linux-zen-desktop/drivers/gpu/drm/kmb/kmb_dsi.c

1567 lines
45 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2019-2020 Intel Corporation
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/mfd/syscon.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_bridge_connector.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_simple_kms_helper.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "kmb_dsi.h"
#include "kmb_regs.h"
static struct mipi_dsi_host *dsi_host;
static struct mipi_dsi_device *dsi_device;
static struct drm_bridge *adv_bridge;
/* Default setting is 1080p, 4 lanes */
#define IMG_HEIGHT_LINES 1080
#define IMG_WIDTH_PX 1920
#define MIPI_TX_ACTIVE_LANES 4
static struct mipi_tx_frame_section_cfg mipi_tx_frame0_sect_cfg = {
.width_pixels = IMG_WIDTH_PX,
.height_lines = IMG_HEIGHT_LINES,
.data_type = DSI_LP_DT_PPS_RGB888_24B,
.data_mode = MIPI_DATA_MODE1,
.dma_packed = 0
};
static struct mipi_tx_frame_cfg mipitx_frame0_cfg = {
.sections[0] = &mipi_tx_frame0_sect_cfg,
.sections[1] = NULL,
.sections[2] = NULL,
.sections[3] = NULL,
.vsync_width = 5,
.v_backporch = 36,
.v_frontporch = 4,
.hsync_width = 44,
.h_backporch = 148,
.h_frontporch = 88
};
static const struct mipi_tx_dsi_cfg mipitx_dsi_cfg = {
.hfp_blank_en = 0,
.eotp_en = 0,
.lpm_last_vfp_line = 0,
.lpm_first_vsa_line = 0,
.sync_pulse_eventn = DSI_VIDEO_MODE_NO_BURST_EVENT,
.hfp_blanking = SEND_BLANK_PACKET,
.hbp_blanking = SEND_BLANK_PACKET,
.hsa_blanking = SEND_BLANK_PACKET,
.v_blanking = SEND_BLANK_PACKET,
};
static struct mipi_ctrl_cfg mipi_tx_init_cfg = {
.active_lanes = MIPI_TX_ACTIVE_LANES,
.lane_rate_mbps = MIPI_TX_LANE_DATA_RATE_MBPS,
.ref_clk_khz = MIPI_TX_REF_CLK_KHZ,
.cfg_clk_khz = MIPI_TX_CFG_CLK_KHZ,
.tx_ctrl_cfg = {
.frames[0] = &mipitx_frame0_cfg,
.frames[1] = NULL,
.frames[2] = NULL,
.frames[3] = NULL,
.tx_dsi_cfg = &mipitx_dsi_cfg,
.line_sync_pkt_en = 0,
.line_counter_active = 0,
.frame_counter_active = 0,
.tx_always_use_hact = 1,
.tx_hact_wait_stop = 1,
}
};
struct mipi_hs_freq_range_cfg {
u16 default_bit_rate_mbps;
u8 hsfreqrange_code;
};
struct vco_params {
u32 freq;
u32 range;
u32 divider;
};
static const struct vco_params vco_table[] = {
{52, 0x3f, 8},
{80, 0x39, 8},
{105, 0x2f, 4},
{160, 0x29, 4},
{210, 0x1f, 2},
{320, 0x19, 2},
{420, 0x0f, 1},
{630, 0x09, 1},
{1100, 0x03, 1},
{0xffff, 0x01, 1},
};
static const struct mipi_hs_freq_range_cfg
mipi_hs_freq_range[MIPI_DPHY_DEFAULT_BIT_RATES] = {
{.default_bit_rate_mbps = 80, .hsfreqrange_code = 0x00},
{.default_bit_rate_mbps = 90, .hsfreqrange_code = 0x10},
{.default_bit_rate_mbps = 100, .hsfreqrange_code = 0x20},
{.default_bit_rate_mbps = 110, .hsfreqrange_code = 0x30},
{.default_bit_rate_mbps = 120, .hsfreqrange_code = 0x01},
{.default_bit_rate_mbps = 130, .hsfreqrange_code = 0x11},
{.default_bit_rate_mbps = 140, .hsfreqrange_code = 0x21},
{.default_bit_rate_mbps = 150, .hsfreqrange_code = 0x31},
{.default_bit_rate_mbps = 160, .hsfreqrange_code = 0x02},
{.default_bit_rate_mbps = 170, .hsfreqrange_code = 0x12},
{.default_bit_rate_mbps = 180, .hsfreqrange_code = 0x22},
{.default_bit_rate_mbps = 190, .hsfreqrange_code = 0x32},
{.default_bit_rate_mbps = 205, .hsfreqrange_code = 0x03},
{.default_bit_rate_mbps = 220, .hsfreqrange_code = 0x13},
{.default_bit_rate_mbps = 235, .hsfreqrange_code = 0x23},
{.default_bit_rate_mbps = 250, .hsfreqrange_code = 0x33},
{.default_bit_rate_mbps = 275, .hsfreqrange_code = 0x04},
{.default_bit_rate_mbps = 300, .hsfreqrange_code = 0x14},
{.default_bit_rate_mbps = 325, .hsfreqrange_code = 0x25},
{.default_bit_rate_mbps = 350, .hsfreqrange_code = 0x35},
{.default_bit_rate_mbps = 400, .hsfreqrange_code = 0x05},
{.default_bit_rate_mbps = 450, .hsfreqrange_code = 0x16},
{.default_bit_rate_mbps = 500, .hsfreqrange_code = 0x26},
{.default_bit_rate_mbps = 550, .hsfreqrange_code = 0x37},
{.default_bit_rate_mbps = 600, .hsfreqrange_code = 0x07},
{.default_bit_rate_mbps = 650, .hsfreqrange_code = 0x18},
{.default_bit_rate_mbps = 700, .hsfreqrange_code = 0x28},
{.default_bit_rate_mbps = 750, .hsfreqrange_code = 0x39},
{.default_bit_rate_mbps = 800, .hsfreqrange_code = 0x09},
{.default_bit_rate_mbps = 850, .hsfreqrange_code = 0x19},
{.default_bit_rate_mbps = 900, .hsfreqrange_code = 0x29},
{.default_bit_rate_mbps = 1000, .hsfreqrange_code = 0x0A},
{.default_bit_rate_mbps = 1050, .hsfreqrange_code = 0x1A},
{.default_bit_rate_mbps = 1100, .hsfreqrange_code = 0x2A},
{.default_bit_rate_mbps = 1150, .hsfreqrange_code = 0x3B},
{.default_bit_rate_mbps = 1200, .hsfreqrange_code = 0x0B},
{.default_bit_rate_mbps = 1250, .hsfreqrange_code = 0x1B},
{.default_bit_rate_mbps = 1300, .hsfreqrange_code = 0x2B},
{.default_bit_rate_mbps = 1350, .hsfreqrange_code = 0x3C},
{.default_bit_rate_mbps = 1400, .hsfreqrange_code = 0x0C},
{.default_bit_rate_mbps = 1450, .hsfreqrange_code = 0x1C},
{.default_bit_rate_mbps = 1500, .hsfreqrange_code = 0x2C},
{.default_bit_rate_mbps = 1550, .hsfreqrange_code = 0x3D},
{.default_bit_rate_mbps = 1600, .hsfreqrange_code = 0x0D},
{.default_bit_rate_mbps = 1650, .hsfreqrange_code = 0x1D},
{.default_bit_rate_mbps = 1700, .hsfreqrange_code = 0x2E},
{.default_bit_rate_mbps = 1750, .hsfreqrange_code = 0x3E},
{.default_bit_rate_mbps = 1800, .hsfreqrange_code = 0x0E},
{.default_bit_rate_mbps = 1850, .hsfreqrange_code = 0x1E},
{.default_bit_rate_mbps = 1900, .hsfreqrange_code = 0x2F},
{.default_bit_rate_mbps = 1950, .hsfreqrange_code = 0x3F},
{.default_bit_rate_mbps = 2000, .hsfreqrange_code = 0x0F},
{.default_bit_rate_mbps = 2050, .hsfreqrange_code = 0x40},
{.default_bit_rate_mbps = 2100, .hsfreqrange_code = 0x41},
{.default_bit_rate_mbps = 2150, .hsfreqrange_code = 0x42},
