGION_LMEM_0 + instance;
|
|
struct intel_memory_region *mem;
|
|
int err;
|
|
|
|
mem = intel_gt_setup_lmem(gt);
|
|
if (IS_ERR(mem)) {
|
|
err = PTR_ERR(mem);
|
|
if (err == -ENODEV)
|
|
return 0;
|
|
|
|
gt_err(gt, "Failed to setup region(%d) type=%d\n",
|
|
err, INTEL_MEMORY_LOCAL);
|
|
return err;
|
|
}
|
|
|
|
mem->id = id;
|
|
mem->instance = instance;
|
|
|
|
intel_memory_region_set_name(mem, "local%u", mem->instance);
|
|
|
|
GEM_BUG_ON(!HAS_REGION(i915, id));
|
|
GEM_BUG_ON(i915->mm.regions[id]);
|
|
i915->mm.regions[id] = mem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_gt_assign_ggtt(struct intel_gt *gt)
|
|
{
|
|
/* Media GT shares primary GT's GGTT */
|
|
if (gt->type == GT_MEDIA) {
|
|
gt->ggtt = to_gt(gt->i915)->ggtt;
|
|
} else {
|
|
gt->ggtt = i915_ggtt_create(gt->i915);
|
|
if (IS_ERR(gt->ggtt))
|
|
return PTR_ERR(gt->ggtt);
|
|
}
|
|
|
|
list_add_tail(>->ggtt_link, >->ggtt->gt_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_gt_init_mmio(struct intel_gt *gt)
|
|
{
|
|
intel_gt_init_clock_frequency(gt);
|
|
|
|
intel_uc_init_mmio(>->uc);
|
|
intel_sseu_info_init(gt);
|
|
intel_gt_mcr_init(gt);
|
|
|
|
return intel_engines_init_mmio(gt);
|
|
}
|
|
|
|
static void init_unused_ring(struct intel_gt *gt, u32 base)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
|
|
intel_uncore_write(uncore, RING_CTL(base), 0);
|
|
intel_uncore_write(uncore, RING_HEAD(base), 0);
|
|
intel_uncore_write(uncore, RING_TAIL(base), 0);
|
|
intel_uncore_write(uncore, RING_START(base), 0);
|
|
}
|
|
|
|
static void init_unused_rings(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
if (IS_I830(i915)) {
|
|
init_unused_ring(gt, PRB1_BASE);
|
|
init_unused_ring(gt, SRB0_BASE);
|
|
init_unused_ring(gt, SRB1_BASE);
|
|
init_unused_ring(gt, SRB2_BASE);
|
|
init_unused_ring(gt, SRB3_BASE);
|
|
} else if (GRAPHICS_VER(i915) == 2) {
|
|
init_unused_ring(gt, SRB0_BASE);
|
|
init_unused_ring(gt, SRB1_BASE);
|
|
} else if (GRAPHICS_VER(i915) == 3) {
|
|
init_unused_ring(gt, PRB1_BASE);
|
|
init_unused_ring(gt, PRB2_BASE);
|
|
}
|
|
}
|
|
|
|
int intel_gt_init_hw(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
int ret;
|
|
|
|
gt->last_init_time = ktime_get();
|
|
|
|
/* Double layer security blanket, see i915_gem_init() */
|
|
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
|
|
|
|
if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
|
|
intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
|
|
|
|
if (IS_HASWELL(i915))
|
|
intel_uncore_write(uncore,
|
|
HSW_MI_PREDICATE_RESULT_2,
|
|
IS_HSW_GT3(i915) ?
|
|
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
|
|
|
|
/* Apply the GT workarounds... */
|
|
intel_gt_apply_workarounds(gt);
|
|
/* ...and determine whether they are sticking. */
|
|
intel_gt_verify_workarounds(gt, "init");
|
|
|
|
intel_gt_init_swizzling(gt);
|
|
|
|
/*
|
|
* At least 830 can leave some of the unused rings
|
|
* "active" (ie. head != tail) after resume which
|
|
* will prevent c3 entry. Makes sure all unused rings
|
|
* are totally idle.
