902 lines
24 KiB
C
902 lines
24 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2019 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/string_helpers.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_perf_types.h"
|
|
#include "intel_engine_regs.h"
|
|
#include "intel_gt_regs.h"
|
|
#include "intel_sseu.h"
|
|
|
|
void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
|
|
u8 max_subslices, u8 max_eus_per_subslice)
|
|
{
|
|
sseu->max_slices = max_slices;
|
|
sseu->max_subslices = max_subslices;
|
|
sseu->max_eus_per_subslice = max_eus_per_subslice;
|
|
}
|
|
|
|
unsigned int
|
|
intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
|
|
{
|
|
unsigned int i, total = 0;
|
|
|
|
if (sseu->has_xehp_dss)
|
|
return bitmap_weight(sseu->subslice_mask.xehp,
|
|
XEHP_BITMAP_BITS(sseu->subslice_mask));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
|
|
total += hweight8(sseu->subslice_mask.hsw[i]);
|
|
|
|
return total;
|
|
}
|
|
|
|
unsigned int
|
|
intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
|
|
{
|
|
WARN_ON(sseu->has_xehp_dss);
|
|
if (WARN_ON(slice >= sseu->max_slices))
|
|
return 0;
|
|
|
|
return sseu->subslice_mask.hsw[slice];
|
|
}
|
|
|
|
static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
|
|
int subslice)
|
|
{
|
|
if (sseu->has_xehp_dss) {
|
|
WARN_ON(slice > 0);
|
|
return sseu->eu_mask.xehp[subslice];
|
|
} else {
|
|
return sseu->eu_mask.hsw[slice][subslice];
|
|
}
|
|
}
|
|
|
|
static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
|
|
u16 eu_mask)
|
|
{
|
|
GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
|
|
if (sseu->has_xehp_dss) {
|
|
GEM_WARN_ON(slice > 0);
|
|
sseu->eu_mask.xehp[subslice] = eu_mask;
|
|
} else {
|
|
sseu->eu_mask.hsw[slice][subslice] = eu_mask;
|
|
}
|
|
}
|
|
|
|
static u16 compute_eu_total(const struct sseu_dev_info *sseu)
|
|
{
|
|
int s, ss, total = 0;
|
|
|
|
for (s = 0; s < sseu->max_slices; s++)
|
|
for (ss = 0; ss < sseu->max_subslices; ss++)
|
|
if (sseu->has_xehp_dss)
|
|
total += hweight16(sseu->eu_mask.xehp[ss]);
|
|
else
|
|
total += hweight16(sseu->eu_mask.hsw[s][ss]);
|
|
|
|
return total;
|
|
}
|
|
|
|
/**
|
|
* intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
|
|
* @to: Pointer to userspace buffer to copy to
|
|
* @sseu: SSEU structure containing EU mask to copy
|
|
*
|
|
* Copies the EU mask to a userspace buffer in the format expected by
|
|
* the query ioctl's topology queries.
|
|
*
|
|
* Returns the result of the copy_to_user() operation.
|
|
*/
|
|
int intel_sseu_copy_eumask_to_user(void __user *to,
|
|
const struct sseu_dev_info *sseu)
|
|
{
|
|
u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
|
|
int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
|
|
int len = sseu->max_slices * sseu->max_subslices * eu_stride;
|
|
int s, ss, i;
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
int uapi_offset =
|
|
s * sseu->max_subslices * eu_stride +
|
|
ss * eu_stride;
|
|
u16 mask = sseu_get_eus(sseu, s, ss);
|
|
|
|
for (i = 0; i < eu_stride; i++)
|
|
eu_mask[uapi_offset + i] =
|
|
(mask >> (BITS_PER_BYTE * i)) & 0xff;
|
|
}
|
|
}
|
|
|
|
return copy_to_user(to, eu_mask, len);
|
|
}
|
|
|
|
/**
|
|
* intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
|
|
* @to: Pointer to userspace buffer to copy to
|
|
* @sseu: SSEU structure containing subslice mask to copy
|
|
*
|
|
* Copies the subslice mask to a userspace buffer in the format expected by
|
|
* the query ioctl's topology queries.
|
|
*
|
|
* Returns the result of the copy_to_user() operation.