{.default_bit_rate_mbps = 2200, .hsfreqrange_code = 0x43},
{.default_bit_rate_mbps = 2250, .hsfreqrange_code = 0x44},
{.default_bit_rate_mbps = 2300, .hsfreqrange_code = 0x45},
{.default_bit_rate_mbps = 2350, .hsfreqrange_code = 0x46},
{.default_bit_rate_mbps = 2400, .hsfreqrange_code = 0x47},
{.default_bit_rate_mbps = 2450, .hsfreqrange_code = 0x48},
{.default_bit_rate_mbps = 2500, .hsfreqrange_code = 0x49}
};
static void kmb_dsi_clk_disable(struct kmb_dsi *kmb_dsi)
{
clk_disable_unprepare(kmb_dsi->clk_mipi);
clk_disable_unprepare(kmb_dsi->clk_mipi_ecfg);
clk_disable_unprepare(kmb_dsi->clk_mipi_cfg);
}
void kmb_dsi_host_unregister(struct kmb_dsi *kmb_dsi)
{
kmb_dsi_clk_disable(kmb_dsi);
mipi_dsi_host_unregister(kmb_dsi->host);
}
/*
* This DSI can only be paired with bridges that do config through i2c
* which is ADV 7535 in the KMB EVM
*/
static ssize_t kmb_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
return 0;
}
static int kmb_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dev)
{
return 0;
}
static int kmb_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dev)
{
return 0;
}
static const struct mipi_dsi_host_ops kmb_dsi_host_ops = {
.attach = kmb_dsi_host_attach,
.detach = kmb_dsi_host_detach,
.transfer = kmb_dsi_host_transfer,
};
int kmb_dsi_host_bridge_init(struct device *dev)
{
struct device_node *encoder_node, *dsi_out;
/* Create and register MIPI DSI host */
if (!dsi_host) {
dsi_host = kzalloc(sizeof(*dsi_host), GFP_KERNEL);
if (!dsi_host)
return -ENOMEM;
dsi_host->ops = &kmb_dsi_host_ops;
if (!dsi_device) {
dsi_device = kzalloc(sizeof(*dsi_device), GFP_KERNEL);
if (!dsi_device) {
kfree(dsi_host);
return -ENOMEM;
}
}
dsi_host->dev = dev;
mipi_dsi_host_register(dsi_host);
}
/* Find ADV7535 node and initialize it */
dsi_out = of_graph_get_endpoint_by_regs(dev->of_node, 0, 1);
if (!dsi_out) {
DRM_ERROR("Failed to get dsi_out node info from DT\n");
return -EINVAL;
}
encoder_node = of_graph_get_remote_port_parent(dsi_out);
if (!encoder_node) {
of_node_put(dsi_out);
DRM_ERROR("Failed to get bridge info from DT\n");
return -EINVAL;
}
/* Locate drm bridge from the hdmi encoder DT node */
adv_bridge = of_drm_find_bridge(encoder_node);
of_node_put(dsi_out);
of_node_put(encoder_node);
if (!adv_bridge) {
DRM_DEBUG("Wait for external bridge driver DT\n");
return -EPROBE_DEFER;
}
return 0;
}
static u32 mipi_get_datatype_params(u32 data_type, u32 data_mode,
struct mipi_data_type_params *params)
{
struct mipi_data_type_params data_type_param;
switch (data_type) {
case DSI_LP_DT_PPS_YCBCR420_12B:
data_type_param.size_constraint_pixels = 2;
data_type_param.size_constraint_bytes = 3;
switch (data_mode) {
/* Case 0 not supported according to MDK */
case 1:
case 2:
case 3:
data_type_param.pixels_per_pclk = 2;
data_type_param.bits_per_pclk = 24;
break;
default:
DRM_ERROR("DSI: Invalid data_mode %d\n", data_mode);
return -EINVAL;
}
break;
case DSI_LP_DT_PPS_YCBCR422_16B:
data_type_param.size_constraint_pixels = 2;
data_type_param.size_constraint_bytes = 4;
switch (data_mode) {
/* Case 0 and 1 not supported according
* to MDK
*/
case 2:
data_type_param.pixels_per_pclk = 1;
data_type_param.bits_per_pclk = 16;
break;
case 3:
data_type_param.pixels_per_pclk = 2;
data_type_param.bits_per_pclk = 32;
break;
default:
DRM_ERROR("DSI: Invalid data_mode %d\n", data_mode);
return -EINVAL;
}
break;
case DSI_LP_DT_LPPS_YCBCR422_20B:
case DSI_LP_DT_PPS_YCBCR422_24B:
data_type_param.size_constraint_pixels = 2;
data_type_param.size_constraint_bytes = 6;
switch (data_mode) {
/* Case 0 not supported according to MDK */
case 1:
case 2:
case 3:
data_type_param.pixels_per_pclk = 1;
data_type_param.bits_per_pclk = 24;
break;
default:
DRM_ERROR("DSI: Invalid data_mode %d\n", data_mode);
return -EINVAL;
}
break;
case DSI_LP_DT_PPS_RGB565_16B:
data_type_param.size_constraint_pixels = 1;
data_type_param.size_constraint_bytes = 2;
switch (data_mode) {
case 0:
case 1:
data_type_param.pixels_per_pclk = 1;
data_type_param.bits_per_pclk = 16;
break;
case 2:
case 3:
data_type_param.pixels_per_pclk = 2;
data_type_param.bits_per_pclk = 32;
break;
default:
DRM_ERROR("DSI: Invalid data_mode %d\n", data_mode);
return -EINVAL;
}
break;
case DSI_LP_DT_PPS_RGB666_18B:
data_type_param.size_constraint_pixels = 4;
data_type_param.size_constraint_bytes = 9;
data_type_param.bits_per_pclk = 18;
data_type_param.pixels_per_pclk = 1;
break;
case DSI_LP_DT_LPPS_RGB666_18B:
case DSI_LP_DT_PPS_RGB888_24B:
data_type_param.size_constraint_pixels = 1;
data_type_param.size_constraint_bytes = 3;
data_type_param.bits_per_pclk = 24;
data_type_param.pixels_per_pclk = 1;
break;
case DSI_LP_DT_PPS_RGB101010_30B:
data_type_param.size_constraint_pixels = 4;
data_type_param.size_constraint_bytes = 15;
data_type_param.bits_per_pclk = 30;
data_type_param.pixels_per_pclk = 1;
break;
default:
DRM_ERROR("DSI: Invalid data_type %d\n", data_type);
return -EINVAL;
}
*params = data_type_param;
return 0;
}
static u32 compute_wc(u32 width_px, u8 size_constr_p, u8 size_constr_b)
{
/* Calculate the word count for each long packet */
return (((width_px / size_constr_p) * size_constr_b) & 0xffff);
}
static u32 compute_unpacked_bytes(u32 wc, u8 bits_per_pclk)
{
/* Number of PCLK cycles needed to transfer a line
* with each PCLK cycle, 4 Bytes are sent through the PPL module
*/
return ((wc * 8) / bits_per_pclk) * 4;
}
static u32 mipi_tx_fg_section_cfg_regs(struct kmb_dsi *kmb_dsi,
u8 frame_id, u8 section,
u32 height_lines, u32 unpacked_bytes,
struct mipi_tx_frame_sect_phcfg *ph_cfg)
{
u32 cfg = 0;
u32 ctrl_no = MIPI_CTRL6;
u32 reg_adr;
/* Frame section packet header */
/* Word count bits [15:0] */
cfg = (ph_cfg->wc & MIPI_TX_SECT_WC_MASK) << 0;
/* Data type (bits [21:16]) */
