linux-zen-desktop/drivers/gpu/drm/msm/adreno/a6xx_gpu.c

2534 lines
78 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
#include "msm_gem.h"
#include "msm_mmu.h"
#include "msm_gpu_trace.h"
#include "a6xx_gpu.h"
#include "a6xx_gmu.xml.h"
#include <linux/bitfield.h>
#include <linux/devfreq.h>
#include <linux/pm_domain.h>
#include <linux/soc/qcom/llcc-qcom.h>
#define GPU_PAS_ID 13
static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
/* Check that the GMU is idle */
if (!adreno_has_gmu_wrapper(adreno_gpu) && !a6xx_gmu_isidle(&a6xx_gpu->gmu))
return false;
/* Check tha the CX master is idle */
if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
return false;
return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
}
static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
/* wait for CP to drain ringbuffer: */
if (!adreno_idle(gpu, ring))
return false;
if (spin_until(_a6xx_check_idle(gpu))) {
DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
gpu->name, __builtin_return_address(0),
gpu_read(gpu, REG_A6XX_RBBM_STATUS),
gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
return false;
}
return true;
}
static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
OUT_PKT7(ring, CP_WHERE_AM_I, 2);
OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
}
}
static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
uint32_t wptr;
unsigned long flags;
update_shadow_rptr(gpu, ring);
spin_lock_irqsave(&ring->preempt_lock, flags);
/* Copy the shadow to the actual register */
ring->cur = ring->next;
/* Make sure to wrap wptr if we need to */
wptr = get_wptr(ring);
spin_unlock_irqrestore(&ring->preempt_lock, flags);
/* Make sure everything is posted before making a decision */
mb();
gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
}
static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
u64 iova)
{
OUT_PKT7(ring, CP_REG_TO_MEM, 3);
OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
CP_REG_TO_MEM_0_CNT(2) |
CP_REG_TO_MEM_0_64B);
OUT_RING(ring, lower_32_bits(iova));
OUT_RING(ring, upper_32_bits(iova));
}
static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
struct msm_ringbuffer *ring, struct msm_file_private *ctx)
{
bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1;
phys_addr_t ttbr;
u32 asid;
u64 memptr = rbmemptr(ring, ttbr0);
if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
return;
if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
return;
if (!sysprof) {
/* Turn off protected mode to write to special registers */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 0);
OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1);
OUT_RING(ring, 1);
}
/* Execute the table update */
OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
OUT_RING(ring,
CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
CP_SMMU_TABLE_UPDATE_1_ASID(asid));
OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
/*
* Write the new TTBR0 to the memstore. This is good for debugging.
*/
OUT_PKT7(ring, CP_MEM_WRITE, 4);
OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
OUT_RING(ring, lower_32_bits(ttbr));
OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
/*
* And finally, trigger a uche flush to be sure there isn't anything
* lingering in that part of the GPU
*/
OUT_PKT7(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, CACHE_INVALIDATE);
if (!sysprof) {
/*
* Wait for SRAM clear after the pgtable update, so the
* two can happen in parallel:
*/
OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ));
OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO(
REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS));
OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0));
OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1));
OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1));
OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0));
/* Re-enable protected mode: */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 1);
}
}
static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
{
unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = submit->ring;
unsigned int i, ibs = 0;
a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
rbmemptr_stats(ring, index, cpcycles_start));
/*
* For PM4 the GMU register offsets are calculated from the base of the
* GPU registers so we need to add 0x1a800 to the register value on A630
* to get the right value from PM4.
*/
get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
rbmemptr_stats(ring, index, alwayson_start));
/* Invalidate CCU depth and color */
OUT_PKT7(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
OUT_PKT7(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
/* Submit the commands */
for (i = 0; i < submit->nr_cmds; i++) {
switch (submit->cmd[i].type) {
case MSM_SUBMIT_CMD_IB_TARGET_BUF:
break;
case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
break;
fallthrough;
case MSM_SUBMIT_CMD_BUF:
OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
OUT_RING(ring, submit->cmd[i].size);
ibs++;
break;
}
/*
* Periodically update shadow-wptr if needed, so that we
* can see partial progress of submits with large # of
* cmds.. otherwise we could needlessly stall waiting for
* ringbuffer state, simply due to looking at a shadow
* rptr value that has not been updated
*/
if ((ibs % 32) == 0)
update_shadow_rptr(gpu, ring);
}
get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
rbmemptr_stats(ring, index, cpcycles_end));
get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
rbmemptr_stats(ring, index, alwayson_end));
/* Write the fence to the scratch register */
OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
OUT_RING(ring, submit->seqno);
/*
* Execute a CACHE_FLUSH_TS event. This will ensure that the
* timestamp is written to the memory and then triggers the interrupt
*/
OUT_PKT7(ring, CP_EVENT_WRITE, 4);
OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
CP_EVENT_WRITE_0_IRQ);
OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, submit->seqno);
trace_msm_gpu_submit_flush(submit,
gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER));
a6xx_flush(gpu, ring);
}
const struct adreno_reglist a612_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
{},
};
/* For a615 family (a615, a616, a618 and a619) */
const struct adreno_reglist a615_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
{},
};
const struct adreno_reglist a630_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