|
|
*/
|
|
init_unused_rings(gt);
|
|
|
|
ret = i915_ppgtt_init_hw(gt);
|
|
if (ret) {
|
|
gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/* We can't enable contexts until all firmware is loaded */
|
|
ret = intel_uc_init_hw(>->uc);
|
|
if (ret) {
|
|
gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
intel_mocs_init(gt);
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
|
|
return ret;
|
|
}
|
|
|
|
static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
|
|
{
|
|
GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
|
|
GEN6_RING_FAULT_REG_POSTING_READ(engine);
|
|
}
|
|
|
|
i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
|
|
{
|
|
/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
|
|
if (GRAPHICS_VER(gt->i915) < 11)
|
|
return INVALID_MMIO_REG;
|
|
|
|
return gt->type == GT_MEDIA ?
|
|
MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
|
|
}
|
|
|
|
void
|
|
intel_gt_clear_error_registers(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
u32 eir;
|
|
|
|
if (GRAPHICS_VER(i915) != 2)
|
|
intel_uncore_write(uncore, PGTBL_ER, 0);
|
|
|
|
if (GRAPHICS_VER(i915) < 4)
|
|
intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
|
|
else
|
|
intel_uncore_write(uncore, IPEIR_I965, 0);
|
|
|
|
intel_uncore_write(uncore, EIR, 0);
|
|
eir = intel_uncore_read(uncore, EIR);
|
|
if (eir) {
|
|
/*
|
|
* some errors might have become stuck,
|
|
* mask them.
|
|
*/
|
|
gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
|
|
intel_uncore_rmw(uncore, EMR, 0, eir);
|
|
intel_uncore_write(uncore, GEN2_IIR,
|
|
I915_MASTER_ERROR_INTERRUPT);
|
|
}
|
|
|
|
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
|
|
intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
|
|
RING_FAULT_VALID, 0);
|
|
intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
|
|
} else if (GRAPHICS_VER(i915) >= 12) {
|
|
intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
|
|
intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
|
|
} else if (GRAPHICS_VER(i915) >= 8) {
|
|
intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
|
|
intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
|
|
} else if (GRAPHICS_VER(i915) >= 6) {
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine_masked(engine, gt, engine_mask, id)
|
|
gen6_clear_engine_error_register(engine);
|
|
}
|
|
}
|
|
|
|
static void gen6_check_faults(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
u32 fault;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
fault = GEN6_RING_FAULT_REG_READ(engine);
|
|
if (fault & RING_FAULT_VALID) {
|
|
gt_dbg(gt, "Unexpected fault\n"
|
|
"\tAddr: 0x%08lx\n"
|
|
"\tAddress space: %s\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
fault & PAGE_MASK,
|
|
fault & RING_FAULT_GTTSEL_MASK ?
|
|
"GGTT" : "PPGTT",
|
|
RING_FAULT_SRCID(fault),
|
|
RING_FAULT_FAULT_TYPE(fault));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void xehp_check_faults(struct intel_gt *gt)
|
|
{
|
|
u32 fault;
|
|
|
|
/*
|
|
* Although the fault register now lives in an MCR register range,
|
|
* the GAM registers are special and we only truly need to read
|
|
* the "primary" GAM instance rather than handling each instance
|
|
* individually. intel_gt_mcr_read_any() will automatically steer
|
|
* toward the primary instance.
