707 lines
20 KiB
C
707 lines
20 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2020 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/slab.h> /* fault-inject.h is not standalone! */
|
|
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
#include <drm/drm_cache.h>
|
|
|
|
#include "gem/i915_gem_internal.h"
|
|
#include "gem/i915_gem_lmem.h"
|
|
#include "i915_reg.h"
|
|
#include "i915_trace.h"
|
|
#include "i915_utils.h"
|
|
#include "intel_gt.h"
|
|
#include "intel_gt_mcr.h"
|
|
#include "intel_gt_print.h"
|
|
#include "intel_gt_regs.h"
|
|
#include "intel_gtt.h"
|
|
|
|
|
|
static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
|
|
{
|
|
return IS_BROXTON(i915) && i915_vtd_active(i915);
|
|
}
|
|
|
|
bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
|
|
{
|
|
return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
|
|
}
|
|
|
|
struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
/*
|
|
* To avoid severe over-allocation when dealing with min_page_size
|
|
* restrictions, we override that behaviour here by allowing an object
|
|
* size and page layout which can be smaller. In practice this should be
|
|
* totally fine, since GTT paging structures are not typically inserted
|
|
* into the GTT.
|
|
*
|
|
* Note that we also hit this path for the scratch page, and for this
|
|
* case it might need to be 64K, but that should work fine here since we
|
|
* used the passed in size for the page size, which should ensure it
|
|
* also has the same alignment.
|
|
*/
|
|
obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
|
|
vm->lmem_pt_obj_flags);
|
|
/*
|
|
* Ensure all paging structures for this vm share the same dma-resv
|
|
* object underneath, with the idea that one object_lock() will lock
|
|
* them all at once.
|
|
*/
|
|
if (!IS_ERR(obj)) {
|
|
obj->base.resv = i915_vm_resv_get(vm);
|
|
obj->shares_resv_from = vm;
|
|
}
|
|
|
|
return obj;
|
|
}
|
|
|
|
struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
|
|
i915_gem_shrink_all(vm->i915);
|
|
|
|
obj = i915_gem_object_create_internal(vm->i915, sz);
|
|
/*
|
|
* Ensure all paging structures for this vm share the same dma-resv
|
|
* object underneath, with the idea that one object_lock() will lock
|
|
* them all at once.
|
|
*/
|
|
if (!IS_ERR(obj)) {
|
|
obj->base.resv = i915_vm_resv_get(vm);
|
|
obj->shares_resv_from = vm;
|
|
}
|
|
|
|
return obj;
|
|
}
|
|
|
|
int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
|
|
{
|
|
enum i915_map_type type;
|
|
void *vaddr;
|
|
|
|
type = i915_coherent_map_type(vm->i915, obj, true);
|
|
vaddr = i915_gem_object_pin_map_unlocked(obj, type);
|
|
if (IS_ERR(vaddr))
|
|
return PTR_ERR(vaddr);
|
|
|
|
i915_gem_object_make_unshrinkable(obj);
|
|
return 0;
|
|
}
|
|
|
|
int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
|
|
{
|
|
enum i915_map_type type;
|
|
void *vaddr;
|
|
|
|
type = i915_coherent_map_type(vm->i915, obj, true);
|
|
vaddr = i915_gem_object_pin_map(obj, type);
|
|
if (IS_ERR(vaddr))
|
|
return PTR_ERR(vaddr);
|
|
|
|
i915_gem_object_make_unshrinkable(obj);
|
|
return 0;
|
|
}
|
|
|
|
static void clear_vm_list(struct list_head *list)
|
|
{
|
|
struct i915_vma *vma, *vn;
|
|
|
|
list_for_each_entry_safe(vma, vn, list, vm_link) {
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
if (!i915_gem_object_get_rcu(obj)) {
|
|
/*
|
|
* Object is dying, but has not yet cleared its
|
|
* vma list.
|
|
* Unbind the dying vma to ensure our list
|
|
* is completely drained. We leave the destruction to
|
|
* the object destructor to avoid the vma
|
|
* disappearing under it.