{},
};
const struct adreno_reglist a640_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
{},
};
const struct adreno_reglist a650_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
{},
};
const struct adreno_reglist a660_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
{},
};
const struct adreno_reglist a690_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_CLOCK_CNTL, 0x8AA8AA82},
{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
{REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 0x20200},
{REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 0x10111},
{REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 0x5555},
{}
};
static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
const struct adreno_reglist *reg;
unsigned int i;
u32 val, clock_cntl_on;
if (!adreno_gpu->info->hwcg)
return;
if (adreno_is_a630(adreno_gpu))
clock_cntl_on = 0x8aa8aa02;
else if (adreno_is_a610(adreno_gpu))
clock_cntl_on = 0xaaa8aa82;
else
clock_cntl_on = 0x8aa8aa82;
val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
/* Don't re-program the registers if they are already correct */
if ((!state && !val) || (state && (val == clock_cntl_on)))
return;
/* Disable SP clock before programming HWCG registers */
if (!adreno_is_a610(adreno_gpu))
gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
gpu_write(gpu, reg->offset, state ? reg->value : 0);
/* Enable SP clock */
if (!adreno_is_a610(adreno_gpu))
gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
}
/* For a615, a616, a618, a619, a630, a640 and a680 */
static const u32 a6xx_protect[] = {
A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
A6XX_PROTECT_RDONLY(0x00501, 0x0005),
A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
A6XX_PROTECT_NORDWR(0x00510, 0x0000),
A6XX_PROTECT_NORDWR(0x00534, 0x0000),
A6XX_PROTECT_NORDWR(0x00800, 0x0082),
A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
A6XX_PROTECT_NORDWR(0x00900, 0x004d),
A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
A6XX_PROTECT_NORDWR(0x09624, 0x01db),
A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
};
/* These are for a620 and a650 */
static const u32 a650_protect[] = {
A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
A6XX_PROTECT_RDONLY(0x00501, 0x0005),
A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
A6XX_PROTECT_NORDWR(0x00510, 0x0000),
A6XX_PROTECT_NORDWR(0x00534, 0x0000),
A6XX_PROTECT_NORDWR(0x00800, 0x0082),
A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
A6XX_PROTECT_NORDWR(0x00900, 0x004d),
A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
A6XX_PROTECT_NORDWR(0x09624, 0x01db),
A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
};
/* These are for a635 and a660 */
static const u32 a660_protect[] = {
A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
A6XX_PROTECT_RDONLY(0x00501, 0x0005),
A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
A6XX_PROTECT_NORDWR(0x00510, 0x0000),
A6XX_PROTECT_NORDWR(0x00534, 0x0000),
A6XX_PROTECT_NORDWR(0x00800, 0x0082),
A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
A6XX_PROTECT_NORDWR(0x00900, 0x004d),
A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
A6XX_PROTECT_NORDWR(0x09624, 0x01db),
A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
};
/* These are for a690 */
static const u32 a690_protect[] = {
A6XX_PROTECT_RDONLY(0x00000, 0x004ff),
A6XX_PROTECT_RDONLY(0x00501, 0x00001),
A6XX_PROTECT_RDONLY(0x0050b, 0x002f4),
A6XX_PROTECT_NORDWR(0x0050e, 0x00000),
A6XX_PROTECT_NORDWR(0x00510, 0x00000),
A6XX_PROTECT_NORDWR(0x00534, 0x00000),
A6XX_PROTECT_NORDWR(0x00800, 0x00082),
A6XX_PROTECT_NORDWR(0x008a0, 0x00008),
A6XX_PROTECT_NORDWR(0x008ab, 0x00024),
A6XX_PROTECT_RDONLY(0x008de, 0x000ae),
A6XX_PROTECT_NORDWR(0x00900, 0x0004d),
A6XX_PROTECT_NORDWR(0x0098d, 0x00272),
A6XX_PROTECT_NORDWR(0x00e00, 0x00001),
A6XX_PROTECT_NORDWR(0x00e03, 0x0000c),
A6XX_PROTECT_NORDWR(0x03c00, 0x000c3),
A6XX_PROTECT_RDONLY(0x03cc4, 0x01fff),
A6XX_PROTECT_NORDWR(0x08630, 0x001cf),
A6XX_PROTECT_NORDWR(0x08e00, 0x00000),
A6XX_PROTECT_NORDWR(0x08e08, 0x00007),
A6XX_PROTECT_NORDWR(0x08e50, 0x0001f),
A6XX_PROTECT_NORDWR(0x08e80, 0x0027f),
A6XX_PROTECT_NORDWR(0x09624, 0x001db),
A6XX_PROTECT_NORDWR(0x09e60, 0x00011),
A6XX_PROTECT_NORDWR(0x09e78, 0x00187),
A6XX_PROTECT_NORDWR(0x0a630, 0x001cf),
A6XX_PROTECT_NORDWR(0x0ae02, 0x00000),
A6XX_PROTECT_NORDWR(0x0ae50, 0x0012f),
A6XX_PROTECT_NORDWR(0x0b604, 0x00000),
A6XX_PROTECT_NORDWR(0x0b608, 0x00006),
A6XX_PROTECT_NORDWR(0x0be02, 0x00001),
A6XX_PROTECT_NORDWR(0x0be20, 0x0015f),
A6XX_PROTECT_NORDWR(0x0d000, 0x005ff),
A6XX_PROTECT_NORDWR(0x0f000, 0x00bff),
A6XX_PROTECT_RDONLY(0x0fc00, 0x01fff),
A6XX_PROTECT_NORDWR(0x11c00, 0x00000), /*note: infiite range */
};
static void a6xx_set_cp_protect(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
const u32 *regs = a6xx_protect;
unsigned i, count, count_max;
if (adreno_is_a650(adreno_gpu)) {
regs = a650_protect;
count = ARRAY_SIZE(a650_protect);
count_max = 48;
BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
} else if (adreno_is_a690(adreno_gpu)) {
regs = a690_protect;
count = ARRAY_SIZE(a690_protect);
count_max = 48;
BUILD_BUG_ON(ARRAY_SIZE(a690_protect) > 48);
} else if (adreno_is_a660_family(adreno_gpu)) {
regs = a660_protect;
count = ARRAY_SIZE(a660_protect);
count_max = 48;
BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48);
} else {
regs = a6xx_protect;
count = ARRAY_SIZE(a6xx_protect);
count_max = 32;
BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
}
/*
* Enable access protection to privileged registers, fault on an access
* protect violation and select the last span to protect from the start
* address all the way to the end of the register address space
*/
gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
for (i = 0; i < count - 1; i++)
gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
/* last CP_PROTECT to have "infinite" length on the last entry */
gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
}
static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
/* Unknown, introduced with A650 family, related to UBWC mode/ver 4 */
u32 rgb565_predicator = 0;
/* Unknown, introduced with A650 family */
u32 uavflagprd_inv = 0;
/* Whether the minimum access length is 64 bits */
u32 min_acc_len = 0;
/* Entirely magic, per-GPU-gen value */
u32 ubwc_mode = 0;
/*
* The Highest Bank Bit value represents the bit of the highest DDR bank.