|
|
*/
|
|
fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
|
|
if (fault & RING_FAULT_VALID) {
|
|
u32 fault_data0, fault_data1;
|
|
u64 fault_addr;
|
|
|
|
fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
|
|
fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
|
|
|
|
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
|
|
((u64)fault_data0 << 12);
|
|
|
|
gt_dbg(gt, "Unexpected fault\n"
|
|
"\tAddr: 0x%08x_%08x\n"
|
|
"\tAddress space: %s\n"
|
|
"\tEngine ID: %d\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
upper_32_bits(fault_addr), lower_32_bits(fault_addr),
|
|
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
|
|
GEN8_RING_FAULT_ENGINE_ID(fault),
|
|
RING_FAULT_SRCID(fault),
|
|
RING_FAULT_FAULT_TYPE(fault));
|
|
}
|
|
}
|
|
|
|
static void gen8_check_faults(struct intel_gt *gt)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
|
|
u32 fault;
|
|
|
|
if (GRAPHICS_VER(gt->i915) >= 12) {
|
|
fault_reg = GEN12_RING_FAULT_REG;
|
|
fault_data0_reg = GEN12_FAULT_TLB_DATA0;
|
|
fault_data1_reg = GEN12_FAULT_TLB_DATA1;
|
|
} else {
|
|
fault_reg = GEN8_RING_FAULT_REG;
|
|
fault_data0_reg = GEN8_FAULT_TLB_DATA0;
|
|
fault_data1_reg = GEN8_FAULT_TLB_DATA1;
|
|
}
|
|
|
|
fault = intel_uncore_read(uncore, fault_reg);
|
|
if (fault & RING_FAULT_VALID) {
|
|
u32 fault_data0, fault_data1;
|
|
u64 fault_addr;
|
|
|
|
fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
|
|
fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
|
|
|
|
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
|
|
((u64)fault_data0 << 12);
|
|
|
|
gt_dbg(gt, "Unexpected fault\n"
|
|
"\tAddr: 0x%08x_%08x\n"
|
|
"\tAddress space: %s\n"
|
|
"\tEngine ID: %d\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
upper_32_bits(fault_addr), lower_32_bits(fault_addr),
|
|
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
|
|
GEN8_RING_FAULT_ENGINE_ID(fault),
|
|
RING_FAULT_SRCID(fault),
|
|
RING_FAULT_FAULT_TYPE(fault));
|
|
}
|
|
}
|
|
|
|
void intel_gt_check_and_clear_faults(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
/* From GEN8 onwards we only have one 'All Engine Fault Register' */
|
|
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
|
|
xehp_check_faults(gt);
|
|
else if (GRAPHICS_VER(i915) >= 8)
|
|
gen8_check_faults(gt);
|
|
else if (GRAPHICS_VER(i915) >= 6)
|
|
gen6_check_faults(gt);
|
|
else
|
|
return;
|
|
|
|
intel_gt_clear_error_registers(gt, ALL_ENGINES);
|
|
}
|
|
|
|
void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
intel_wakeref_t wakeref;
|
|
|
|
/*
|
|
* No actual flushing is required for the GTT write domain for reads
|
|
* from the GTT domain. Writes to it "immediately" go to main memory
|
|
* as far as we know, so there's no chipset flush. It also doesn't
|
|
* land in the GPU render cache.
|
|
*
|
|
* However, we do have to enforce the order so that all writes through
|
|
* the GTT land before any writes to the device, such as updates to
|
|
* the GATT itself.
|
|
*
|
|
* We also have to wait a bit for the writes to land from the GTT.
|
|
* An uncached read (i.e. mmio) seems to be ideal for the round-trip
|
|
* timing. This issue has only been observed when switching quickly
|
|
* between GTT writes and CPU reads from inside the kernel on recent hw,
|
|
* and it appears to only affect discrete GTT blocks (i.e. on LLC
|
|
* system agents we cannot reproduce this behaviour, until Cannonlake
|
|
* that was!).