|
|
*/
|
|
atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
|
|
WARN_ON(__i915_vma_unbind(vma));
|
|
|
|
/* Remove from the unbound list */
|
|
list_del_init(&vma->vm_link);
|
|
|
|
/*
|
|
* Delay the vm and vm mutex freeing until the
|
|
* object is done with destruction.
|
|
*/
|
|
i915_vm_resv_get(vma->vm);
|
|
vma->vm_ddestroy = true;
|
|
} else {
|
|
i915_vma_destroy_locked(vma);
|
|
i915_gem_object_put(obj);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void __i915_vm_close(struct i915_address_space *vm)
|
|
{
|
|
mutex_lock(&vm->mutex);
|
|
|
|
clear_vm_list(&vm->bound_list);
|
|
clear_vm_list(&vm->unbound_list);
|
|
|
|
/* Check for must-fix unanticipated side-effects */
|
|
GEM_BUG_ON(!list_empty(&vm->bound_list));
|
|
GEM_BUG_ON(!list_empty(&vm->unbound_list));
|
|
|
|
mutex_unlock(&vm->mutex);
|
|
}
|
|
|
|
/* lock the vm into the current ww, if we lock one, we lock all */
|
|
int i915_vm_lock_objects(struct i915_address_space *vm,
|
|
struct i915_gem_ww_ctx *ww)
|
|
{
|
|
if (vm->scratch[0]->base.resv == &vm->_resv) {
|
|
return i915_gem_object_lock(vm->scratch[0], ww);
|
|
} else {
|
|
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
|
|
|
|
/* We borrowed the scratch page from ggtt, take the top level object */
|
|
return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
|
|
}
|
|
}
|
|
|
|
void i915_address_space_fini(struct i915_address_space *vm)
|
|
{
|
|
drm_mm_takedown(&vm->mm);
|
|
}
|
|
|
|
/**
|
|
* i915_vm_resv_release - Final struct i915_address_space destructor
|
|
* @kref: Pointer to the &i915_address_space.resv_ref member.
|
|
*
|
|
* This function is called when the last lock sharer no longer shares the
|
|
* &i915_address_space._resv lock, and also if we raced when
|
|
* destroying a vma by the vma destruction
|
|
*/
|
|
void i915_vm_resv_release(struct kref *kref)
|
|
{
|
|
struct i915_address_space *vm =
|
|
container_of(kref, typeof(*vm), resv_ref);
|
|
|
|
dma_resv_fini(&vm->_resv);
|
|
mutex_destroy(&vm->mutex);
|
|
|
|
kfree(vm);
|
|
}
|
|
|
|
static void __i915_vm_release(struct work_struct *work)
|
|
{
|
|
struct i915_address_space *vm =
|
|
container_of(work, struct i915_address_space, release_work);
|
|
|
|
__i915_vm_close(vm);
|
|
|
|
/* Synchronize async unbinds. */
|
|
i915_vma_resource_bind_dep_sync_all(vm);
|
|
|
|
vm->cleanup(vm);
|
|
i915_address_space_fini(vm);
|
|
|
|
i915_vm_resv_put(vm);
|
|
}
|
|
|
|
void i915_vm_release(struct kref *kref)
|
|
{
|
|
struct i915_address_space *vm =
|
|
container_of(kref, struct i915_address_space, ref);
|
|
|
|
GEM_BUG_ON(i915_is_ggtt(vm));
|
|
trace_i915_ppgtt_release(vm);
|
|
|
|
queue_work(vm->i915->wq, &vm->release_work);
|
|
}
|
|
|
|
void i915_address_space_init(struct i915_address_space *vm, int subclass)
|
|
{
|
|
kref_init(&vm->ref);
|
|
|
|
/*
|
|
* Special case for GGTT that has already done an early
|
|
* kref_init here.