|
|
*/
|
|
int intel_sseu_copy_ssmask_to_user(void __user *to,
|
|
const struct sseu_dev_info *sseu)
|
|
{
|
|
u8 ss_mask[GEN_SS_MASK_SIZE] = {};
|
|
int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
|
|
int len = sseu->max_slices * ss_stride;
|
|
int s, ss, i;
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
i = s * ss_stride * BITS_PER_BYTE + ss;
|
|
|
|
if (!intel_sseu_has_subslice(sseu, s, ss))
|
|
continue;
|
|
|
|
ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
|
|
}
|
|
}
|
|
|
|
return copy_to_user(to, ss_mask, len);
|
|
}
|
|
|
|
static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
|
|
u32 ss_en, u16 eu_en)
|
|
{
|
|
u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
|
|
int ss;
|
|
|
|
sseu->slice_mask |= BIT(0);
|
|
sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++)
|
|
if (intel_sseu_has_subslice(sseu, 0, ss))
|
|
sseu_set_eus(sseu, 0, ss, eu_en);
|
|
|
|
sseu->eu_per_subslice = hweight16(eu_en);
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
}
|
|
|
|
static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
|
|
u16 eu_en)
|
|
{
|
|
int ss;
|
|
|
|
sseu->slice_mask |= BIT(0);
|
|
|
|
bitmap_or(sseu->subslice_mask.xehp,
|
|
sseu->compute_subslice_mask.xehp,
|
|
sseu->geometry_subslice_mask.xehp,
|
|
XEHP_BITMAP_BITS(sseu->subslice_mask));
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++)
|
|
if (intel_sseu_has_subslice(sseu, 0, ss))
|
|
sseu_set_eus(sseu, 0, ss, eu_en);
|
|
|
|
sseu->eu_per_subslice = hweight16(eu_en);
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
}
|
|
|
|
static void
|
|
xehp_load_dss_mask(struct intel_uncore *uncore,
|
|
intel_sseu_ss_mask_t *ssmask,
|
|
int numregs,
|
|
...)
|
|
{
|
|
va_list argp;
|
|
u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
|
|
int i;
|
|
|
|
if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
|
|
numregs = I915_MAX_SS_FUSE_REGS;
|
|
|
|
va_start(argp, numregs);
|
|
for (i = 0; i < numregs; i++)
|
|
fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
|
|
va_end(argp);
|
|
|
|
bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
|
|
}
|
|
|
|
static void xehp_sseu_info_init(struct intel_gt *gt)
|
|
{
|
|
struct sseu_dev_info *sseu = >->info.sseu;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
u16 eu_en = 0;
|
|
u8 eu_en_fuse;
|
|
int num_compute_regs, num_geometry_regs;
|
|
int eu;
|
|
|
|
if (IS_PONTEVECCHIO(gt->i915)) {
|
|
num_geometry_regs = 0;
|
|
num_compute_regs = 2;
|
|
} else {
|
|
num_geometry_regs = 1;
|
|
num_compute_regs = 1;
|
|
}
|
|
|
|
/*
|
|
* The concept of slice has been removed in Xe_HP. To be compatible
|
|
* with prior generations, assume a single slice across the entire
|
|
* device. Then calculate out the DSS for each workload type within
|
|
* that software slice.
|
|
*/
|
|
intel_sseu_set_info(sseu, 1,
|
|
32 * max(num_geometry_regs, num_compute_regs),
|
|
HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
|
|
sseu->has_xehp_dss = 1;
|
|
|
|
xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
|
|
num_geometry_regs,
|
|
GEN12_GT_GEOMETRY_DSS_ENABLE);
|
|
xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
|
|
num_compute_regs,
|
|
GEN12_GT_COMPUTE_DSS_ENABLE,
|
|
XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
|
|
|
|
eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
|
|
|
|
if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
|
|
eu_en = eu_en_fuse;
|
|
else
|
|
for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
|
|
if (eu_en_fuse & BIT(eu))
|
|
eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
|
|
|
|
xehp_compute_sseu_info(sseu, eu_en);
|
|
}
|
|
|
|
static void gen12_sseu_info_init(struct intel_gt *gt)
|
|
{
|
|
struct sseu_dev_info *sseu = >->info.sseu;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
u32 g_dss_en;
|
|
u16 eu_en = 0;
|
|
u8 eu_en_fuse;
|
|
u8 s_en;
|
|
int eu;
|
|
|
|
/*
|
|
* Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
|
|
* Instead of splitting these, provide userspace with an array
|
|
* of DSS to more closely represent the hardware resource.