cfg |= ((ph_cfg->data_type & MIPI_TX_SECT_DT_MASK)
<< MIPI_TX_SECT_DT_SHIFT);
/* Virtual channel (bits [23:22]) */
cfg |= ((ph_cfg->vchannel & MIPI_TX_SECT_VC_MASK)
<< MIPI_TX_SECT_VC_SHIFT);
/* Data mode (bits [24:25]) */
cfg |= ((ph_cfg->data_mode & MIPI_TX_SECT_DM_MASK)
<< MIPI_TX_SECT_DM_SHIFT);
if (ph_cfg->dma_packed)
cfg |= MIPI_TX_SECT_DMA_PACKED;
dev_dbg(kmb_dsi->dev,
"ctrl=%d frame_id=%d section=%d cfg=%x packed=%d\n",
ctrl_no, frame_id, section, cfg, ph_cfg->dma_packed);
kmb_write_mipi(kmb_dsi,
(MIPI_TXm_HS_FGn_SECTo_PH(ctrl_no, frame_id, section)),
cfg);
/* Unpacked bytes */
/* There are 4 frame generators and each fg has 4 sections
* There are 2 registers for unpacked bytes (# bytes each
* section occupies in memory)
* REG_UNPACKED_BYTES0: [15:0]-BYTES0, [31:16]-BYTES1
* REG_UNPACKED_BYTES1: [15:0]-BYTES2, [31:16]-BYTES3
*/
reg_adr =
MIPI_TXm_HS_FGn_SECT_UNPACKED_BYTES0(ctrl_no,
frame_id) + (section / 2) * 4;
kmb_write_bits_mipi(kmb_dsi, reg_adr, (section % 2) * 16, 16,
unpacked_bytes);
dev_dbg(kmb_dsi->dev,
"unpacked_bytes = %d, wordcount = %d\n", unpacked_bytes,
ph_cfg->wc);
/* Line config */
reg_adr = MIPI_TXm_HS_FGn_SECTo_LINE_CFG(ctrl_no, frame_id, section);
kmb_write_mipi(kmb_dsi, reg_adr, height_lines);
return 0;
}
static u32 mipi_tx_fg_section_cfg(struct kmb_dsi *kmb_dsi,
u8 frame_id, u8 section,
struct mipi_tx_frame_section_cfg *frame_scfg,
u32 *bits_per_pclk, u32 *wc)
{
u32 ret = 0;
u32 unpacked_bytes;
struct mipi_data_type_params data_type_parameters;
struct mipi_tx_frame_sect_phcfg ph_cfg;
ret = mipi_get_datatype_params(frame_scfg->data_type,
frame_scfg->data_mode,
&data_type_parameters);
if (ret)
return ret;
/* Packet width has to be a multiple of the minimum packet width
* (in pixels) set for each data type
*/
if (frame_scfg->width_pixels %
data_type_parameters.size_constraint_pixels != 0)
return -EINVAL;
*wc = compute_wc(frame_scfg->width_pixels,
data_type_parameters.size_constraint_pixels,
data_type_parameters.size_constraint_bytes);
unpacked_bytes = compute_unpacked_bytes(*wc,
data_type_parameters.bits_per_pclk);
ph_cfg.wc = *wc;
ph_cfg.data_mode = frame_scfg->data_mode;
ph_cfg.data_type = frame_scfg->data_type;
ph_cfg.dma_packed = frame_scfg->dma_packed;
ph_cfg.vchannel = frame_id;
mipi_tx_fg_section_cfg_regs(kmb_dsi, frame_id, section,
frame_scfg->height_lines,
unpacked_bytes, &ph_cfg);
/* Caller needs bits_per_clk for additional caluclations */
*bits_per_pclk = data_type_parameters.bits_per_pclk;
return 0;
}
#define CLK_DIFF_LOW 50
#define CLK_DIFF_HI 60
#define SYSCLK_500 500
static void mipi_tx_fg_cfg_regs(struct kmb_dsi *kmb_dsi, u8 frame_gen,
struct mipi_tx_frame_timing_cfg *fg_cfg)
{
u32 sysclk;
u32 ppl_llp_ratio;
u32 ctrl_no = MIPI_CTRL6, reg_adr, val, offset;
/* 500 Mhz system clock minus 50 to account for the difference in
* MIPI clock speed in RTL tests
*/
if (kmb_dsi->sys_clk_mhz == SYSCLK_500) {
sysclk = kmb_dsi->sys_clk_mhz - CLK_DIFF_LOW;
} else {
/* 700 Mhz clk*/
sysclk = kmb_dsi->sys_clk_mhz - CLK_DIFF_HI;
}
/* PPL-Pixel Packing Layer, LLP-Low Level Protocol
* Frame genartor timing parameters are clocked on the system clock,
* whereas as the equivalent parameters in the LLP blocks are clocked
* on LLP Tx clock from the D-PHY - BYTE clock
*/
/* Multiply by 1000 to maintain precision */
ppl_llp_ratio = ((fg_cfg->bpp / 8) * sysclk * 1000) /
((fg_cfg->lane_rate_mbps / 8) * fg_cfg->active_lanes);
dev_dbg(kmb_dsi->dev, "ppl_llp_ratio=%d\n", ppl_llp_ratio);
dev_dbg(kmb_dsi->dev, "bpp=%d sysclk=%d lane-rate=%d active-lanes=%d\n",
fg_cfg->bpp, sysclk, fg_cfg->lane_rate_mbps,
fg_cfg->active_lanes);
/* Frame generator number of lines */
reg_adr = MIPI_TXm_HS_FGn_NUM_LINES(ctrl_no, frame_gen);
kmb_write_mipi(kmb_dsi, reg_adr, fg_cfg->v_active);
/* vsync width
* There are 2 registers for vsync width (VSA in lines for
* channels 0-3)
* REG_VSYNC_WIDTH0: [15:0]-VSA for channel0, [31:16]-VSA for channel1
* REG_VSYNC_WIDTH1: [15:0]-VSA for channel2, [31:16]-VSA for channel3
*/
offset = (frame_gen % 2) * 16;
reg_adr = MIPI_TXm_HS_VSYNC_WIDTHn(ctrl_no, frame_gen / 2);
kmb_write_bits_mipi(kmb_dsi, reg_adr, offset, 16, fg_cfg->vsync_width);
/* vertical backporch (vbp) */
reg_adr = MIPI_TXm_HS_V_BACKPORCHESn(ctrl_no, frame_gen / 2);
kmb_write_bits_mipi(kmb_dsi, reg_adr, offset, 16, fg_cfg->v_backporch);
/* vertical frontporch (vfp) */
reg_adr = MIPI_TXm_HS_V_FRONTPORCHESn(ctrl_no, frame_gen / 2);
kmb_write_bits_mipi(kmb_dsi, reg_adr, offset, 16, fg_cfg->v_frontporch);
/* vertical active (vactive) */
reg_adr = MIPI_TXm_HS_V_ACTIVEn(ctrl_no, frame_gen / 2);
kmb_write_bits_mipi(kmb_dsi, reg_adr, offset, 16, fg_cfg->v_active);
/* hsync width */
reg_adr = MIPI_TXm_HS_HSYNC_WIDTHn(ctrl_no, frame_gen);
kmb_write_mipi(kmb_dsi, reg_adr,
(fg_cfg->hsync_width * ppl_llp_ratio) / 1000);
/* horizontal backporch (hbp) */
reg_adr = MIPI_TXm_HS_H_BACKPORCHn(ctrl_no, frame_gen);
kmb_write_mipi(kmb_dsi, reg_adr,
(fg_cfg->h_backporch * ppl_llp_ratio) / 1000);
/* horizontal frontporch (hfp) */
reg_adr = MIPI_TXm_HS_H_FRONTPORCHn(ctrl_no, frame_gen);
kmb_write_mipi(kmb_dsi, reg_adr,
(fg_cfg->h_frontporch * ppl_llp_ratio) / 1000);
/* horizontal active (ha) */
reg_adr = MIPI_TXm_HS_H_ACTIVEn(ctrl_no, frame_gen);
/* convert h_active which is wc in bytes to cycles */
val = (fg_cfg->h_active * sysclk * 1000) /
((fg_cfg->lane_rate_mbps / 8) * fg_cfg->active_lanes);
val /= 1000;
kmb_write_mipi(kmb_dsi, reg_adr, val);
/* llp hsync width */
reg_adr = MIPI_TXm_HS_LLP_HSYNC_WIDTHn(ctrl_no, frame_gen);
kmb_write_mipi(kmb_dsi, reg_adr, fg_cfg->hsync_width * (fg_cfg->bpp / 8));
/* llp h backporch */
reg_adr = MIPI_TXm_HS_LLP_H_BACKPORCHn(ctrl_no, frame_gen);