|
|
*/
|
|
if (!kref_read(&vm->resv_ref))
|
|
kref_init(&vm->resv_ref);
|
|
|
|
vm->pending_unbind = RB_ROOT_CACHED;
|
|
INIT_WORK(&vm->release_work, __i915_vm_release);
|
|
|
|
/*
|
|
* The vm->mutex must be reclaim safe (for use in the shrinker).
|
|
* Do a dummy acquire now under fs_reclaim so that any allocation
|
|
* attempt holding the lock is immediately reported by lockdep.
|
|
*/
|
|
mutex_init(&vm->mutex);
|
|
lockdep_set_subclass(&vm->mutex, subclass);
|
|
|
|
if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
|
|
i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
|
|
} else {
|
|
/*
|
|
* CHV + BXT VTD workaround use stop_machine(),
|
|
* which is allowed to allocate memory. This means &vm->mutex
|
|
* is the outer lock, and in theory we can allocate memory inside
|
|
* it through stop_machine().
|
|
*
|
|
* Add the annotation for this, we use trylock in shrinker.
|
|
*/
|
|
mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
|
|
might_alloc(GFP_KERNEL);
|
|
mutex_release(&vm->mutex.dep_map, _THIS_IP_);
|
|
}
|
|
dma_resv_init(&vm->_resv);
|
|
|
|
GEM_BUG_ON(!vm->total);
|
|
drm_mm_init(&vm->mm, 0, vm->total);
|
|
|
|
memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
|
|
ARRAY_SIZE(vm->min_alignment));
|
|
|
|
if (HAS_64K_PAGES(vm->i915)) {
|
|
vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
|
|
vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
|
|
}
|
|
|
|
vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
|
|
|
|
INIT_LIST_HEAD(&vm->bound_list);
|
|
INIT_LIST_HEAD(&vm->unbound_list);
|
|
}
|
|
|
|
void *__px_vaddr(struct drm_i915_gem_object *p)
|
|
{
|
|
enum i915_map_type type;
|
|
|
|
GEM_BUG_ON(!i915_gem_object_has_pages(p));
|
|
return page_unpack_bits(p->mm.mapping, &type);
|
|
}
|
|
|
|
dma_addr_t __px_dma(struct drm_i915_gem_object *p)
|
|
{
|
|
GEM_BUG_ON(!i915_gem_object_has_pages(p));
|
|
return sg_dma_address(p->mm.pages->sgl);
|
|
}
|
|
|
|
struct page *__px_page(struct drm_i915_gem_object *p)
|
|
{
|
|
GEM_BUG_ON(!i915_gem_object_has_pages(p));
|
|
return sg_page(p->mm.pages->sgl);
|
|
}
|
|
|
|
void
|
|
fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
|
|
{
|
|
void *vaddr = __px_vaddr(p);
|
|
|
|
memset64(vaddr, val, count);
|
|
drm_clflush_virt_range(vaddr, PAGE_SIZE);
|
|
}
|
|
|
|
static void poison_scratch_page(struct drm_i915_gem_object *scratch)
|
|
{
|
|
void *vaddr = __px_vaddr(scratch);
|
|
u8 val;
|
|
|
|
val = 0;
|
|
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
val = POISON_FREE;
|
|
|
|
memset(vaddr, val, scratch->base.size);
|
|
drm_clflush_virt_range(vaddr, scratch->base.size);
|
|
}
|
|
|
|
int setup_scratch_page(struct i915_address_space *vm)
|
|
{
|
|
unsigned long size;
|
|
|
|
/*
|
|
* In order to utilize 64K pages for an object with a size < 2M, we will
|
|
* need to support a 64K scratch page, given that every 16th entry for a
|
|
* page-table operating in 64K mode must point to a properly aligned 64K
|
|
* region, including any PTEs which happen to point to scratch.
|
|
*
|
|
* This is only relevant for the 48b PPGTT where we support
|
|
* huge-gtt-pages, see also i915_vma_insert(). However, as we share the
|
|
* scratch (read-only) between all vm, we create one 64k scratch page
|
|
* for all.