|
|
*/
|
|
|
|
wmb();
|
|
|
|
if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
|
|
return;
|
|
|
|
intel_gt_chipset_flush(gt);
|
|
|
|
with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&uncore->lock, flags);
|
|
intel_uncore_posting_read_fw(uncore,
|
|
RING_HEAD(RENDER_RING_BASE));
|
|
spin_unlock_irqrestore(&uncore->lock, flags);
|
|
}
|
|
}
|
|
|
|
void intel_gt_chipset_flush(struct intel_gt *gt)
|
|
{
|
|
wmb();
|
|
if (GRAPHICS_VER(gt->i915) < 6)
|
|
intel_ggtt_gmch_flush();
|
|
}
|
|
|
|
void intel_gt_driver_register(struct intel_gt *gt)
|
|
{
|
|
intel_gsc_init(>->gsc, gt->i915);
|
|
|
|
intel_rps_driver_register(>->rps);
|
|
|
|
intel_gt_debugfs_register(gt);
|
|
intel_gt_sysfs_register(gt);
|
|
}
|
|
|
|
static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
obj = i915_gem_object_create_lmem(i915, size,
|
|
I915_BO_ALLOC_VOLATILE |
|
|
I915_BO_ALLOC_GPU_ONLY);
|
|
if (IS_ERR(obj))
|
|
obj = i915_gem_object_create_stolen(i915, size);
|
|
if (IS_ERR(obj))
|
|
obj = i915_gem_object_create_internal(i915, size);
|
|
if (IS_ERR(obj)) {
|
|
gt_err(gt, "Failed to allocate scratch page\n");
|
|
return PTR_ERR(obj);
|
|
}
|
|
|
|
vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto err_unref;
|
|
}
|
|
|
|
ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
|
|
if (ret)
|
|
goto err_unref;
|
|
|
|
gt->scratch = i915_vma_make_unshrinkable(vma);
|
|
|
|
return 0;
|
|
|
|
err_unref:
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
static void intel_gt_fini_scratch(struct intel_gt *gt)
|
|
{
|
|
i915_vma_unpin_and_release(>->scratch, 0);
|
|
}
|
|
|
|
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
|
|
{
|
|
if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
|
|
return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
|
|
else
|
|
return i915_vm_get(>->ggtt->vm);
|
|
}
|
|
|
|
static int __engines_record_defaults(struct intel_gt *gt)
|
|
{
|
|
struct i915_request *requests[I915_NUM_ENGINES] = {};
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int err = 0;
|
|
|
|
/*
|
|
* As we reset the gpu during very early sanitisation, the current
|
|
* register state on the GPU should reflect its defaults values.
|
|
* We load a context onto the hw (with restore-inhibit), then switch
|
|
* over to a second context to save that default register state. We
|
|
* can then prime every new context with that state so they all start
|
|
* from the same default HW values.
|
|
*/
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct intel_renderstate so;
|
|
struct intel_context *ce;
|
|
struct i915_request *rq;
|
|
|
|
/* We must be able to switch to something! */
|
|
GEM_BUG_ON(!engine->kernel_context);
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out;
|
|
}
|
|
|
|
err = intel_renderstate_init(&so, ce);
|
|
if (err)
|
|
goto err;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err_fini;
|
|
}
|
|
|
|
err = intel_engine_emit_ctx_wa(rq);
|
|
if (err)
|
|
goto err_rq;
|
|
|
|
err = intel_renderstate_emit(&so, rq);
|
|
if (err)
|
|
goto err_rq;
|
|
|
|
err_rq:
|
|
requests[id] = i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
err_fini:
|
|
intel_renderstate_fini(&so, ce);
|
|
err:
|
|
if (err) {
|
|
intel_context_put(ce);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Flush the default context image to memory, and enable powersaving. */
|
|
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
for (id = 0; id < ARRAY_SIZE(requests); id++) {
|
|
struct i915_request *rq;
|
|
struct file *state;
|
|
|
|
rq = requests[id];
|
|
if (!rq)
|
|
continue;
|
|
|
|
if (rq->fence.error) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
|
|
if (!rq->context->state)
|
|
continue;
|
|
|
|
/* Keep a copy of the state's backing pages; free the obj */
|
|
state = shmem_create_from_object(rq->context->state->obj);
|
|
if (IS_ERR(state)) {
|
|
err = PTR_ERR(state);
|
|
goto out;
|
|
}
|
|
rq->engine->default_state = state;
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* If we have to abandon now, we expect the engines to be idle
|
|
* and ready to be torn-down. The quickest way we can accomplish
|
|
* this is by declaring ourselves wedged.