|
|
*/
|
|
intel_sseu_set_info(sseu, 1, 6, 16);
|
|
|
|
/*
|
|
* Although gen12 architecture supported multiple slices, TGL, RKL,
|
|
* DG1, and ADL only had a single slice.
|
|
*/
|
|
s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
|
|
GEN11_GT_S_ENA_MASK;
|
|
drm_WARN_ON(>->i915->drm, s_en != 0x1);
|
|
|
|
g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
|
|
|
|
/* one bit per pair of EUs */
|
|
eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
|
|
GEN11_EU_DIS_MASK);
|
|
|
|
for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
|
|
if (eu_en_fuse & BIT(eu))
|
|
eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
|
|
|
|
gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
|
|
|
|
/* TGL only supports slice-level power gating */
|
|
sseu->has_slice_pg = 1;
|
|
}
|
|
|
|
static void gen11_sseu_info_init(struct intel_gt *gt)
|
|
{
|
|
struct sseu_dev_info *sseu = >->info.sseu;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
u32 ss_en;
|
|
u8 eu_en;
|
|
u8 s_en;
|
|
|
|
if (IS_JSL_EHL(gt->i915))
|
|
intel_sseu_set_info(sseu, 1, 4, 8);
|
|
else
|
|
intel_sseu_set_info(sseu, 1, 8, 8);
|
|
|
|
/*
|
|
* Although gen11 architecture supported multiple slices, ICL and
|
|
* EHL/JSL only had a single slice in practice.
|
|
*/
|
|
s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
|
|
GEN11_GT_S_ENA_MASK;
|
|
drm_WARN_ON(>->i915->drm, s_en != 0x1);
|
|
|
|
ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
|
|
|
|
eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
|
|
GEN11_EU_DIS_MASK);
|
|
|
|
gen11_compute_sseu_info(sseu, ss_en, eu_en);
|
|
|
|
/* ICL has no power gating restrictions. */
|
|
sseu->has_slice_pg = 1;
|
|
sseu->has_subslice_pg = 1;
|
|
sseu->has_eu_pg = 1;
|
|
}
|
|
|
|
static void cherryview_sseu_info_init(struct intel_gt *gt)
|
|
{
|
|
struct sseu_dev_info *sseu = >->info.sseu;
|
|
u32 fuse;
|
|
|
|
fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
|
|
|
|
sseu->slice_mask = BIT(0);
|
|
intel_sseu_set_info(sseu, 1, 2, 8);
|
|
|
|
if (!(fuse & CHV_FGT_DISABLE_SS0)) {
|
|
u8 disabled_mask =
|
|
((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
|
|
CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
|
|
(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
|
|
CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
|
|
|
|
sseu->subslice_mask.hsw[0] |= BIT(0);
|
|
sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
|
|
}
|
|
|
|
if (!(fuse & CHV_FGT_DISABLE_SS1)) {
|
|
u8 disabled_mask =
|
|
((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
|
|
CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
|
|
(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
|
|
CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
|
|
|
|
sseu->subslice_mask.hsw[0] |= BIT(1);
|
|
sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
|
|
}
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/*
|
|
* CHV expected to always have a uniform distribution of EU
|
|
* across subslices.
|
|
*/
|
|
sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
|
|
sseu->eu_total /
|
|
intel_sseu_subslice_total(sseu) :
|
|
0;
|
|
/*
|
|
* CHV supports subslice power gating on devices with more than
|
|
* one subslice, and supports EU power gating on devices with
|
|
* more than one EU pair per subslice.
|
|
*/
|
|
sseu->has_slice_pg = 0;
|
|
sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
|
|
sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
|
|
}
|
|
|
|
static void gen9_sseu_info_init(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct sseu_dev_info *sseu = >->info.sseu;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
u32 fuse2, eu_disable, subslice_mask;
|
|
const u8 eu_mask = 0xff;
|
|
int s, ss;
|
|
|
|
fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
|
|
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
|
|
|
|
/* BXT has a single slice and at most 3 subslices. */
|
|
intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
|
|
IS_GEN9_LP(i915) ? 3 : 4, 8);
|
|
|
|
/*
|
|
* The subslice disable field is global, i.e. it applies
|
|
* to each of the enabled slices.