kmb_write_mipi(kmb_dsi, reg_adr, fg_cfg->h_backporch * (fg_cfg->bpp / 8));
/* llp h frontporch */
reg_adr = MIPI_TXm_HS_LLP_H_FRONTPORCHn(ctrl_no, frame_gen);
kmb_write_mipi(kmb_dsi, reg_adr,
fg_cfg->h_frontporch * (fg_cfg->bpp / 8));
}
static void mipi_tx_fg_cfg(struct kmb_dsi *kmb_dsi, u8 frame_gen,
u8 active_lanes, u32 bpp, u32 wc,
u32 lane_rate_mbps, struct mipi_tx_frame_cfg *fg_cfg)
{
u32 i, fg_num_lines = 0;
struct mipi_tx_frame_timing_cfg fg_t_cfg;
/* Calculate the total frame generator number of
* lines based on it's active sections
*/
for (i = 0; i < MIPI_TX_FRAME_GEN_SECTIONS; i++) {
if (fg_cfg->sections[i])
fg_num_lines += fg_cfg->sections[i]->height_lines;
}
fg_t_cfg.bpp = bpp;
fg_t_cfg.lane_rate_mbps = lane_rate_mbps;
fg_t_cfg.hsync_width = fg_cfg->hsync_width;
fg_t_cfg.h_backporch = fg_cfg->h_backporch;
fg_t_cfg.h_frontporch = fg_cfg->h_frontporch;
fg_t_cfg.h_active = wc;
fg_t_cfg.vsync_width = fg_cfg->vsync_width;
fg_t_cfg.v_backporch = fg_cfg->v_backporch;
fg_t_cfg.v_frontporch = fg_cfg->v_frontporch;
fg_t_cfg.v_active = fg_num_lines;
fg_t_cfg.active_lanes = active_lanes;
/* Apply frame generator timing setting */
mipi_tx_fg_cfg_regs(kmb_dsi, frame_gen, &fg_t_cfg);
}
static void mipi_tx_multichannel_fifo_cfg(struct kmb_dsi *kmb_dsi,
u8 active_lanes, u8 vchannel_id)
{
u32 fifo_size, fifo_rthreshold;
u32 ctrl_no = MIPI_CTRL6;
/* Clear all mc fifo channel sizes and thresholds */
kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_CTRL_EN, 0);
kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_CHAN_ALLOC0, 0);
kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_CHAN_ALLOC1, 0);
kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_RTHRESHOLD0, 0);
kmb_write_mipi(kmb_dsi, MIPI_TX_HS_MC_FIFO_RTHRESHOLD1, 0);
fifo_size = ((active_lanes > MIPI_D_LANES_PER_DPHY) ?
MIPI_CTRL_4LANE_MAX_MC_FIFO_LOC :
MIPI_CTRL_2LANE_MAX_MC_FIFO_LOC) - 1;
/* MC fifo size for virtual channels 0-3
* REG_MC_FIFO_CHAN_ALLOC0: [8:0]-channel0, [24:16]-channel1
* REG_MC_FIFO_CHAN_ALLOC1: [8:0]-2, [24:16]-channel3
*/
SET_MC_FIFO_CHAN_ALLOC(kmb_dsi, ctrl_no, vchannel_id, fifo_size);
/* Set threshold to half the fifo size, actual size=size*16 */
fifo_rthreshold = ((fifo_size) * 8) & BIT_MASK_16;
SET_MC_FIFO_RTHRESHOLD(kmb_dsi, ctrl_no, vchannel_id, fifo_rthreshold);
/* Enable the MC FIFO channel corresponding to the Virtual Channel */
kmb_set_bit_mipi(kmb_dsi, MIPI_TXm_HS_MC_FIFO_CTRL_EN(ctrl_no),
vchannel_id);
}
static void mipi_tx_ctrl_cfg(struct kmb_dsi *kmb_dsi, u8 fg_id,
struct mipi_ctrl_cfg *ctrl_cfg)
{
u32 sync_cfg = 0, ctrl = 0, fg_en;
u32 ctrl_no = MIPI_CTRL6;
/* MIPI_TX_HS_SYNC_CFG */
if (ctrl_cfg->tx_ctrl_cfg.line_sync_pkt_en)
sync_cfg |= LINE_SYNC_PKT_ENABLE;
if (ctrl_cfg->tx_ctrl_cfg.frame_counter_active)
sync_cfg |= FRAME_COUNTER_ACTIVE;
if (ctrl_cfg->tx_ctrl_cfg.line_counter_active)
sync_cfg |= LINE_COUNTER_ACTIVE;
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->v_blanking)
sync_cfg |= DSI_V_BLANKING;
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->hsa_blanking)
sync_cfg |= DSI_HSA_BLANKING;
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->hbp_blanking)
sync_cfg |= DSI_HBP_BLANKING;
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->hfp_blanking)
sync_cfg |= DSI_HFP_BLANKING;
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->sync_pulse_eventn)
sync_cfg |= DSI_SYNC_PULSE_EVENTN;
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->lpm_first_vsa_line)
sync_cfg |= DSI_LPM_FIRST_VSA_LINE;
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->lpm_last_vfp_line)
sync_cfg |= DSI_LPM_LAST_VFP_LINE;
/* Enable frame generator */
fg_en = 1 << fg_id;
sync_cfg |= FRAME_GEN_EN(fg_en);
if (ctrl_cfg->tx_ctrl_cfg.tx_always_use_hact)
sync_cfg |= ALWAYS_USE_HACT(fg_en);
if (ctrl_cfg->tx_ctrl_cfg.tx_hact_wait_stop)
sync_cfg |= HACT_WAIT_STOP(fg_en);
dev_dbg(kmb_dsi->dev, "sync_cfg=%d fg_en=%d\n", sync_cfg, fg_en);
/* MIPI_TX_HS_CTRL */
/* type:DSI, source:LCD */
ctrl = HS_CTRL_EN | TX_SOURCE;
ctrl |= LCD_VC(fg_id);
ctrl |= ACTIVE_LANES(ctrl_cfg->active_lanes - 1);
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->eotp_en)
ctrl |= DSI_EOTP_EN;
if (ctrl_cfg->tx_ctrl_cfg.tx_dsi_cfg->hfp_blank_en)
ctrl |= DSI_CMD_HFP_EN;
/*67 ns stop time */
ctrl |= HSEXIT_CNT(0x43);
kmb_write_mipi(kmb_dsi, MIPI_TXm_HS_SYNC_CFG(ctrl_no), sync_cfg);
kmb_write_mipi(kmb_dsi, MIPI_TXm_HS_CTRL(ctrl_no), ctrl);
}
static u32 mipi_tx_init_cntrl(struct kmb_dsi *kmb_dsi,
struct mipi_ctrl_cfg *ctrl_cfg)
{
u32 ret = 0;
u8 active_vchannels = 0;
u8 frame_id, sect;
u32 bits_per_pclk = 0;
u32 word_count = 0;
struct mipi_tx_frame_cfg *frame;
/* This is the order to initialize MIPI TX:
* 1. set frame section parameters
* 2. set frame specific parameters
* 3. connect lcd to mipi
* 4. multi channel fifo cfg
* 5. set mipitxcctrlcfg
*/
for (frame_id = 0; frame_id < 4; frame_id++) {
frame = ctrl_cfg->tx_ctrl_cfg.frames[frame_id];
/* Find valid frame, assume only one valid frame */
if (!frame)
continue;
/* Frame Section configuration */
/* TODO - assume there is only one valid section in a frame,
* so bits_per_pclk and word_count are only set once
*/
for (sect = 0; sect < MIPI_CTRL_VIRTUAL_CHANNELS; sect++) {
if (!frame->sections[sect])
continue;
ret = mipi_tx_fg_section_cfg(kmb_dsi, frame_id, sect,
frame->sections[sect],
&bits_per_pclk,
&word_count);
if (ret)
return ret;
}
/* Set frame specific parameters */
mipi_tx_fg_cfg(kmb_dsi, frame_id, ctrl_cfg->active_lanes,
bits_per_pclk, word_count,
ctrl_cfg->lane_rate_mbps, frame);
active_vchannels++;
/* Stop iterating as only one virtual channel
* shall be used for LCD connection
*/
break;
}
if (active_vchannels == 0)
return -EINVAL;