|
|
*/
|
|
if (err)
|
|
intel_gt_set_wedged(gt);
|
|
|
|
for (id = 0; id < ARRAY_SIZE(requests); id++) {
|
|
struct intel_context *ce;
|
|
struct i915_request *rq;
|
|
|
|
rq = requests[id];
|
|
if (!rq)
|
|
continue;
|
|
|
|
ce = rq->context;
|
|
i915_request_put(rq);
|
|
intel_context_put(ce);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __engines_verify_workarounds(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int err = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
return 0;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
if (intel_engine_verify_workarounds(engine, "load"))
|
|
err = -EIO;
|
|
}
|
|
|
|
/* Flush and restore the kernel context for safety */
|
|
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
|
|
err = -EIO;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void __intel_gt_disable(struct intel_gt *gt)
|
|
{
|
|
intel_gt_set_wedged_on_fini(gt);
|
|
|
|
intel_gt_suspend_prepare(gt);
|
|
intel_gt_suspend_late(gt);
|
|
|
|
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
|
|
}
|
|
|
|
int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
|
|
{
|
|
long remaining_timeout;
|
|
|
|
/* If the device is asleep, we have no requests outstanding */
|
|
if (!intel_gt_pm_is_awake(gt))
|
|
return 0;
|
|
|
|
while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
|
|
&remaining_timeout)) > 0) {
|
|
cond_resched();
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
}
|
|
|
|
if (timeout)
|
|
return timeout;
|
|
|
|
if (remaining_timeout < 0)
|
|
remaining_timeout = 0;
|
|
|
|
return intel_uc_wait_for_idle(>->uc, remaining_timeout);
|
|
}
|
|
|
|
int intel_gt_init(struct intel_gt *gt)
|
|
{
|
|
int err;
|
|
|
|
err = i915_inject_probe_error(gt->i915, -ENODEV);
|
|
if (err)
|
|
return err;
|
|
|
|
intel_gt_init_workarounds(gt);
|
|
|
|
/*
|
|
* This is just a security blanket to placate dragons.
|
|
* On some systems, we very sporadically observe that the first TLBs
|
|
* used by the CS may be stale, despite us poking the TLB reset. If
|
|
* we hold the forcewake during initialisation these problems
|
|
* just magically go away.
|
|
*/
|
|
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
|
|
|
|
err = intel_gt_init_scratch(gt,
|
|
GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
|
|
if (err)
|
|
goto out_fw;
|
|
|
|
intel_gt_pm_init(gt);
|
|
|
|
gt->vm = kernel_vm(gt);
|
|
if (!gt->vm) {
|
|
err = -ENOMEM;
|
|
goto err_pm;
|
|
}
|
|
|
|
intel_set_mocs_index(gt);
|
|
|
|
err = intel_engines_init(gt);
|
|
if (err)
|
|
goto err_engines;
|
|
|
|
err = intel_uc_init(>->uc);
|
|
if (err)
|
|
goto err_engines;
|
|
|
|
err = intel_gt_resume(gt);
|
|
if (err)
|
|
goto err_uc_init;
|
|
|
|
err = intel_gt_init_hwconfig(gt);
|
|
if (err)
|
|
gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
|
|
|
|
err = __engines_record_defaults(gt);
|
|
if (err)
|
|
goto err_gt;
|
|
|
|
err = __engines_verify_workarounds(gt);
|
|
if (err)
|
|
goto err_gt;
|
|
|
|
err = i915_inject_probe_error(gt->i915, -EIO);
|
|
if (err)
|
|
goto err_gt;
|
|
|
|
intel_uc_init_late(>->uc);
|
|
|
|
intel_migrate_init(>->migrate, gt);
|
|
|
|
goto out_fw;
|
|
err_gt:
|
|
__intel_gt_disable(gt);
|
|
intel_uc_fini_hw(>->uc);
|
|
err_uc_init:
|
|
intel_uc_fini(>->uc);
|
|
err_engines:
|
|
intel_engines_release(gt);
|
|
i915_vm_put(fetch_and_zero(>->vm));
|
|
err_pm:
|
|
intel_gt_pm_fini(gt);
|
|
intel_gt_fini_scratch(gt);
|
|
out_fw:
|
|
if (err)
|
|
intel_gt_set_wedged_on_init(gt);
|
|
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
|
|
return err;
|
|
}
|
|
|
|
void intel_gt_driver_remove(struct intel_gt *gt)
|
|
{
|
|
__intel_gt_disable(gt);
|
|
|
|
intel_migrate_fini(>->migrate);
|
|
intel_uc_driver_remove(>->uc);
|
|
|
|
intel_engines_release(gt);
|
|
|
|
intel_gt_flush_buffer_pool(gt);
|
|
}
|
|
|
|
void intel_gt_driver_unregister(struct intel_gt *gt)
|
|
{
|
|
intel_wakeref_t wakeref;
|
|
|
|
intel_gt_sysfs_unregister(gt);
|
|
intel_rps_driver_unregister(>->rps);
|
|
intel_gsc_fini(>->gsc);
|
|
|
|
/*
|
|
* If we unload the driver and wedge before the GSC worker is complete,
|
|
* the worker will hit an error on its submission to the GSC engine and
|
|
* then exit. This is hard to hit for a user, but it is reproducible
|
|
* with skipping selftests. The error is handled gracefully by the
|
|
* worker, so there are no functional issues, but we still end up with
|
|
* an error message in dmesg, which is something we want to avoid as
|
|
* this is a supported scenario. We could modify the worker to better
|
|
* handle a wedging occurring during its execution, but that gets
|
|
* complicated for a couple of reasons:
|
|
* - We do want the error on runtime wedging, because there are
|
|
* implications for subsystems outside of GT (i.e., PXP, HDCP), it's
|
|
* only the error on driver unload that we want to silence.