* We then subtract 13 from it (13 is the minimum value allowed by hw) and
* write the lowest two bits of the remaining value as hbb_lo and the
* one above it as hbb_hi to the hardware. This should ideally use DRAM
* type detection.
*/
u32 hbb_hi = 0;
u32 hbb_lo = 2;
/* Unknown, introduced with A640/680 */
u32 amsbc = 0;
if (adreno_is_a610(adreno_gpu)) {
/* HBB = 14 */
hbb_lo = 1;
min_acc_len = 1;
ubwc_mode = 1;
}
/* a618 is using the hw default values */
if (adreno_is_a618(adreno_gpu))
return;
if (adreno_is_a619_holi(adreno_gpu))
hbb_lo = 0;
if (adreno_is_a640_family(adreno_gpu))
amsbc = 1;
if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
hbb_lo = 3;
amsbc = 1;
rgb565_predicator = 1;
uavflagprd_inv = 2;
}
if (adreno_is_a690(adreno_gpu)) {
hbb_lo = 2;
amsbc = 1;
rgb565_predicator = 1;
uavflagprd_inv = 2;
}
if (adreno_is_7c3(adreno_gpu)) {
hbb_lo = 1;
amsbc = 1;
rgb565_predicator = 1;
uavflagprd_inv = 2;
}
gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
rgb565_predicator << 11 | hbb_hi << 10 | amsbc << 4 |
min_acc_len << 3 | hbb_lo << 1 | ubwc_mode);
gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, hbb_hi << 4 |
min_acc_len << 3 | hbb_lo << 1 | ubwc_mode);
gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, hbb_hi << 10 |
uavflagprd_inv << 4 | min_acc_len << 3 |
hbb_lo << 1 | ubwc_mode);
gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, min_acc_len << 23 | hbb_lo << 21);
}
static int a6xx_cp_init(struct msm_gpu *gpu)
{
struct msm_ringbuffer *ring = gpu->rb[0];
OUT_PKT7(ring, CP_ME_INIT, 8);
OUT_RING(ring, 0x0000002f);
/* Enable multiple hardware contexts */
OUT_RING(ring, 0x00000003);
/* Enable error detection */
OUT_RING(ring, 0x20000000);
/* Don't enable header dump */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
/* No workarounds enabled */
OUT_RING(ring, 0x00000000);
/* Pad rest of the cmds with 0's */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
a6xx_flush(gpu, ring);
return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
}
/*
* Check that the microcode version is new enough to include several key
* security fixes. Return true if the ucode is safe.
*/
static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
struct drm_gem_object *obj)
{
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
u32 *buf = msm_gem_get_vaddr(obj);
bool ret = false;
if (IS_ERR(buf))
return false;
/*
* Targets up to a640 (a618, a630 and a640) need to check for a
* microcode version that is patched to support the whereami opcode or
* one that is new enough to include it by default.
*
* a650 tier targets don't need whereami but still need to be
* equal to or newer than 0.95 for other security fixes
*
* a660 targets have all the critical security fixes from the start
*/
if (!strcmp(sqe_name, "a630_sqe.fw")) {
/*
* If the lowest nibble is 0xa that is an indication that this
* microcode has been patched. The actual version is in dword
* [3] but we only care about the patchlevel which is the lowest
* nibble of dword [3]
*
* Otherwise check that the firmware is greater than or equal
* to 1.90 which was the first version that had this fix built
* in
*/
if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
(buf[0] & 0xfff) >= 0x190) {
a6xx_gpu->has_whereami = true;
ret = true;
goto out;
}
DRM_DEV_ERROR(&gpu->pdev->dev,
"a630 SQE ucode is too old. Have version %x need at least %x\n",
buf[0] & 0xfff, 0x190);
} else if (!strcmp(sqe_name, "a650_sqe.fw")) {
if ((buf[0] & 0xfff) >= 0x095) {
ret = true;
goto out;
}
DRM_DEV_ERROR(&gpu->pdev->dev,
"a650 SQE ucode is too old. Have version %x need at least %x\n",
buf[0] & 0xfff, 0x095);
} else if (!strcmp(sqe_name, "a660_sqe.fw")) {
ret = true;
} else {
DRM_DEV_ERROR(&gpu->pdev->dev,
"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
}
out:
msm_gem_put_vaddr(obj);
return ret;
}
static int a6xx_ucode_load(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
if (!a6xx_gpu->sqe_bo) {
a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
if (IS_ERR(a6xx_gpu->sqe_bo)) {
int ret = PTR_ERR(a6xx_gpu->sqe_bo);
a6xx_gpu->sqe_bo = NULL;
DRM_DEV_ERROR(&gpu->pdev->dev,
"Could not allocate SQE ucode: %d\n", ret);
return ret;
}
msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
drm_gem_object_put(a6xx_gpu->sqe_bo);
a6xx_gpu->sqe_bo = NULL;
return -EPERM;
}
}
/*
* Expanded APRIV and targets that support WHERE_AM_I both need a
* privileged buffer to store the RPTR shadow
*/
if ((adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) &&
!a6xx_gpu->shadow_bo) {
a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
sizeof(u32) * gpu->nr_rings,
MSM_BO_WC | MSM_BO_MAP_PRIV,
gpu->aspace, &a6xx_gpu->shadow_bo,
&a6xx_gpu->shadow_iova);
if (IS_ERR(a6xx_gpu->shadow))
return PTR_ERR(a6xx_gpu->shadow);
msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
}
return 0;
}
static int a6xx_zap_shader_init(struct msm_gpu *gpu)
{
static bool loaded;
int ret;
if (loaded)
return 0;
ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
loaded = !ret;
return ret;
}
#define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
A6XX_RBBM_INT_0_MASK_CP_IB2 | \
A6XX_RBBM_INT_0_MASK_CP_IB1 | \
A6XX_RBBM_INT_0_MASK_CP_RB | \
A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
static int hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
int ret;
if (!adreno_has_gmu_wrapper(adreno_gpu)) {
/* Make sure the GMU keeps the GPU on while we set it up */
a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
}
/* Clear GBIF halt in case GX domain was not collapsed */
if (adreno_is_a619_holi(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_GBIF_HALT, 0);
gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, 0);
/* Let's make extra sure that the GPU can access the memory.. */
mb();
} else if (a6xx_has_gbif(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_GBIF_HALT, 0);
gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0);
/* Let's make extra sure that the GPU can access the memory.. */
mb();
}
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
if (adreno_is_a619_holi(adreno_gpu))
a6xx_sptprac_enable(gmu);
/*
* Disable the trusted memory range - we don't actually supported secure
* memory rendering at this point in time and we don't want to block off
* part of the virtual memory space.
*/
gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE, 0x00000000);
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
/* Turn on 64 bit addressing for all blocks */
gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
/* enable hardware clockgating */
a6xx_set_hwcg(gpu, true);
/* VBIF/GBIF start*/
if (adreno_is_a610(adreno_gpu) ||
adreno_is_a640_family(adreno_gpu) ||
adreno_is_a650_family(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
} else {
gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
}
if (adreno_is_a630(adreno_gpu))
gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
/* Make all blocks contribute to the GPU BUSY perf counter */
gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
/* Disable L2 bypass in the UCHE */
gpu_write64(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX, 0x0001ffffffffffc0llu);
gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu);
gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu);
if (!adreno_is_a650_family(adreno_gpu)) {
/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN, 0x00100000);
gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX,
0x00100000 + adreno_gpu->gmem - 1);
}
gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
if (adreno_is_a640_family(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
} else if (adreno_is_a610(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x00800060);
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x40201b16);
} else {
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
}
if (adreno_is_a660_family(adreno_gpu))
gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
/* Setting the mem pool size */
if (adreno_is_a610(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 48);
gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 47);
} else
gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
/* Setting the primFifo thresholds default values,
* and vccCacheSkipDis=1 bit (0x200) for A640 and newer
*/
if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu) || adreno_is_a690(adreno_gpu))
gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
else if (adreno_is_a619(adreno_gpu))
gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00018000);
else if (adreno_is_a610(adreno_gpu))
gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00080000);
else
gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
/* Set the AHB default slave response to "ERROR" */
gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
/* Turn on performance counters */
gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
/* Select CP0 to always count cycles */
gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
a6xx_set_ubwc_config(gpu);
/* Enable fault detection */
if (adreno_is_a619(adreno_gpu))
gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3fffff);
else if (adreno_is_a610(adreno_gpu))
gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3ffff);
else
gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x1fffff);
gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
/* Set weights for bicubic filtering */
if (adreno_is_a650_family(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
0x3fe05ff4);
gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
0x3fa0ebee);
gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
0x3f5193ed);
gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
0x3f0243f0);
}
/* Set up the CX GMU counter 0 to count busy ticks */
gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
/* Enable the power counter */
gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, BIT(5));
gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
/* Protect registers from the CP */
a6xx_set_cp_protect(gpu);
if (adreno_is_a660_family(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
}
/* Set dualQ + disable afull for A660 GPU */
if (adreno_is_a660(adreno_gpu))
gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
/* Enable expanded apriv for targets that support it */
if (gpu->hw_apriv) {
gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
(1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
}
/* Enable interrupts */
gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
ret = adreno_hw_init(gpu);
if (ret)
goto out;
gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova);
/* Set the ringbuffer address */
gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova);
/* Targets that support extended APRIV can use the RPTR shadow from
* hardware but all the other ones need to disable the feature. Targets
* that support the WHERE_AM_I opcode can use that instead
*/
if (adreno_gpu->base.hw_apriv)
gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
else
gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
/* Configure the RPTR shadow if needed: */
if (a6xx_gpu->shadow_bo) {
gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR,
shadowptr(a6xx_gpu, gpu->rb[0]));
}
/* Always come up on rb 0 */
a6xx_gpu->cur_ring = gpu->rb[0];
gpu->cur_ctx_seqno = 0;
/* Enable the SQE_to start the CP engine */
gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
ret = a6xx_cp_init(gpu);
if (ret)
goto out;
/*
* Try to load a zap shader into the secure world. If successful
* we can use the CP to switch out of secure mode. If not then we
* have no resource but to try to switch ourselves out manually. If we
* guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
* be blocked and a permissions violation will soon follow.