|
|
*/
|
|
subslice_mask = (1 << sseu->max_subslices) - 1;
|
|
subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
|
|
GEN9_F2_SS_DIS_SHIFT);
|
|
|
|
/*
|
|
* Iterate through enabled slices and subslices to
|
|
* count the total enabled EU.
|
|
*/
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
if (!(sseu->slice_mask & BIT(s)))
|
|
/* skip disabled slice */
|
|
continue;
|
|
|
|
sseu->subslice_mask.hsw[s] = subslice_mask;
|
|
|
|
eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
int eu_per_ss;
|
|
u8 eu_disabled_mask;
|
|
|
|
if (!intel_sseu_has_subslice(sseu, s, ss))
|
|
/* skip disabled subslice */
|
|
continue;
|
|
|
|
eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
|
|
|
|
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
|
|
|
|
eu_per_ss = sseu->max_eus_per_subslice -
|
|
hweight8(eu_disabled_mask);
|
|
|
|
/*
|
|
* Record which subslice(s) has(have) 7 EUs. we
|
|
* can tune the hash used to spread work among
|
|
* subslices if they are unbalanced.
|
|
*/
|
|
if (eu_per_ss == 7)
|
|
sseu->subslice_7eu[s] |= BIT(ss);
|
|
}
|
|
}
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/*
|
|
* SKL is expected to always have a uniform distribution
|
|
* of EU across subslices with the exception that any one
|
|
* EU in any one subslice may be fused off for die
|
|
* recovery. BXT is expected to be perfectly uniform in EU
|
|
* distribution.
|
|
*/
|
|
sseu->eu_per_subslice =
|
|
intel_sseu_subslice_total(sseu) ?
|
|
DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
|
|
0;
|
|
|
|
/*
|
|
* SKL+ supports slice power gating on devices with more than
|
|
* one slice, and supports EU power gating on devices with
|
|
* more than one EU pair per subslice. BXT+ supports subslice
|
|
* power gating on devices with more than one subslice, and
|
|
* supports EU power gating on devices with more than one EU
|
|
* pair per subslice.
|
|
*/
|
|
sseu->has_slice_pg =
|
|
!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
|
|
sseu->has_subslice_pg =
|
|
IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
|
|
sseu->has_eu_pg = sseu->eu_per_subslice > 2;
|
|
|
|
if (IS_GEN9_LP(i915)) {
|
|
#define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss)))
|
|
RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
|
|
|
|
sseu->min_eu_in_pool = 0;
|
|
if (HAS_POOLED_EU(i915)) {
|
|
if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
|
|
sseu->min_eu_in_pool = 3;
|
|
else if (IS_SS_DISABLED(1))
|
|
sseu->min_eu_in_pool = 6;
|
|
else
|
|
sseu->min_eu_in_pool = 9;
|
|
}
|
|
#undef IS_SS_DISABLED
|
|
}
|
|
}
|
|
|
|
static void bdw_sseu_info_init(struct intel_gt *gt)
|
|
{
|
|
struct sseu_dev_info *sseu = >->info.sseu;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
int s, ss;
|
|
u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
|
|
u32 eu_disable0, eu_disable1, eu_disable2;
|
|
|
|
fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
|
|
sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
|
|
intel_sseu_set_info(sseu, 3, 3, 8);
|
|
|
|
/*
|
|
* The subslice disable field is global, i.e. it applies
|
|
* to each of the enabled slices.
|
|
*/
|
|
subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
|
|
subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
|
|
GEN8_F2_SS_DIS_SHIFT);
|
|
eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
|
|
eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
|
|
eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
|
|
eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
|
|
eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
|
|
((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
|
|
(32 - GEN8_EU_DIS0_S1_SHIFT));
|
|
eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
|
|
((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
|
|
(32 - GEN8_EU_DIS1_S2_SHIFT));
|
|
|
|
/*
|
|
* Iterate through enabled slices and subslices to
|
|
* count the total enabled EU.