|
|
* - The worker is responsible for multiple submissions (GSC FW load,
|
|
* HuC auth, SW proxy), so all of those will have to be adapted to
|
|
* handle the wedged_on_fini scenario.
|
|
* Therefore, it's much simpler to just wait for the worker to be done
|
|
* before wedging on driver removal, also considering that the worker
|
|
* will likely already be idle in the great majority of non-selftest
|
|
* scenarios.
|
|
*/
|
|
intel_gsc_uc_flush_work(>->uc.gsc);
|
|
|
|
/*
|
|
* Upon unregistering the device to prevent any new users, cancel
|
|
* all in-flight requests so that we can quickly unbind the active
|
|
* resources.
|
|
*/
|
|
intel_gt_set_wedged_on_fini(gt);
|
|
|
|
/* Scrub all HW state upon release */
|
|
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
|
|
__intel_gt_reset(gt, ALL_ENGINES);
|
|
}
|
|
|
|
void intel_gt_driver_release(struct intel_gt *gt)
|
|
{
|
|
struct i915_address_space *vm;
|
|
|
|
vm = fetch_and_zero(>->vm);
|
|
if (vm) /* FIXME being called twice on error paths :( */
|
|
i915_vm_put(vm);
|
|
|
|
intel_wa_list_free(>->wa_list);
|
|
intel_gt_pm_fini(gt);
|
|
intel_gt_fini_scratch(gt);
|
|
intel_gt_fini_buffer_pool(gt);
|
|
intel_gt_fini_hwconfig(gt);
|
|
}
|
|
|
|
void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
|
|
{
|
|
struct intel_gt *gt;
|
|
unsigned int id;
|
|
|
|
/* We need to wait for inflight RCU frees to release their grip */
|
|
rcu_barrier();
|
|
|
|
for_each_gt(gt, i915, id) {
|
|
intel_uc_driver_late_release(>->uc);
|
|
intel_gt_fini_requests(gt);
|
|
intel_gt_fini_reset(gt);
|
|
intel_gt_fini_timelines(gt);
|
|
mutex_destroy(>->tlb.invalidate_lock);
|
|
intel_engines_free(gt);
|
|
}
|
|
}
|
|
|
|
static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
|
|
{
|
|
int ret;
|
|
|
|
if (!gt_is_root(gt)) {
|
|
struct intel_uncore *uncore;
|
|
spinlock_t *irq_lock;
|
|
|
|
uncore = drmm_kzalloc(>->i915->drm, sizeof(*uncore), GFP_KERNEL);
|
|
if (!uncore)
|
|
return -ENOMEM;
|
|
|
|
irq_lock = drmm_kzalloc(>->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
|
|
if (!irq_lock)
|
|
return -ENOMEM;
|
|
|
|
gt->uncore = uncore;
|
|
gt->irq_lock = irq_lock;
|
|
|
|
intel_gt_common_init_early(gt);
|
|
}
|
|
|
|
intel_uncore_init_early(gt->uncore, gt);
|
|
|
|
ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gt->phys_addr = phys_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_gt_probe_all(struct drm_i915_private *i915)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
|
|
struct intel_gt *gt = &i915->gt0;
|
|
const struct intel_gt_definition *gtdef;
|
|
phys_addr_t phys_addr;
|
|
unsigned int mmio_bar;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
|
|
phys_addr = pci_resource_start(pdev, mmio_bar);
|
|
|
|
/*
|
|
* We always have at least one primary GT on any device