/* Multi-Channel FIFO Configuration */
mipi_tx_multichannel_fifo_cfg(kmb_dsi, ctrl_cfg->active_lanes, frame_id);
/* Frame Generator Enable */
mipi_tx_ctrl_cfg(kmb_dsi, frame_id, ctrl_cfg);
return ret;
}
static void test_mode_send(struct kmb_dsi *kmb_dsi, u32 dphy_no,
u32 test_code, u32 test_data)
{
/* Steps to send test code:
* - set testclk HIGH
* - set testdin with test code
* - set testen HIGH
* - set testclk LOW
* - set testen LOW
*/
/* Set testclk high */
SET_DPHY_TEST_CTRL1_CLK(kmb_dsi, dphy_no);
/* Set testdin */
SET_TEST_DIN0_3(kmb_dsi, dphy_no, test_code);
/* Set testen high */
SET_DPHY_TEST_CTRL1_EN(kmb_dsi, dphy_no);
/* Set testclk low */
CLR_DPHY_TEST_CTRL1_CLK(kmb_dsi, dphy_no);
/* Set testen low */
CLR_DPHY_TEST_CTRL1_EN(kmb_dsi, dphy_no);
if (test_code) {
/* Steps to send test data:
* - set testen LOW
* - set testclk LOW
* - set testdin with data
* - set testclk HIGH
*/
/* Set testen low */
CLR_DPHY_TEST_CTRL1_EN(kmb_dsi, dphy_no);
/* Set testclk low */
CLR_DPHY_TEST_CTRL1_CLK(kmb_dsi, dphy_no);
/* Set data in testdin */
kmb_write_mipi(kmb_dsi,
DPHY_TEST_DIN0_3 + ((dphy_no / 0x4) * 0x4),
test_data << ((dphy_no % 4) * 8));
/* Set testclk high */
SET_DPHY_TEST_CTRL1_CLK(kmb_dsi, dphy_no);
}
}
static inline void
set_test_mode_src_osc_freq_target_low_bits(struct kmb_dsi *kmb_dsi,
u32 dphy_no,
u32 freq)
{
/* Typical rise/fall time=166, refer Table 1207 databook,
* sr_osc_freq_target[7:0]
*/
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_SLEW_RATE_DDL_CYCLES,
(freq & 0x7f));
}
static inline void
set_test_mode_src_osc_freq_target_hi_bits(struct kmb_dsi *kmb_dsi,
u32 dphy_no,
u32 freq)
{
u32 data;
/* Flag this as high nibble */
data = ((freq >> 6) & 0x1f) | (1 << 7);
/* Typical rise/fall time=166, refer Table 1207 databook,
* sr_osc_freq_target[11:7]
*/
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_SLEW_RATE_DDL_CYCLES, data);
}
static void mipi_tx_get_vco_params(struct vco_params *vco)
{
int i;
for (i = 0; i < ARRAY_SIZE(vco_table); i++) {
if (vco->freq < vco_table[i].freq) {
*vco = vco_table[i];
return;
}
}
WARN_ONCE(1, "Invalid vco freq = %u for PLL setup\n", vco->freq);
}
static void mipi_tx_pll_setup(struct kmb_dsi *kmb_dsi, u32 dphy_no,
u32 ref_clk_mhz, u32 target_freq_mhz)
{
u32 best_n = 0, best_m = 0;
u32 n = 0, m = 0, div = 0, delta, freq = 0, t_freq;
u32 best_freq_delta = 3000;
/* pll_ref_clk: - valid range: 2~64 MHz; Typically 24 MHz
* Fvco: - valid range: 320~1250 MHz (Gen3 D-PHY)
* Fout: - valid range: 40~1250 MHz (Gen3 D-PHY)
* n: - valid range [0 15]
* N: - N = n + 1
* -valid range: [1 16]
* -conditions: - (pll_ref_clk / N) >= 2 MHz
* -(pll_ref_clk / N) <= 8 MHz
* m: valid range [62 623]
* M: - M = m + 2
* -valid range [64 625]
* -Fvco = (M/N) * pll_ref_clk
*/
struct vco_params vco_p = {
.range = 0,
.divider = 1,
};
vco_p.freq = target_freq_mhz;
mipi_tx_get_vco_params(&vco_p);
/* Search pll n parameter */
for (n = PLL_N_MIN; n <= PLL_N_MAX; n++) {
/* Calculate the pll input frequency division ratio
* multiply by 1000 for precision -
* no floating point, add n for rounding
*/
div = ((ref_clk_mhz * 1000) + n) / (n + 1);
/* Found a valid n parameter */
if ((div < 2000 || div > 8000))
continue;
/* Search pll m parameter */
for (m = PLL_M_MIN; m <= PLL_M_MAX; m++) {
/* Calculate the Fvco(DPHY PLL output frequency)
* using the current n,m params
*/
freq = div * (m + 2);
freq /= 1000;
/* Trim the potential pll freq to max supported */
if (freq > PLL_FVCO_MAX)
continue;
delta = abs(freq - target_freq_mhz);
/* Select the best (closest to target pll freq)
* n,m parameters so far
*/
if (delta < best_freq_delta) {
best_n = n;
best_m = m;
best_freq_delta = delta;
}
}
}
/* Program vco_cntrl parameter
* PLL_VCO_Control[5:0] = pll_vco_cntrl_ovr,
* PLL_VCO_Control[6] = pll_vco_cntrl_ovr_en
*/
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_VCO_CTRL, (vco_p.range
| (1 << 6)));
/* Program m, n pll parameters */
dev_dbg(kmb_dsi->dev, "m = %d n = %d\n", best_m, best_n);
/* PLL_Input_Divider_Ratio[3:0] = pll_n_ovr */
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_INPUT_DIVIDER,
(best_n & 0x0f));
/* m - low nibble PLL_Loop_Divider_Ratio[4:0]
* pll_m_ovr[4:0]
*/
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_FEEDBACK_DIVIDER,
(best_m & 0x1f));
/* m - high nibble PLL_Loop_Divider_Ratio[4:0]
* pll_m_ovr[9:5]
*/
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_FEEDBACK_DIVIDER,
((best_m >> 5) & 0x1f) | PLL_FEEDBACK_DIVIDER_HIGH);
/* Enable overwrite of n,m parameters :pll_n_ovr_en, pll_m_ovr_en */
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_OUTPUT_CLK_SEL,
(PLL_N_OVR_EN | PLL_M_OVR_EN));
/* Program Charge-Pump parameters */
/* pll_prop_cntrl-fixed values for prop_cntrl from DPHY doc */
t_freq = target_freq_mhz * vco_p.divider;
test_mode_send(kmb_dsi, dphy_no,
TEST_CODE_PLL_PROPORTIONAL_CHARGE_PUMP_CTRL,
((t_freq > 1150) ? 0x0C : 0x0B));
/* pll_int_cntrl-fixed value for int_cntrl from DPHY doc */
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_INTEGRAL_CHARGE_PUMP_CTRL,
0x00);
/* pll_gmp_cntrl-fixed value for gmp_cntrl from DPHY doci */
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_GMP_CTRL, 0x10);
/* pll_cpbias_cntrl-fixed value for cpbias_cntrl from DPHY doc */
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_CHARGE_PUMP_BIAS, 0x10);
/* pll_th1 -Lock Detector Phase error threshold,
* document gives fixed value
*/
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_PHASE_ERR_CTRL, 0x02);
/* PLL Lock Configuration */
/* pll_th2 - Lock Filter length, document gives fixed value */
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_LOCK_FILTER, 0x60);
/* pll_th3- PLL Unlocking filter, document gives fixed value */