|
|
*/
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
if (!(sseu->slice_mask & BIT(s)))
|
|
/* skip disabled slice */
|
|
continue;
|
|
|
|
sseu->subslice_mask.hsw[s] = subslice_mask;
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
u8 eu_disabled_mask;
|
|
u32 n_disabled;
|
|
|
|
if (!intel_sseu_has_subslice(sseu, s, ss))
|
|
/* skip disabled subslice */
|
|
continue;
|
|
|
|
eu_disabled_mask =
|
|
eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
|
|
|
|
sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
|
|
|
|
n_disabled = hweight8(eu_disabled_mask);
|
|
|
|
/*
|
|
* Record which subslices have 7 EUs.
|
|
*/
|
|
if (sseu->max_eus_per_subslice - n_disabled == 7)
|
|
sseu->subslice_7eu[s] |= 1 << ss;
|
|
}
|
|
}
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/*
|
|
* BDW is expected to always have a uniform distribution of EU across
|
|
* subslices with the exception that any one EU in any one subslice may
|
|
* be fused off for die recovery.
|
|
*/
|
|
sseu->eu_per_subslice =
|
|
intel_sseu_subslice_total(sseu) ?
|
|
DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
|
|
0;
|
|
|
|
/*
|
|
* BDW supports slice power gating on devices with more than
|
|
* one slice.
|
|
*/
|
|
sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
|
|
sseu->has_subslice_pg = 0;
|
|
sseu->has_eu_pg = 0;
|
|
}
|
|
|
|
static void hsw_sseu_info_init(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct sseu_dev_info *sseu = >->info.sseu;
|
|
u32 fuse1;
|
|
u8 subslice_mask = 0;
|
|
int s, ss;
|
|
|
|
/*
|
|
* There isn't a register to tell us how many slices/subslices. We
|
|
* work off the PCI-ids here.
|
|
*/
|
|
switch (INTEL_INFO(i915)->gt) {
|
|
default:
|
|
MISSING_CASE(INTEL_INFO(i915)->gt);
|
|
fallthrough;
|
|
case 1:
|
|
sseu->slice_mask = BIT(0);
|
|
subslice_mask = BIT(0);
|
|
break;
|
|
case 2:
|
|
sseu->slice_mask = BIT(0);
|
|
subslice_mask = BIT(0) | BIT(1);
|
|
break;
|
|
case 3:
|
|
sseu->slice_mask = BIT(0) | BIT(1);
|
|
subslice_mask = BIT(0) | BIT(1);
|
|
break;
|
|
}
|
|
|
|
fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
|
|
switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
|
|
default:
|
|
MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
|
|
fallthrough;
|
|
case HSW_F1_EU_DIS_10EUS:
|
|
sseu->eu_per_subslice = 10;
|
|
break;
|
|
case HSW_F1_EU_DIS_8EUS:
|
|
sseu->eu_per_subslice = 8;
|
|
break;
|
|
case HSW_F1_EU_DIS_6EUS:
|
|
sseu->eu_per_subslice = 6;
|
|
break;
|
|
}
|
|
|
|
intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
|
|
hweight8(subslice_mask),
|
|
sseu->eu_per_subslice);
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
sseu->subslice_mask.hsw[s] = subslice_mask;
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
sseu_set_eus(sseu, s, ss,
|
|
(1UL << sseu->eu_per_subslice) - 1);
|
|
}
|
|
}
|
|
|
|
sseu->eu_total = compute_eu_total(sseu);
|
|
|
|
/* No powergating for you. */
|
|
sseu->has_slice_pg = 0;
|
|
sseu->has_subslice_pg = 0;
|
|
sseu->has_eu_pg = 0;
|
|
}
|
|
|
|
void intel_sseu_info_init(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
|
|
xehp_sseu_info_init(gt);
|
|
else if (GRAPHICS_VER(i915) >= 12)
|
|
gen12_sseu_info_init(gt);
|
|
else if (GRAPHICS_VER(i915) >= 11)
|
|
gen11_sseu_info_init(gt);
|
|
else if (GRAPHICS_VER(i915) >= 9)
|
|
gen9_sseu_info_init(gt);
|
|
else if (IS_BROADWELL(i915))
|
|
bdw_sseu_info_init(gt);
|
|
else if (IS_CHERRYVIEW(i915))
|
|
cherryview_sseu_info_init(gt);
|
|
else if (IS_HASWELL(i915))
|
|
hsw_sseu_info_init(gt);
|
|
}
|
|
|
|
u32 intel_sseu_make_rpcs(struct intel_gt *gt,
|
|
const struct intel_sseu *req_sseu)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
const struct sseu_dev_info *sseu = >->info.sseu;
|
|
bool subslice_pg = sseu->has_subslice_pg;
|
|
u8 slices, subslices;
|
|
u32 rpcs = 0;
|
|
|
|
/*
|
|
* No explicit RPCS request is needed to ensure full
|
|
* slice/subslice/EU enablement prior to Gen9.