|
|
* and it has been already initialized early during probe
|
|
* in i915_driver_probe()
|
|
*/
|
|
gt->i915 = i915;
|
|
gt->name = "Primary GT";
|
|
gt->info.engine_mask = RUNTIME_INFO(i915)->platform_engine_mask;
|
|
|
|
gt_dbg(gt, "Setting up %s\n", gt->name);
|
|
ret = intel_gt_tile_setup(gt, phys_addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915->gt[0] = gt;
|
|
|
|
if (!HAS_EXTRA_GT_LIST(i915))
|
|
return 0;
|
|
|
|
for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
|
|
gtdef->name != NULL;
|
|
i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
|
|
gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
|
|
if (!gt) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
gt->i915 = i915;
|
|
gt->name = gtdef->name;
|
|
gt->type = gtdef->type;
|
|
gt->info.engine_mask = gtdef->engine_mask;
|
|
gt->info.id = i;
|
|
|
|
gt_dbg(gt, "Setting up %s\n", gt->name);
|
|
if (GEM_WARN_ON(range_overflows_t(resource_size_t,
|
|
gtdef->mapping_base,
|
|
SZ_16M,
|
|
pci_resource_len(pdev, mmio_bar)))) {
|
|
ret = -ENODEV;
|
|
goto err;
|
|
}
|
|
|
|
switch (gtdef->type) {
|
|
case GT_TILE:
|
|
ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
|
|
break;
|
|
|
|
case GT_MEDIA:
|
|
ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
|
|
gtdef->gsi_offset);
|
|
break;
|
|
|
|
case GT_PRIMARY:
|
|
/* Primary GT should not appear in extra GT list */
|
|
default:
|
|
MISSING_CASE(gtdef->type);
|
|
ret = -ENODEV;
|
|
}
|
|
|
|
if (ret)
|
|
goto err;
|
|
|
|
i915->gt[i] = gt;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
|
|
intel_gt_release_all(i915);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int intel_gt_tiles_init(struct drm_i915_private *i915)
|
|
{
|
|
struct intel_gt *gt;
|
|
unsigned int id;
|
|
int ret;
|
|
|
|
for_each_gt(gt, i915, id) {
|
|
ret = intel_gt_probe_lmem(gt);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_gt_release_all(struct drm_i915_private *i915)
|
|
{
|
|
struct intel_gt *gt;
|
|
unsigned int id;
|
|
|
|
for_each_gt(gt, i915, id)
|
|
i915->gt[id] = NULL;
|
|
}
|
|
|
|
void intel_gt_info_print(const struct intel_gt_info *info,
|
|
struct drm_printer *p)
|
|
{
|
|
drm_printf(p, "available engines: %x\n", info->engine_mask);
|
|
|
|
intel_sseu_dump(&info->sseu, p);
|
|
}
|
|
|
|
/*
|
|
* HW architecture suggest typical invalidation time at 40us,
|
|
* with pessimistic cases up to 100us and a recommendation to
|
|
* cap at 1ms. We go a bit higher just in case.
|
|
*/
|
|
#define TLB_INVAL_TIMEOUT_US 100
|
|
#define TLB_INVAL_TIMEOUT_MS 4
|
|
|
|
/*
|
|
* On Xe_HP the TLB invalidation registers are located at the same MMIO offsets
|
|
* but are now considered MCR registers. Since they exist within a GAM range,
|
|
* the primary instance of the register rolls up the status from each unit.