|
|
*/
|
|
size = I915_GTT_PAGE_SIZE_4K;
|
|
if (i915_vm_is_4lvl(vm) &&
|
|
HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) &&
|
|
!HAS_64K_PAGES(vm->i915))
|
|
size = I915_GTT_PAGE_SIZE_64K;
|
|
|
|
do {
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = vm->alloc_scratch_dma(vm, size);
|
|
if (IS_ERR(obj))
|
|
goto skip;
|
|
|
|
if (map_pt_dma(vm, obj))
|
|
goto skip_obj;
|
|
|
|
/* We need a single contiguous page for our scratch */
|
|
if (obj->mm.page_sizes.sg < size)
|
|
goto skip_obj;
|
|
|
|
/* And it needs to be correspondingly aligned */
|
|
if (__px_dma(obj) & (size - 1))
|
|
goto skip_obj;
|
|
|
|
/*
|
|
* Use a non-zero scratch page for debugging.
|
|
*
|
|
* We want a value that should be reasonably obvious
|
|
* to spot in the error state, while also causing a GPU hang
|
|
* if executed. We prefer using a clear page in production, so
|
|
* should it ever be accidentally used, the effect should be
|
|
* fairly benign.
|
|
*/
|
|
poison_scratch_page(obj);
|
|
|
|
vm->scratch[0] = obj;
|
|
vm->scratch_order = get_order(size);
|
|
return 0;
|
|
|
|
skip_obj:
|
|
i915_gem_object_put(obj);
|
|
skip:
|
|
if (size == I915_GTT_PAGE_SIZE_4K)
|
|
return -ENOMEM;
|
|
|
|
size = I915_GTT_PAGE_SIZE_4K;
|
|
} while (1);
|
|
}
|
|
|
|
void free_scratch(struct i915_address_space *vm)
|
|
{
|
|
int i;
|
|
|
|
if (!vm->scratch[0])
|
|
return;
|
|
|
|
for (i = 0; i <= vm->top; i++)
|
|
i915_gem_object_put(vm->scratch[i]);
|
|
}
|
|
|
|
void gtt_write_workarounds(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
|
|
/*
|
|
* This function is for gtt related workarounds. This function is
|
|
* called on driver load and after a GPU reset, so you can place
|
|
* workarounds here even if they get overwritten by GPU reset.
|
|
*/
|
|
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
|
|
if (IS_BROADWELL(i915))
|
|
intel_uncore_write(uncore,
|
|
GEN8_L3_LRA_1_GPGPU,
|
|
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
|
|
else if (IS_CHERRYVIEW(i915))
|
|
intel_uncore_write(uncore,
|
|
GEN8_L3_LRA_1_GPGPU,
|
|
GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
|
|
else if (IS_GEN9_LP(i915))
|
|
intel_uncore_write(uncore,
|
|
GEN8_L3_LRA_1_GPGPU,
|
|
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
|
|
else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
|
|
intel_uncore_write(uncore,
|
|
GEN8_L3_LRA_1_GPGPU,
|
|
GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
|
|
|
|
/*
|
|
* To support 64K PTEs we need to first enable the use of the
|
|
* Intermediate-Page-Size(IPS) bit of the PDE field via some magical
|
|
* mmio, otherwise the page-walker will simply ignore the IPS bit. This
|
|
* shouldn't be needed after GEN10.
|
|
*
|
|
* 64K pages were first introduced from BDW+, although technically they
|
|
* only *work* from gen9+. For pre-BDW we instead have the option for
|
|
* 32K pages, but we don't currently have any support for it in our
|
|
* driver.
|
|
*/
|
|
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
|
|
GRAPHICS_VER(i915) <= 10)
|
|
intel_uncore_rmw(uncore,
|
|
GEN8_GAMW_ECO_DEV_RW_IA,
|
|
0,
|
|
GAMW_ECO_ENABLE_64K_IPS_FIELD);
|
|
|
|
if (IS_GRAPHICS_VER(i915, 8, 11)) {
|
|
bool can_use_gtt_cache = true;
|
|
|
|
/*
|
|
* According to the BSpec if we use 2M/1G pages then we also
|
|
* need to disable the GTT cache. At least on BDW we can see
|
|
* visual corruption when using 2M pages, and not disabling the
|
|
* GTT cache.