*/
ret = a6xx_zap_shader_init(gpu);
if (!ret) {
OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
OUT_RING(gpu->rb[0], 0x00000000);
a6xx_flush(gpu, gpu->rb[0]);
if (!a6xx_idle(gpu, gpu->rb[0]))
return -EINVAL;
} else if (ret == -ENODEV) {
/*
* This device does not use zap shader (but print a warning
* just in case someone got their dt wrong.. hopefully they
* have a debug UART to realize the error of their ways...
* if you mess this up you are about to crash horribly)
*/
dev_warn_once(gpu->dev->dev,
"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
ret = 0;
} else {
return ret;
}
out:
if (adreno_has_gmu_wrapper(adreno_gpu))
return ret;
/*
* Tell the GMU that we are done touching the GPU and it can start power
* management
*/
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
if (a6xx_gpu->gmu.legacy) {
/* Take the GMU out of its special boot mode */
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
}
return ret;
}
static int a6xx_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int ret;
mutex_lock(&a6xx_gpu->gmu.lock);
ret = hw_init(gpu);
mutex_unlock(&a6xx_gpu->gmu.lock);
return ret;
}
static void a6xx_dump(struct msm_gpu *gpu)
{
DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n",
gpu_read(gpu, REG_A6XX_RBBM_STATUS));
adreno_dump(gpu);
}
static void a6xx_recover(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
int i, active_submits;
adreno_dump_info(gpu);
for (i = 0; i < 8; i++)
DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
if (hang_debug)
a6xx_dump(gpu);
/*
* To handle recovery specific sequences during the rpm suspend we are
* about to trigger
*/
a6xx_gpu->hung = true;
/* Halt SQE first */
gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3);
pm_runtime_dont_use_autosuspend(&gpu->pdev->dev);
/* active_submit won't change until we make a submission */
mutex_lock(&gpu->active_lock);
active_submits = gpu->active_submits;
/*
* Temporarily clear active_submits count to silence a WARN() in the
* runtime suspend cb
*/
gpu->active_submits = 0;
if (adreno_has_gmu_wrapper(adreno_gpu)) {
/* Drain the outstanding traffic on memory buses */
a6xx_bus_clear_pending_transactions(adreno_gpu, true);
/* Reset the GPU to a clean state */
a6xx_gpu_sw_reset(gpu, true);
a6xx_gpu_sw_reset(gpu, false);
}
reinit_completion(&gmu->pd_gate);
dev_pm_genpd_add_notifier(gmu->cxpd, &gmu->pd_nb);
dev_pm_genpd_synced_poweroff(gmu->cxpd);
/* Drop the rpm refcount from active submits */
if (active_submits)
pm_runtime_put(&gpu->pdev->dev);
/* And the final one from recover worker */
pm_runtime_put_sync(&gpu->pdev->dev);
if (!wait_for_completion_timeout(&gmu->pd_gate, msecs_to_jiffies(1000)))
DRM_DEV_ERROR(&gpu->pdev->dev, "cx gdsc didn't collapse\n");
dev_pm_genpd_remove_notifier(gmu->cxpd);
pm_runtime_use_autosuspend(&gpu->pdev->dev);
if (active_submits)
pm_runtime_get(&gpu->pdev->dev);
pm_runtime_get_sync(&gpu->pdev->dev);
gpu->active_submits = active_submits;
mutex_unlock(&gpu->active_lock);
msm_gpu_hw_init(gpu);
a6xx_gpu->hung = false;
}
static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
{
static const char *uche_clients[7] = {
"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
};
u32 val;
if (mid < 1 || mid > 3)
return "UNKNOWN";
/*
* The source of the data depends on the mid ID read from FSYNR1.
* and the client ID read from the UCHE block
*/
val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
/* mid = 3 is most precise and refers to only one block per client */
if (mid == 3)
return uche_clients[val & 7];
/* For mid=2 the source is TP or VFD except when the client id is 0 */
if (mid == 2)
return ((val & 7) == 0) ? "TP" : "TP|VFD";
/* For mid=1 just return "UCHE" as a catchall for everything else */
return "UCHE";
}
static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
{
if (id == 0)
return "CP";
else if (id == 4)
return "CCU";
else if (id == 6)
return "CDP Prefetch";
return a6xx_uche_fault_block(gpu, id);
}
static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
{
struct msm_gpu *gpu = arg;
struct adreno_smmu_fault_info *info = data;
const char *block = "unknown";
u32 scratch[] = {
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)),
};
if (info)
block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
return adreno_fault_handler(gpu, iova, flags, info, block, scratch);
}
static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
{
u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
u32 val;
gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
dev_err_ratelimited(&gpu->pdev->dev,
"CP | opcode error | possible opcode=0x%8.8X\n",
val);
}
if (status & A6XX_CP_INT_CP_UCODE_ERROR)
dev_err_ratelimited(&gpu->pdev->dev,
"CP ucode error interrupt\n");
if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
dev_err_ratelimited(&gpu->pdev->dev,
"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
val & (1 << 20) ? "READ" : "WRITE",
(val & 0x3ffff), val);
}
if (status & A6XX_CP_INT_CP_AHB_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
}
static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
/*
* If stalled on SMMU fault, we could trip the GPU's hang detection,
* but the fault handler will trigger the devcore dump, and we want
* to otherwise resume normally rather than killing the submit, so
* just bail.