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_UNLOCK_FILTER, 0x03);
/* pll_lock_sel-PLL Lock Detector Selection,
* document gives fixed value
*/
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_PLL_LOCK_DETECTOR, 0x02);
}
static void set_slewrate_gt_1500(struct kmb_dsi *kmb_dsi, u32 dphy_no)
{
u32 test_code = 0, test_data = 0;
/* Bypass slew rate calibration algorithm
* bits[1:0} srcal_en_ovr_en, srcal_en_ovr
*/
test_code = TEST_CODE_SLEW_RATE_OVERRIDE_CTRL;
test_data = 0x02;
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Disable slew rate calibration */
test_code = TEST_CODE_SLEW_RATE_DDL_LOOP_CTRL;
test_data = 0x00;
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
}
static void set_slewrate_gt_1000(struct kmb_dsi *kmb_dsi, u32 dphy_no)
{
u32 test_code = 0, test_data = 0;
/* BitRate: > 1 Gbps && <= 1.5 Gbps: - slew rate control ON
* typical rise/fall times: 166 ps
*/
/* Do not bypass slew rate calibration algorithm
* bits[1:0}=srcal_en_ovr_en, srcal_en_ovr, bit[6]=sr_range
*/
test_code = TEST_CODE_SLEW_RATE_OVERRIDE_CTRL;
test_data = (0x03 | (1 << 6));
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Enable slew rate calibration */
test_code = TEST_CODE_SLEW_RATE_DDL_LOOP_CTRL;
test_data = 0x01;
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Set sr_osc_freq_target[6:0] low nibble
* typical rise/fall time=166, refer Table 1207 databook
*/
test_code = TEST_CODE_SLEW_RATE_DDL_CYCLES;
test_data = (0x72f & 0x7f);
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Set sr_osc_freq_target[11:7] high nibble
* Typical rise/fall time=166, refer Table 1207 databook
*/
test_code = TEST_CODE_SLEW_RATE_DDL_CYCLES;
test_data = ((0x72f >> 6) & 0x1f) | (1 << 7);
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
}
static void set_slewrate_lt_1000(struct kmb_dsi *kmb_dsi, u32 dphy_no)
{
u32 test_code = 0, test_data = 0;
/* lane_rate_mbps <= 1000 Mbps
* BitRate: <= 1 Gbps:
* - slew rate control ON
* - typical rise/fall times: 225 ps
*/
/* Do not bypass slew rate calibration algorithm */
test_code = TEST_CODE_SLEW_RATE_OVERRIDE_CTRL;
test_data = (0x03 | (1 << 6));
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Enable slew rate calibration */
test_code = TEST_CODE_SLEW_RATE_DDL_LOOP_CTRL;
test_data = 0x01;
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Typical rise/fall time=255, refer Table 1207 databook */
test_code = TEST_CODE_SLEW_RATE_DDL_CYCLES;
test_data = (0x523 & 0x7f);
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Set sr_osc_freq_target[11:7] high nibble */
test_code = TEST_CODE_SLEW_RATE_DDL_CYCLES;
test_data = ((0x523 >> 6) & 0x1f) | (1 << 7);
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
}
static void setup_pll(struct kmb_dsi *kmb_dsi, u32 dphy_no,
struct mipi_ctrl_cfg *cfg)
{
u32 test_code = 0, test_data = 0;
/* Set PLL regulator in bypass */
test_code = TEST_CODE_PLL_ANALOG_PROG;
test_data = 0x01;
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* PLL Parameters Setup */
mipi_tx_pll_setup(kmb_dsi, dphy_no, cfg->ref_clk_khz / 1000,
cfg->lane_rate_mbps / 2);
/* Set clksel */
kmb_write_bits_mipi(kmb_dsi, DPHY_INIT_CTRL1, PLL_CLKSEL_0, 2, 0x01);
/* Set pll_shadow_control */
kmb_set_bit_mipi(kmb_dsi, DPHY_INIT_CTRL1, PLL_SHADOW_CTRL);
}
static void set_lane_data_rate(struct kmb_dsi *kmb_dsi, u32 dphy_no,
struct mipi_ctrl_cfg *cfg)
{
u32 i, test_code = 0, test_data = 0;
for (i = 0; i < MIPI_DPHY_DEFAULT_BIT_RATES; i++) {
if (mipi_hs_freq_range[i].default_bit_rate_mbps <
cfg->lane_rate_mbps)
continue;
/* Send the test code and data */
/* bit[6:0] = hsfreqrange_ovr bit[7] = hsfreqrange_ovr_en */
test_code = TEST_CODE_HS_FREQ_RANGE_CFG;
test_data = (mipi_hs_freq_range[i].hsfreqrange_code & 0x7f) |
(1 << 7);
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
break;
}
}
static void dphy_init_sequence(struct kmb_dsi *kmb_dsi,
struct mipi_ctrl_cfg *cfg, u32 dphy_no,
int active_lanes, enum dphy_mode mode)
{
u32 test_code = 0, test_data = 0, val;
/* Set D-PHY in shutdown mode */
/* Assert RSTZ signal */
CLR_DPHY_INIT_CTRL0(kmb_dsi, dphy_no, RESETZ);
/* Assert SHUTDOWNZ signal */
CLR_DPHY_INIT_CTRL0(kmb_dsi, dphy_no, SHUTDOWNZ);
val = kmb_read_mipi(kmb_dsi, DPHY_INIT_CTRL0);
/* Init D-PHY_n
* Pulse testclear signal to make sure the d-phy configuration
* starts from a clean base
*/
CLR_DPHY_TEST_CTRL0(kmb_dsi, dphy_no);
ndelay(15);
SET_DPHY_TEST_CTRL0(kmb_dsi, dphy_no);
ndelay(15);
CLR_DPHY_TEST_CTRL0(kmb_dsi, dphy_no);
ndelay(15);
/* Set mastermacro bit - Master or slave mode */
test_code = TEST_CODE_MULTIPLE_PHY_CTRL;
/* DPHY has its own clock lane enabled (master) */
if (mode == MIPI_DPHY_MASTER)
test_data = 0x01;
else
test_data = 0x00;
/* Send the test code and data */
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Set the lane data rate */
set_lane_data_rate(kmb_dsi, dphy_no, cfg);
/* High-Speed Tx Slew Rate Calibration
* BitRate: > 1.5 Gbps && <= 2.5 Gbps: slew rate control OFF
*/
if (cfg->lane_rate_mbps > 1500)
set_slewrate_gt_1500(kmb_dsi, dphy_no);
else if (cfg->lane_rate_mbps > 1000)
set_slewrate_gt_1000(kmb_dsi, dphy_no);
else
set_slewrate_lt_1000(kmb_dsi, dphy_no);
/* Set cfgclkfreqrange */
val = (((cfg->cfg_clk_khz / 1000) - 17) * 4) & 0x3f;
SET_DPHY_FREQ_CTRL0_3(kmb_dsi, dphy_no, val);
/* Enable config clk for the corresponding d-phy */
kmb_set_bit_mipi(kmb_dsi, DPHY_CFG_CLK_EN, dphy_no);
/* PLL setup */
if (mode == MIPI_DPHY_MASTER)
setup_pll(kmb_dsi, dphy_no, cfg);
/* Send NORMAL OPERATION test code */
test_code = 0x0;
test_data = 0x0;
test_mode_send(kmb_dsi, dphy_no, test_code, test_data);
/* Configure BASEDIR for data lanes
* NOTE: basedir only applies to LANE_0 of each D-PHY.