|
|
*/
|
|
if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
|
|
can_use_gtt_cache = false;
|
|
|
|
/* WaGttCachingOffByDefault */
|
|
intel_uncore_write(uncore,
|
|
HSW_GTT_CACHE_EN,
|
|
can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
|
|
gt_WARN_ON_ONCE(gt, can_use_gtt_cache &&
|
|
intel_uncore_read(uncore,
|
|
HSW_GTT_CACHE_EN) == 0);
|
|
}
|
|
}
|
|
|
|
static void xelpmp_setup_private_ppat(struct intel_uncore *uncore)
|
|
{
|
|
intel_uncore_write(uncore, XELPMP_PAT_INDEX(0),
|
|
MTL_PPAT_L4_0_WB);
|
|
intel_uncore_write(uncore, XELPMP_PAT_INDEX(1),
|
|
MTL_PPAT_L4_1_WT);
|
|
intel_uncore_write(uncore, XELPMP_PAT_INDEX(2),
|
|
MTL_PPAT_L4_3_UC);
|
|
intel_uncore_write(uncore, XELPMP_PAT_INDEX(3),
|
|
MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
|
|
intel_uncore_write(uncore, XELPMP_PAT_INDEX(4),
|
|
MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
|
|
|
|
/*
|
|
* Remaining PAT entries are left at the hardware-default
|
|
* fully-cached setting
|
|
*/
|
|
}
|
|
|
|
static void xelpg_setup_private_ppat(struct intel_gt *gt)
|
|
{
|
|
intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0),
|
|
MTL_PPAT_L4_0_WB);
|
|
intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1),
|
|
MTL_PPAT_L4_1_WT);
|
|
intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2),
|
|
MTL_PPAT_L4_3_UC);
|
|
intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3),
|
|
MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
|
|
intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4),
|
|
MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
|
|
|
|
/*
|
|
* Remaining PAT entries are left at the hardware-default
|
|
* fully-cached setting
|
|
*/
|
|
}
|
|
|
|
static void tgl_setup_private_ppat(struct intel_uncore *uncore)
|
|
{
|
|
/* TGL doesn't support LLC or AGE settings */
|
|
intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
|
|
intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
|
|
intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
|
|
intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
|
|
intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
|
|
intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
|
|
intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
|
|
intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
|
|
}
|
|
|
|
static void xehp_setup_private_ppat(struct intel_gt *gt)
|
|
{
|
|
enum forcewake_domains fw;
|
|
unsigned long flags;
|
|
|
|
fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg),
|
|
FW_REG_WRITE);
|
|
intel_uncore_forcewake_get(gt->uncore, fw);
|
|
|
|
intel_gt_mcr_lock(gt, &flags);
|
|
intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB);
|
|
intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC);
|
|
intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT);
|
|
intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC);
|
|
intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB);
|
|
intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB);
|
|
intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB);
|
|
intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB);
|
|
intel_gt_mcr_unlock(gt, flags);
|
|
|
|
intel_uncore_forcewake_put(gt->uncore, fw);
|
|
}
|
|
|
|
static void icl_setup_private_ppat(struct intel_uncore *uncore)
|
|
{
|
|
intel_uncore_write(uncore,
|
|
GEN10_PAT_INDEX(0),
|
|
GEN8_PPAT_WB | GEN8_PPAT_LLC);
|
|
intel_uncore_write(uncore,
|
|
GEN10_PAT_INDEX(1),
|
|
GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
|
|
intel_uncore_write(uncore,
|
|
GEN10_PAT_INDEX(2),
|
|
GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
|
|
intel_uncore_write(uncore,
|
|
GEN10_PAT_INDEX(3),
|
|
GEN8_PPAT_UC);
|
|
intel_uncore_write(uncore,
|
|
GEN10_PAT_INDEX(4),
|
|
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
|
|
intel_uncore_write(uncore,
|
|
GEN10_PAT_INDEX(5),
|
|
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
|
|
intel_uncore_write(uncore,
|
|
GEN10_PAT_INDEX(6),
|
|
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
|
|
intel_uncore_write(uncore,
|
|
GEN10_PAT_INDEX(7),
|
|
GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
}
|
|
|
|
/*
|
|
* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
|
|
* bits. When using advanced contexts each context stores its own PAT, but
|
|
* writing this data shouldn't be harmful even in those cases.