|
|
*/
|
|
if (GRAPHICS_VER(i915) < 9)
|
|
return 0;
|
|
|
|
/*
|
|
* If i915/perf is active, we want a stable powergating configuration
|
|
* on the system. Use the configuration pinned by i915/perf.
|
|
*/
|
|
if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
|
|
req_sseu = >->perf.sseu;
|
|
|
|
slices = hweight8(req_sseu->slice_mask);
|
|
subslices = hweight8(req_sseu->subslice_mask);
|
|
|
|
/*
|
|
* Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
|
|
* wide and Icelake has up to eight subslices, specfial programming is
|
|
* needed in order to correctly enable all subslices.
|
|
*
|
|
* According to documentation software must consider the configuration
|
|
* as 2x4x8 and hardware will translate this to 1x8x8.
|
|
*
|
|
* Furthemore, even though SScount is three bits, maximum documented
|
|
* value for it is four. From this some rules/restrictions follow:
|
|
*
|
|
* 1.
|
|
* If enabled subslice count is greater than four, two whole slices must
|
|
* be enabled instead.
|
|
*
|
|
* 2.
|
|
* When more than one slice is enabled, hardware ignores the subslice
|
|
* count altogether.
|
|
*
|
|
* From these restrictions it follows that it is not possible to enable
|
|
* a count of subslices between the SScount maximum of four restriction,
|
|
* and the maximum available number on a particular SKU. Either all
|
|
* subslices are enabled, or a count between one and four on the first
|
|
* slice.
|
|
*/
|
|
if (GRAPHICS_VER(i915) == 11 &&
|
|
slices == 1 &&
|
|
subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
|
|
GEM_BUG_ON(subslices & 1);
|
|
|
|
subslice_pg = false;
|
|
slices *= 2;
|
|
}
|
|
|
|
/*
|
|
* Starting in Gen9, render power gating can leave
|
|
* slice/subslice/EU in a partially enabled state. We
|
|
* must make an explicit request through RPCS for full
|
|
* enablement.
|
|
*/
|
|
if (sseu->has_slice_pg) {
|
|
u32 mask, val = slices;
|
|
|
|
if (GRAPHICS_VER(i915) >= 11) {
|
|
mask = GEN11_RPCS_S_CNT_MASK;
|
|
val <<= GEN11_RPCS_S_CNT_SHIFT;
|
|
} else {
|
|
mask = GEN8_RPCS_S_CNT_MASK;
|
|
val <<= GEN8_RPCS_S_CNT_SHIFT;
|
|
}
|
|
|
|
GEM_BUG_ON(val & ~mask);
|
|
val &= mask;
|
|
|
|
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
|
|
}
|
|
|
|
if (subslice_pg) {
|
|
u32 val = subslices;
|
|
|
|
val <<= GEN8_RPCS_SS_CNT_SHIFT;
|
|
|
|
GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
|
|
val &= GEN8_RPCS_SS_CNT_MASK;
|
|
|
|
rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
|
|
}
|
|
|
|
if (sseu->has_eu_pg) {
|
|
u32 val;
|
|
|
|
val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
|
|
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
|
|
val &= GEN8_RPCS_EU_MIN_MASK;
|
|
|
|
rpcs |= val;
|
|
|
|
val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
|
|
GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
|
|
val &= GEN8_RPCS_EU_MAX_MASK;
|
|
|
|
rpcs |= val;
|
|
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
}
|
|
|
|
return rpcs;
|
|
}
|
|
|
|
void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
|
|
{
|
|
int s;
|
|
|
|
if (sseu->has_xehp_dss) {
|
|
drm_printf(p, "subslice total: %u\n",
|
|
intel_sseu_subslice_total(sseu));
|
|
drm_printf(p, "geometry dss mask=%*pb\n",
|
|
XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
|
|
sseu->geometry_subslice_mask.xehp);
|
|
drm_printf(p, "compute dss mask=%*pb\n",
|
|
XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
|
|
sseu->compute_subslice_mask.xehp);