*/
if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
return;
/*
* Force the GPU to stay on until after we finish
* collecting information
*/
if (!adreno_has_gmu_wrapper(adreno_gpu))
gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
DRM_DEV_ERROR(&gpu->pdev->dev,
"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
gpu_read(gpu, REG_A6XX_RBBM_STATUS),
gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
/* Turn off the hangcheck timer to keep it from bothering us */
del_timer(&gpu->hangcheck_timer);
kthread_queue_work(gpu->worker, &gpu->recover_work);
}
static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
{
struct msm_drm_private *priv = gpu->dev->dev_private;
u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
if (priv->disable_err_irq)
status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
a6xx_fault_detect_irq(gpu);
if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
a6xx_cp_hw_err_irq(gpu);
if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
msm_gpu_retire(gpu);
return IRQ_HANDLED;
}
static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
{
return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
}
static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
{
msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
}
static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
{
llcc_slice_deactivate(a6xx_gpu->llc_slice);
llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
}
static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
{
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
u32 cntl1_regval = 0;
if (IS_ERR(a6xx_gpu->llc_mmio))
return;
if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
gpu_scid &= 0x1f;
cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
(gpu_scid << 15) | (gpu_scid << 20);
/* On A660, the SCID programming for UCHE traffic is done in
* A6XX_GBIF_SCACHE_CNTL0[14:10]
*/
if (adreno_is_a660_family(adreno_gpu))
gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
(1 << 8), (gpu_scid << 10) | (1 << 8));
}
/*
* For targets with a MMU500, activate the slice but don't program the
* register. The XBL will take care of that.
*/
if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
if (!a6xx_gpu->have_mmu500) {
u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
gpuhtw_scid &= 0x1f;
cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
}
}
if (!cntl1_regval)
return;
/*
* Program the slice IDs for the various GPU blocks and GPU MMU
* pagetables
*/
if (!a6xx_gpu->have_mmu500) {
a6xx_llc_write(a6xx_gpu,
REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
/*
* Program cacheability overrides to not allocate cache
* lines on a write miss
*/
a6xx_llc_rmw(a6xx_gpu,
REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
return;
}
gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
}
static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
{
/* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */
if (adreno_has_gmu_wrapper(&a6xx_gpu->base))
return;
llcc_slice_putd(a6xx_gpu->llc_slice);
llcc_slice_putd(a6xx_gpu->htw_llc_slice);
}
static void a6xx_llc_slices_init(struct platform_device *pdev,
struct a6xx_gpu *a6xx_gpu)
{
struct device_node *phandle;
/* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */
if (adreno_has_gmu_wrapper(&a6xx_gpu->base))
return;
/*
* There is a different programming path for targets with an mmu500
* attached, so detect if that is the case
*/
phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
a6xx_gpu->have_mmu500 = (phandle &&
of_device_is_compatible(phandle, "arm,mmu-500"));
of_node_put(phandle);
if (a6xx_gpu->have_mmu500)
a6xx_gpu->llc_mmio = NULL;
else
a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem");
a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
}
#define GBIF_CLIENT_HALT_MASK BIT(0)
#define GBIF_ARB_HALT_MASK BIT(1)
#define VBIF_XIN_HALT_CTRL0_MASK GENMASK(3, 0)
#define VBIF_RESET_ACK_MASK 0xF0
#define GPR0_GBIF_HALT_REQUEST 0x1E0
void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off)
{
struct msm_gpu *gpu = &adreno_gpu->base;
if (adreno_is_a619_holi(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, GPR0_GBIF_HALT_REQUEST);
spin_until((gpu_read(gpu, REG_A6XX_RBBM_VBIF_GX_RESET_STATUS) &
(VBIF_RESET_ACK_MASK)) == VBIF_RESET_ACK_MASK);
} else if (!a6xx_has_gbif(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, VBIF_XIN_HALT_CTRL0_MASK);
spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) &
(VBIF_XIN_HALT_CTRL0_MASK)) == VBIF_XIN_HALT_CTRL0_MASK);
gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0);
return;
}
if (gx_off) {
/* Halt the gx side of GBIF */
gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1);
spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1);
}
/* Halt new client requests on GBIF */
gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK);
spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) &
(GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK);
/* Halt all AXI requests on GBIF */
gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK);
spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) &
(GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK);
/* The GBIF halt needs to be explicitly cleared */
gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0);
}
void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert)
{
/* 11nm chips (e.g. ones with A610) have hw issues with the reset line! */
if (adreno_is_a610(to_adreno_gpu(gpu)))
return;
gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, assert);
/* Perform a bogus read and add a brief delay to ensure ordering. */
gpu_read(gpu, REG_A6XX_RBBM_SW_RESET_CMD);
udelay(1);
/* The reset line needs to be asserted for at least 100 us */
if (assert)
udelay(100);
}
static int a6xx_gmu_pm_resume(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int ret;
gpu->needs_hw_init = true;
trace_msm_gpu_resume(0);
mutex_lock(&a6xx_gpu->gmu.lock);
ret = a6xx_gmu_resume(a6xx_gpu);
mutex_unlock(&a6xx_gpu->gmu.lock);
if (ret)
return ret;
msm_devfreq_resume(gpu);