|
|
*/
|
|
static void bdw_setup_private_ppat(struct intel_uncore *uncore)
|
|
{
|
|
struct drm_i915_private *i915 = uncore->i915;
|
|
u64 pat;
|
|
|
|
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
|
|
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
|
|
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
|
|
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
|
|
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
|
|
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
|
|
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
|
|
/* for scanout with eLLC */
|
|
if (GRAPHICS_VER(i915) >= 9)
|
|
pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
|
|
else
|
|
pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
|
|
|
|
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
|
|
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
|
|
}
|
|
|
|
static void chv_setup_private_ppat(struct intel_uncore *uncore)
|
|
{
|
|
u64 pat;
|
|
|
|
/*
|
|
* Map WB on BDW to snooped on CHV.
|
|
*
|
|
* Only the snoop bit has meaning for CHV, the rest is
|
|
* ignored.
|
|
*
|
|
* The hardware will never snoop for certain types of accesses:
|
|
* - CPU GTT (GMADR->GGTT->no snoop->memory)
|
|
* - PPGTT page tables
|
|
* - some other special cycles
|
|
*
|
|
* As with BDW, we also need to consider the following for GT accesses:
|
|
* "For GGTT, there is NO pat_sel[2:0] from the entry,
|
|
* so RTL will always use the value corresponding to
|
|
* pat_sel = 000".
|
|
* Which means we must set the snoop bit in PAT entry 0
|
|
* in order to keep the global status page working.
|
|
*/
|
|
|
|
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(1, 0) |
|
|
GEN8_PPAT(2, 0) |
|
|
GEN8_PPAT(3, 0) |
|
|
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(7, CHV_PPAT_SNOOP);
|
|
|
|
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
|
|
intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
|
|
}
|
|
|
|
void setup_private_pat(struct intel_gt *gt)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
|
|
|
|
if (gt->type == GT_MEDIA) {
|
|
xelpmp_setup_private_ppat(gt->uncore);
|
|
return;
|
|
}
|
|
|
|
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
|
|
xelpg_setup_private_ppat(gt);
|
|
else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
|
|
xehp_setup_private_ppat(gt);
|
|
else if (GRAPHICS_VER(i915) >= 12)
|
|
tgl_setup_private_ppat(uncore);
|
|
else if (GRAPHICS_VER(i915) >= 11)
|
|
icl_setup_private_ppat(uncore);
|
|
else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
|
|
chv_setup_private_ppat(uncore);
|
|
else
|
|
bdw_setup_private_ppat(uncore);
|
|
}
|
|
|
|
struct i915_vma *
|
|
__vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
|
|
obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
|
|
|
|
vma = i915_vma_instance(obj, vm, NULL);
|
|
if (IS_ERR(vma)) {
|
|
i915_gem_object_put(obj);
|
|
return vma;
|
|
}
|
|
|
|
return vma;
|
|
}
|
|
|
|
struct i915_vma *
|
|
__vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
|
|
{
|
|
struct i915_vma *vma;
|
|
int err;
|
|
|
|
vma = __vm_create_scratch_for_read(vm, size);
|
|
if (IS_ERR(vma))
|
|
return vma;
|
|
|
|
err = i915_vma_pin(vma, 0, 0,
|
|
i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
|
|
if (err) {
|
|
i915_vma_put(vma);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return vma;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftests/mock_gtt.c"
|
|
#endif
|