|
|
} else {
|
|
drm_printf(p, "slice total: %u, mask=%04x\n",
|
|
hweight8(sseu->slice_mask), sseu->slice_mask);
|
|
drm_printf(p, "subslice total: %u\n",
|
|
intel_sseu_subslice_total(sseu));
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
u8 ss_mask = sseu->subslice_mask.hsw[s];
|
|
|
|
drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
|
|
s, hweight8(ss_mask), ss_mask);
|
|
}
|
|
}
|
|
|
|
drm_printf(p, "EU total: %u\n", sseu->eu_total);
|
|
drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
|
|
drm_printf(p, "has slice power gating: %s\n",
|
|
str_yes_no(sseu->has_slice_pg));
|
|
drm_printf(p, "has subslice power gating: %s\n",
|
|
str_yes_no(sseu->has_subslice_pg));
|
|
drm_printf(p, "has EU power gating: %s\n",
|
|
str_yes_no(sseu->has_eu_pg));
|
|
}
|
|
|
|
static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
|
|
struct drm_printer *p)
|
|
{
|
|
int s, ss;
|
|
|
|
for (s = 0; s < sseu->max_slices; s++) {
|
|
u8 ss_mask = sseu->subslice_mask.hsw[s];
|
|
|
|
drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
|
|
s, hweight8(ss_mask), ss_mask);
|
|
|
|
for (ss = 0; ss < sseu->max_subslices; ss++) {
|
|
u16 enabled_eus = sseu_get_eus(sseu, s, ss);
|
|
|
|
drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
|
|
ss, hweight16(enabled_eus), enabled_eus);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
|
|
struct drm_printer *p)
|
|
{
|
|
int dss;
|
|
|
|
for (dss = 0; dss < sseu->max_subslices; dss++) {
|
|
u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
|
|
|
|
drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
|
|
str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
|
|
str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
|
|
hweight16(enabled_eus), enabled_eus);
|
|
}
|
|
}
|
|
|
|
void intel_sseu_print_topology(struct drm_i915_private *i915,
|
|
const struct sseu_dev_info *sseu,
|
|
struct drm_printer *p)
|
|
{
|
|
if (sseu->max_slices == 0) {
|
|
drm_printf(p, "Unavailable\n");
|
|
} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
|
|
sseu_print_xehp_topology(sseu, p);
|
|
} else {
|
|
sseu_print_hsw_topology(sseu, p);
|
|
}
|
|
}
|
|
|
|
void intel_sseu_print_ss_info(const char *type,
|
|
const struct sseu_dev_info *sseu,
|
|
struct seq_file *m)
|
|
{
|
|
int s;
|
|
|
|
if (sseu->has_xehp_dss) {
|
|
seq_printf(m, " %s Geometry DSS: %u\n", type,
|
|
bitmap_weight(sseu->geometry_subslice_mask.xehp,
|
|
XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
|
|
seq_printf(m, " %s Compute DSS: %u\n", type,
|
|
bitmap_weight(sseu->compute_subslice_mask.xehp,
|
|
XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
|
|
} else {
|
|
for (s = 0; s < fls(sseu->slice_mask); s++)
|
|
seq_printf(m, " %s Slice%i subslices: %u\n", type,
|
|
s, hweight8(sseu->subslice_mask.hsw[s]));
|
|
}
|
|
}
|
|
|
|
u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
|
|
int dss_per_slice)
|
|
{
|
|
intel_sseu_ss_mask_t per_slice_mask = {};
|
|
unsigned long slice_mask = 0;
|
|
int i;
|
|
|
|
WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
|
|
8 * sizeof(slice_mask));
|
|
|
|
bitmap_fill(per_slice_mask.xehp, dss_per_slice);
|
|
for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
|
|
if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
|
|
slice_mask |= BIT(i);
|
|
|
|
bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
|
|
XEHP_BITMAP_BITS(dss_mask));
|
|
}
|
|
|
|
return slice_mask;
|
|
}
|