* The other lanes keep their direction based on the D-PHY type,
* either Rx or Tx.
* bits[5:0] - BaseDir: 1 = Rx
* bits[9:6] - BaseDir: 0 = Tx
*/
kmb_write_bits_mipi(kmb_dsi, DPHY_INIT_CTRL2, 0, 9, 0x03f);
ndelay(15);
/* Enable CLOCK LANE
* Clock lane should be enabled regardless of the direction
* set for the D-PHY (Rx/Tx)
*/
kmb_set_bit_mipi(kmb_dsi, DPHY_INIT_CTRL2, 12 + dphy_no);
/* Enable DATA LANES */
kmb_write_bits_mipi(kmb_dsi, DPHY_ENABLE, dphy_no * 2, 2,
((1 << active_lanes) - 1));
ndelay(15);
/* Take D-PHY out of shutdown mode */
/* Deassert SHUTDOWNZ signal */
SET_DPHY_INIT_CTRL0(kmb_dsi, dphy_no, SHUTDOWNZ);
ndelay(15);
/* Deassert RSTZ signal */
SET_DPHY_INIT_CTRL0(kmb_dsi, dphy_no, RESETZ);
}
static void dphy_wait_fsm(struct kmb_dsi *kmb_dsi, u32 dphy_no,
enum dphy_tx_fsm fsm_state)
{
enum dphy_tx_fsm val = DPHY_TX_POWERDWN;
int i = 0;
int status = 1;
do {
test_mode_send(kmb_dsi, dphy_no, TEST_CODE_FSM_CONTROL, 0x80);
val = GET_TEST_DOUT4_7(kmb_dsi, dphy_no);
i++;
if (i > TIMEOUT) {
status = 0;
break;
}
} while (val != fsm_state);
dev_dbg(kmb_dsi->dev, "%s: dphy %d val = %x", __func__, dphy_no, val);
dev_dbg(kmb_dsi->dev, "* DPHY %d WAIT_FSM %s *",
dphy_no, status ? "SUCCESS" : "FAILED");
}
static void wait_init_done(struct kmb_dsi *kmb_dsi, u32 dphy_no,
u32 active_lanes)
{
u32 stopstatedata = 0;
u32 data_lanes = (1 << active_lanes) - 1;
int i = 0;
int status = 1;
do {
stopstatedata = GET_STOPSTATE_DATA(kmb_dsi, dphy_no)
& data_lanes;
/* TODO-need to add a time out and return failure */
i++;
if (i > TIMEOUT) {
status = 0;
dev_dbg(kmb_dsi->dev,
"! WAIT_INIT_DONE: TIMING OUT!(err_stat=%d)",
kmb_read_mipi(kmb_dsi, MIPI_DPHY_ERR_STAT6_7));
break;
}
} while (stopstatedata != data_lanes);
dev_dbg(kmb_dsi->dev, "* DPHY %d INIT - %s *",
dphy_no, status ? "SUCCESS" : "FAILED");
}
static void wait_pll_lock(struct kmb_dsi *kmb_dsi, u32 dphy_no)
{
int i = 0;
int status = 1;
do {
/* TODO-need to add a time out and return failure */
i++;
if (i > TIMEOUT) {
status = 0;
dev_dbg(kmb_dsi->dev, "%s: timing out", __func__);
break;
}
} while (!GET_PLL_LOCK(kmb_dsi, dphy_no));
dev_dbg(kmb_dsi->dev, "* PLL Locked for DPHY %d - %s *",
dphy_no, status ? "SUCCESS" : "FAILED");
}
static u32 mipi_tx_init_dphy(struct kmb_dsi *kmb_dsi,
struct mipi_ctrl_cfg *cfg)
{
u32 dphy_no = MIPI_DPHY6;
/* Multiple D-PHYs needed */
if (cfg->active_lanes > MIPI_DPHY_D_LANES) {
/*
*Initialization for Tx aggregation mode is done according to
*a. start init PHY1
*b. poll for PHY1 FSM state LOCK
* b1. reg addr 0x03[3:0] - state_main[3:0] == 5 (LOCK)
*c. poll for PHY1 calibrations done :
* c1. termination calibration lower section: addr 0x22[5]
* - rescal_done
* c2. slewrate calibration (if data rate < = 1500 Mbps):
* addr 0xA7[3:2] - srcal_done, sr_finished
*d. start init PHY0
*e. poll for PHY0 stopstate
*f. poll for PHY1 stopstate
*/
/* PHY #N+1 ('slave') */
dphy_init_sequence(kmb_dsi, cfg, dphy_no + 1,
(cfg->active_lanes - MIPI_DPHY_D_LANES),
MIPI_DPHY_SLAVE);
dphy_wait_fsm(kmb_dsi, dphy_no + 1, DPHY_TX_LOCK);
/* PHY #N master */
dphy_init_sequence(kmb_dsi, cfg, dphy_no, MIPI_DPHY_D_LANES,
MIPI_DPHY_MASTER);
/* Wait for DPHY init to complete */
wait_init_done(kmb_dsi, dphy_no, MIPI_DPHY_D_LANES);
wait_init_done(kmb_dsi, dphy_no + 1,
cfg->active_lanes - MIPI_DPHY_D_LANES);
wait_pll_lock(kmb_dsi, dphy_no);
wait_pll_lock(kmb_dsi, dphy_no + 1);
dphy_wait_fsm(kmb_dsi, dphy_no, DPHY_TX_IDLE);
} else { /* Single DPHY */
dphy_init_sequence(kmb_dsi, cfg, dphy_no, cfg->active_lanes,
MIPI_DPHY_MASTER);
dphy_wait_fsm(kmb_dsi, dphy_no, DPHY_TX_IDLE);
wait_init_done(kmb_dsi, dphy_no, cfg->active_lanes);
wait_pll_lock(kmb_dsi, dphy_no);
}
return 0;
}
static void connect_lcd_to_mipi(struct kmb_dsi *kmb_dsi,
struct drm_atomic_state *old_state)
{
struct regmap *msscam;
msscam = syscon_regmap_lookup_by_compatible("intel,keembay-msscam");
if (IS_ERR(msscam)) {
dev_dbg(kmb_dsi->dev, "failed to get msscam syscon");
return;
}
drm_atomic_bridge_chain_enable(adv_bridge, old_state);
/* DISABLE MIPI->CIF CONNECTION */
regmap_write(msscam, MSS_MIPI_CIF_CFG, 0);
/* ENABLE LCD->MIPI CONNECTION */
regmap_write(msscam, MSS_LCD_MIPI_CFG, 1);
/* DISABLE LCD->CIF LOOPBACK */
regmap_write(msscam, MSS_LOOPBACK_CFG, 1);
}
int kmb_dsi_mode_set(struct kmb_dsi *kmb_dsi, struct drm_display_mode *mode,
int sys_clk_mhz, struct drm_atomic_state *old_state)
{
u64 data_rate;
kmb_dsi->sys_clk_mhz = sys_clk_mhz;
mipi_tx_init_cfg.active_lanes = MIPI_TX_ACTIVE_LANES;
mipi_tx_frame0_sect_cfg.width_pixels = mode->crtc_hdisplay;
mipi_tx_frame0_sect_cfg.height_lines = mode->crtc_vdisplay;
mipitx_frame0_cfg.vsync_width =
mode->crtc_vsync_end - mode->crtc_vsync_start;
mipitx_frame0_cfg.v_backporch =
mode->crtc_vtotal - mode->crtc_vsync_end;
mipitx_frame0_cfg.v_frontporch =
mode->crtc_vsync_start - mode->crtc_vdisplay;
mipitx_frame0_cfg.hsync_width =
mode->crtc_hsync_end - mode->crtc_hsync_start;
mipitx_frame0_cfg.h_backporch =