a6xx_llc_activate(a6xx_gpu);
return ret;
}
static int a6xx_pm_resume(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
unsigned long freq = gpu->fast_rate;
struct dev_pm_opp *opp;
int ret;
gpu->needs_hw_init = true;
trace_msm_gpu_resume(0);
mutex_lock(&a6xx_gpu->gmu.lock);
opp = dev_pm_opp_find_freq_ceil(&gpu->pdev->dev, &freq);
if (IS_ERR(opp)) {
ret = PTR_ERR(opp);
goto err_set_opp;
}
dev_pm_opp_put(opp);
/* Set the core clock and bus bw, having VDD scaling in mind */
dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
pm_runtime_resume_and_get(gmu->dev);
pm_runtime_resume_and_get(gmu->gxpd);
ret = clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks);
if (ret)
goto err_bulk_clk;
if (adreno_is_a619_holi(adreno_gpu))
a6xx_sptprac_enable(gmu);
/* If anything goes south, tear the GPU down piece by piece.. */
if (ret) {
err_bulk_clk:
pm_runtime_put(gmu->gxpd);
pm_runtime_put(gmu->dev);
dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
}
err_set_opp:
mutex_unlock(&a6xx_gpu->gmu.lock);
if (!ret)
msm_devfreq_resume(gpu);
return ret;
}
static int a6xx_gmu_pm_suspend(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int i, ret;
trace_msm_gpu_suspend(0);
a6xx_llc_deactivate(a6xx_gpu);
msm_devfreq_suspend(gpu);
mutex_lock(&a6xx_gpu->gmu.lock);
ret = a6xx_gmu_stop(a6xx_gpu);
mutex_unlock(&a6xx_gpu->gmu.lock);
if (ret)
return ret;
if (a6xx_gpu->shadow_bo)
for (i = 0; i < gpu->nr_rings; i++)
a6xx_gpu->shadow[i] = 0;
gpu->suspend_count++;
return 0;
}
static int a6xx_pm_suspend(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
int i;
trace_msm_gpu_suspend(0);
msm_devfreq_suspend(gpu);
mutex_lock(&a6xx_gpu->gmu.lock);
/* Drain the outstanding traffic on memory buses */
a6xx_bus_clear_pending_transactions(adreno_gpu, true);
if (adreno_is_a619_holi(adreno_gpu))
a6xx_sptprac_disable(gmu);
clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks);
pm_runtime_put_sync(gmu->gxpd);
dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
pm_runtime_put_sync(gmu->dev);
mutex_unlock(&a6xx_gpu->gmu.lock);
if (a6xx_gpu->shadow_bo)
for (i = 0; i < gpu->nr_rings; i++)
a6xx_gpu->shadow[i] = 0;
gpu->suspend_count++;
return 0;
}
static int a6xx_gmu_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
mutex_lock(&a6xx_gpu->gmu.lock);
/* Force the GPU power on so we can read this register */
a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER);
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
mutex_unlock(&a6xx_gpu->gmu.lock);
return 0;
}
static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
{
*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER);
return 0;
}
static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
return a6xx_gpu->cur_ring;
}
static void a6xx_destroy(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
if (a6xx_gpu->sqe_bo) {
msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
drm_gem_object_put(a6xx_gpu->sqe_bo);
}
if (a6xx_gpu->shadow_bo) {
msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
drm_gem_object_put(a6xx_gpu->shadow_bo);
}
a6xx_llc_slices_destroy(a6xx_gpu);
a6xx_gmu_remove(a6xx_gpu);
adreno_gpu_cleanup(adreno_gpu);
kfree(a6xx_gpu);
}
static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
u64 busy_cycles;
/* 19.2MHz */
*out_sample_rate = 19200000;
busy_cycles = gmu_read64(&a6xx_gpu->gmu,
REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
return busy_cycles;
}
static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
bool suspended)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
mutex_lock(&a6xx_gpu->gmu.lock);
a6xx_gmu_set_freq(gpu, opp, suspended);
mutex_unlock(&a6xx_gpu->gmu.lock);
}
static struct msm_gem_address_space *
a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
unsigned long quirks = 0;
/*
* This allows GPU to set the bus attributes required to use system
* cache on behalf of the iommu page table walker.
*/
if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice) &&
!device_iommu_capable(&pdev->dev, IOMMU_CAP_CACHE_COHERENCY))
quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA;
return adreno_iommu_create_address_space(gpu, pdev, quirks);
}
static struct msm_gem_address_space *
a6xx_create_private_address_space(struct msm_gpu *gpu)
{
struct msm_mmu *mmu;
mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
if (IS_ERR(mmu))
return ERR_CAST(mmu);
return msm_gem_address_space_create(mmu,
"gpu", 0x100000000ULL,
adreno_private_address_space_size(gpu));
}
static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
return a6xx_gpu->shadow[ring->id];
return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
}
static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct msm_cp_state cp_state = {
.ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
.ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
.ib1_rem = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
.ib2_rem = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE),
};
bool progress;
/*
* Adjust the remaining data to account for what has already been
* fetched from memory, but not yet consumed by the SQE.
*
* This is not *technically* correct, the amount buffered could
* exceed the IB size due to hw prefetching ahead, but:
*
* (1) We aren't trying to find the exact position, just whether
* progress has been made
* (2) The CP_REG_TO_MEM at the end of a submit should be enough
* to prevent prefetching into an unrelated submit. (And
* either way, at some point the ROQ will be full.)
*/
cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB1) >> 16;
cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB2) >> 16;
progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state));
ring->last_cp_state = cp_state;
return progress;
}
static u32 a610_get_speed_bin(u32 fuse)
{
/*
* There are (at least) three SoCs implementing A610: SM6125 (trinket),
* SM6115 (bengal) and SM6225 (khaje). Trinket does not have speedbinning,
* as only a single SKU exists and we don't support khaje upstream yet.
* Hence, this matching table is only valid for bengal and can be easily
* expanded if need be.