|
|
*/
|
|
static int wait_for_invalidate(struct intel_engine_cs *engine)
|
|
{
|
|
if (engine->tlb_inv.mcr)
|
|
return intel_gt_mcr_wait_for_reg(engine->gt,
|
|
engine->tlb_inv.reg.mcr_reg,
|
|
engine->tlb_inv.done,
|
|
0,
|
|
TLB_INVAL_TIMEOUT_US,
|
|
TLB_INVAL_TIMEOUT_MS);
|
|
else
|
|
return __intel_wait_for_register_fw(engine->gt->uncore,
|
|
engine->tlb_inv.reg.reg,
|
|
engine->tlb_inv.done,
|
|
0,
|
|
TLB_INVAL_TIMEOUT_US,
|
|
TLB_INVAL_TIMEOUT_MS,
|
|
NULL);
|
|
}
|
|
|
|
static void mmio_invalidate_full(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
struct intel_engine_cs *engine;
|
|
intel_engine_mask_t awake, tmp;
|
|
enum intel_engine_id id;
|
|
unsigned long flags;
|
|
|
|
if (GRAPHICS_VER(i915) < 8)
|
|
return;
|
|
|
|
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
|
|
|
|
intel_gt_mcr_lock(gt, &flags);
|
|
spin_lock(&uncore->lock); /* serialise invalidate with GT reset */
|
|
|
|
awake = 0;
|
|
for_each_engine(engine, gt, id) {
|
|
if (!intel_engine_pm_is_awake(engine))
|
|
continue;
|
|
|
|
if (engine->tlb_inv.mcr)
|
|
intel_gt_mcr_multicast_write_fw(gt,
|
|
engine->tlb_inv.reg.mcr_reg,
|
|
engine->tlb_inv.request);
|
|
else
|
|
intel_uncore_write_fw(uncore,
|
|
engine->tlb_inv.reg.reg,
|
|
engine->tlb_inv.request);
|
|
|
|
awake |= engine->mask;
|
|
}
|
|
|
|
GT_TRACE(gt, "invalidated engines %08x\n", awake);
|
|
|
|
/* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */
|
|
if (awake &&
|
|
(IS_TIGERLAKE(i915) ||
|
|
IS_DG1(i915) ||
|
|
IS_ROCKETLAKE(i915) ||
|
|
IS_ALDERLAKE_S(i915) ||
|
|
IS_ALDERLAKE_P(i915)))
|
|
intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1);
|
|
|
|
spin_unlock(&uncore->lock);
|
|
intel_gt_mcr_unlock(gt, flags);
|
|
|
|
for_each_engine_masked(engine, gt, awake, tmp) {
|
|
if (wait_for_invalidate(engine))
|
|
gt_err_ratelimited(gt,
|
|
"%s TLB invalidation did not complete in %ums!\n",
|
|
engine->name, TLB_INVAL_TIMEOUT_MS);
|
|
}
|
|
|
|
/*
|
|
* Use delayed put since a) we mostly expect a flurry of TLB
|
|
* invalidations so it is good to avoid paying the forcewake cost and
|
|
* b) it works around a bug in Icelake which cannot cope with too rapid
|
|
* transitions.
|
|
*/
|
|
intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
|
|
}
|
|
|
|
static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno)
|
|
{
|
|
u32 cur = intel_gt_tlb_seqno(gt);
|
|
|
|
/* Only skip if a *full* TLB invalidate barrier has passed */
|
|
return (s32)(cur - ALIGN(seqno, 2)) > 0;
|
|
}
|
|
|
|
void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno)
|
|
{
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
|
|
return;
|
|
|
|
if (intel_gt_is_wedged(gt))
|
|
return;
|
|
|
|
if (tlb_seqno_passed(gt, seqno))
|
|
return;
|
|
|
|
with_intel_gt_pm_if_awake(gt, wakeref) {
|
|
mutex_lock(>->tlb.invalidate_lock);
|
|
if (tlb_seqno_passed(gt, seqno))
|
|
goto unlock;
|
|
|
|
mmio_invalidate_full(gt);
|
|
|
|
write_seqcount_invalidate(>->tlb.seqno);
|
|
unlock:
|
|
mutex_unlock(>->tlb.invalidate_lock);
|
|
}
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftest_tlb.c"
|
|
#endif
|