mode->crtc_htotal - mode->crtc_hsync_end;
mipitx_frame0_cfg.h_frontporch =
mode->crtc_hsync_start - mode->crtc_hdisplay;
/* Lane rate = (vtotal*htotal*fps*bpp)/4 / 1000000
* to convert to Mbps
*/
data_rate = ((((u32)mode->crtc_vtotal * (u32)mode->crtc_htotal) *
(u32)(drm_mode_vrefresh(mode)) *
MIPI_TX_BPP) / mipi_tx_init_cfg.active_lanes) / 1000000;
dev_dbg(kmb_dsi->dev, "data_rate=%u active_lanes=%d\n",
(u32)data_rate, mipi_tx_init_cfg.active_lanes);
/* When late rate < 800, modeset fails with 4 lanes,
* so switch to 2 lanes
*/
if (data_rate < 800) {
mipi_tx_init_cfg.active_lanes = 2;
mipi_tx_init_cfg.lane_rate_mbps = data_rate * 2;
} else {
mipi_tx_init_cfg.lane_rate_mbps = data_rate;
}
/* Initialize mipi controller */
mipi_tx_init_cntrl(kmb_dsi, &mipi_tx_init_cfg);
/* Dphy initialization */
mipi_tx_init_dphy(kmb_dsi, &mipi_tx_init_cfg);
connect_lcd_to_mipi(kmb_dsi, old_state);
dev_info(kmb_dsi->dev, "mipi hw initialized");
return 0;
}
struct kmb_dsi *kmb_dsi_init(struct platform_device *pdev)
{
struct kmb_dsi *kmb_dsi;
struct device *dev = get_device(&pdev->dev);
kmb_dsi = devm_kzalloc(dev, sizeof(*kmb_dsi), GFP_KERNEL);
if (!kmb_dsi) {
dev_err(dev, "failed to allocate kmb_dsi\n");
return ERR_PTR(-ENOMEM);
}
kmb_dsi->host = dsi_host;
kmb_dsi->host->ops = &kmb_dsi_host_ops;
dsi_device->host = kmb_dsi->host;
kmb_dsi->device = dsi_device;
return kmb_dsi;
}
int kmb_dsi_encoder_init(struct drm_device *dev, struct kmb_dsi *kmb_dsi)
{
struct drm_encoder *encoder;
struct drm_connector *connector;
int ret = 0;
encoder = &kmb_dsi->base;
encoder->possible_crtcs = 1;
encoder->possible_clones = 0;
ret = drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_DSI);
if (ret) {
dev_err(kmb_dsi->dev, "Failed to init encoder %d\n", ret);
return ret;
}
/* Link drm_bridge to encoder */
ret = drm_bridge_attach(encoder, adv_bridge, NULL,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
if (ret) {
drm_encoder_cleanup(encoder);
return ret;
}
drm_info(dev, "Bridge attached : SUCCESS");
connector = drm_bridge_connector_init(dev, encoder);
if (IS_ERR(connector)) {
DRM_ERROR("Unable to create bridge connector");
drm_encoder_cleanup(encoder);
return PTR_ERR(connector);
}
drm_connector_attach_encoder(connector, encoder);
return 0;
}
int kmb_dsi_map_mmio(struct kmb_dsi *kmb_dsi)
{
struct resource *res;
struct device *dev = kmb_dsi->dev;
res = platform_get_resource_byname(kmb_dsi->pdev, IORESOURCE_MEM,
"mipi");
if (!res) {
dev_err(dev, "failed to get resource for mipi");
return -ENOMEM;
}
kmb_dsi->mipi_mmio = devm_ioremap_resource(dev, res);
if (IS_ERR(kmb_dsi->mipi_mmio)) {
dev_err(dev, "failed to ioremap mipi registers");
return PTR_ERR(kmb_dsi->mipi_mmio);
}
return 0;
}
static int kmb_dsi_clk_enable(struct kmb_dsi *kmb_dsi)
{
int ret;
struct device *dev = kmb_dsi->dev;
ret = clk_prepare_enable(kmb_dsi->clk_mipi);
if (ret) {
dev_err(dev, "Failed to enable MIPI clock: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(kmb_dsi->clk_mipi_ecfg);
if (ret) {
dev_err(dev, "Failed to enable MIPI_ECFG clock: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(kmb_dsi->clk_mipi_cfg);
if (ret) {
dev_err(dev, "Failed to enable MIPI_CFG clock: %d\n", ret);
return ret;
}
dev_info(dev, "SUCCESS : enabled MIPI clocks\n");
return 0;
}
int kmb_dsi_clk_init(struct kmb_dsi *kmb_dsi)
{
struct device *dev = kmb_dsi->dev;
unsigned long clk;
kmb_dsi->clk_mipi = devm_clk_get(dev, "clk_mipi");
if (IS_ERR(kmb_dsi->clk_mipi)) {
dev_err(dev, "devm_clk_get() failed clk_mipi\n");
return PTR_ERR(kmb_dsi->clk_mipi);
}
kmb_dsi->clk_mipi_ecfg = devm_clk_get(dev, "clk_mipi_ecfg");
if (IS_ERR(kmb_dsi->clk_mipi_ecfg)) {
dev_err(dev, "devm_clk_get() failed clk_mipi_ecfg\n");
return PTR_ERR(kmb_dsi->clk_mipi_ecfg);
}
kmb_dsi->clk_mipi_cfg = devm_clk_get(dev, "clk_mipi_cfg");
if (IS_ERR(kmb_dsi->clk_mipi_cfg)) {
dev_err(dev, "devm_clk_get() failed clk_mipi_cfg\n");
return PTR_ERR(kmb_dsi->clk_mipi_cfg);
}
/* Set MIPI clock to 24 Mhz */
clk_set_rate(kmb_dsi->clk_mipi, KMB_MIPI_DEFAULT_CLK);
if (clk_get_rate(kmb_dsi->clk_mipi) != KMB_MIPI_DEFAULT_CLK) {
dev_err(dev, "failed to set to clk_mipi to %d\n",
KMB_MIPI_DEFAULT_CLK);
return -1;
}
dev_dbg(dev, "clk_mipi = %ld\n", clk_get_rate(kmb_dsi->clk_mipi));
clk = clk_get_rate(kmb_dsi->clk_mipi_ecfg);
if (clk != KMB_MIPI_DEFAULT_CFG_CLK) {
/* Set MIPI_ECFG clock to 24 Mhz */
clk_set_rate(kmb_dsi->clk_mipi_ecfg, KMB_MIPI_DEFAULT_CFG_CLK);
clk = clk_get_rate(kmb_dsi->clk_mipi_ecfg);
if (clk != KMB_MIPI_DEFAULT_CFG_CLK) {
dev_err(dev, "failed to set to clk_mipi_ecfg to %d\n",
KMB_MIPI_DEFAULT_CFG_CLK);
return -1;
}
}
clk = clk_get_rate(kmb_dsi->clk_mipi_cfg);
if (clk != KMB_MIPI_DEFAULT_CFG_CLK) {
/* Set MIPI_CFG clock to 24 Mhz */
clk_set_rate(kmb_dsi->clk_mipi_cfg, 24000000);
clk = clk_get_rate(kmb_dsi->clk_mipi_cfg);
if (clk != KMB_MIPI_DEFAULT_CFG_CLK) {
dev_err(dev, "failed to set clk_mipi_cfg to %d\n",
KMB_MIPI_DEFAULT_CFG_CLK);
return -1;
}
}
return kmb_dsi_clk_enable(kmb_dsi);
}