*/
if (fuse == 0)
return 0;
else if (fuse == 206)
return 1;
else if (fuse == 200)
return 2;
else if (fuse == 157)
return 3;
else if (fuse == 127)
return 4;
return UINT_MAX;
}
static u32 a618_get_speed_bin(u32 fuse)
{
if (fuse == 0)
return 0;
else if (fuse == 169)
return 1;
else if (fuse == 174)
return 2;
return UINT_MAX;
}
static u32 a619_holi_get_speed_bin(u32 fuse)
{
/*
* There are (at least) two SoCs implementing A619_holi: SM4350 (holi)
* and SM6375 (blair). Limit the fuse matching to the corresponding
* SoC to prevent bogus frequency setting (as improbable as it may be,
* given unexpected fuse values are.. unexpected! But still possible.)
*/
if (fuse == 0)
return 0;
if (of_machine_is_compatible("qcom,sm4350")) {
if (fuse == 138)
return 1;
else if (fuse == 92)
return 2;
} else if (of_machine_is_compatible("qcom,sm6375")) {
if (fuse == 190)
return 1;
else if (fuse == 177)
return 2;
} else
pr_warn("Unknown SoC implementing A619_holi!\n");
return UINT_MAX;
}
static u32 a619_get_speed_bin(u32 fuse)
{
if (fuse == 0)
return 0;
else if (fuse == 120)
return 4;
else if (fuse == 138)
return 3;
else if (fuse == 169)
return 2;
else if (fuse == 180)
return 1;
return UINT_MAX;
}
static u32 a640_get_speed_bin(u32 fuse)
{
if (fuse == 0)
return 0;
else if (fuse == 1)
return 1;
return UINT_MAX;
}
static u32 a650_get_speed_bin(u32 fuse)
{
if (fuse == 0)
return 0;
else if (fuse == 1)
return 1;
/* Yep, 2 and 3 are swapped! :/ */
else if (fuse == 2)
return 3;
else if (fuse == 3)
return 2;
return UINT_MAX;
}
static u32 adreno_7c3_get_speed_bin(u32 fuse)
{
if (fuse == 0)
return 0;
else if (fuse == 117)
return 0;
else if (fuse == 190)
return 1;
return UINT_MAX;
}
static u32 fuse_to_supp_hw(struct device *dev, struct adreno_gpu *adreno_gpu, u32 fuse)
{
u32 val = UINT_MAX;
if (adreno_is_a610(adreno_gpu))
val = a610_get_speed_bin(fuse);
if (adreno_is_a618(adreno_gpu))
val = a618_get_speed_bin(fuse);
else if (adreno_is_a619_holi(adreno_gpu))
val = a619_holi_get_speed_bin(fuse);
else if (adreno_is_a619(adreno_gpu))
val = a619_get_speed_bin(fuse);
else if (adreno_is_7c3(adreno_gpu))
val = adreno_7c3_get_speed_bin(fuse);
else if (adreno_is_a640(adreno_gpu))
val = a640_get_speed_bin(fuse);
else if (adreno_is_a650(adreno_gpu))
val = a650_get_speed_bin(fuse);
if (val == UINT_MAX) {
DRM_DEV_ERROR(dev,
"missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n",
fuse);
return UINT_MAX;
}
return (1 << val);
}
static int a6xx_set_supported_hw(struct device *dev, struct adreno_gpu *adreno_gpu)
{
u32 supp_hw;
u32 speedbin;
int ret;
ret = adreno_read_speedbin(dev, &speedbin);
/*
* -ENOENT means that the platform doesn't support speedbin which is
* fine
*/
if (ret == -ENOENT) {
return 0;
} else if (ret) {
dev_err_probe(dev, ret,
"failed to read speed-bin. Some OPPs may not be supported by hardware\n");
return ret;
}
supp_hw = fuse_to_supp_hw(dev, adreno_gpu, speedbin);
ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
if (ret)
return ret;
return 0;
}
static const struct adreno_gpu_funcs funcs = {
.base = {
.get_param = adreno_get_param,
.set_param = adreno_set_param,
.hw_init = a6xx_hw_init,
.ucode_load = a6xx_ucode_load,
.pm_suspend = a6xx_gmu_pm_suspend,
.pm_resume = a6xx_gmu_pm_resume,
.recover = a6xx_recover,
.submit = a6xx_submit,
.active_ring = a6xx_active_ring,
.irq = a6xx_irq,
.destroy = a6xx_destroy,
#if defined(CONFIG_DRM_MSM_GPU_STATE)
.show = a6xx_show,
#endif
.gpu_busy = a6xx_gpu_busy,
.gpu_get_freq = a6xx_gmu_get_freq,
.gpu_set_freq = a6xx_gpu_set_freq,
#if defined(CONFIG_DRM_MSM_GPU_STATE)
.gpu_state_get = a6xx_gpu_state_get,
.gpu_state_put = a6xx_gpu_state_put,
#endif
.create_address_space = a6xx_create_address_space,
.create_private_address_space = a6xx_create_private_address_space,
.get_rptr = a6xx_get_rptr,
.progress = a6xx_progress,
},
.get_timestamp = a6xx_gmu_get_timestamp,
};
static const struct adreno_gpu_funcs funcs_gmuwrapper = {
.base = {
.get_param = adreno_get_param,
.set_param = adreno_set_param,
.hw_init = a6xx_hw_init,
.ucode_load = a6xx_ucode_load,
.pm_suspend = a6xx_pm_suspend,
.pm_resume = a6xx_pm_resume,
.recover = a6xx_recover,
.submit = a6xx_submit,
.active_ring = a6xx_active_ring,
.irq = a6xx_irq,
.destroy = a6xx_destroy,
#if defined(CONFIG_DRM_MSM_GPU_STATE)
.show = a6xx_show,
#endif
.gpu_busy = a6xx_gpu_busy,
#if defined(CONFIG_DRM_MSM_GPU_STATE)
.gpu_state_get = a6xx_gpu_state_get,
.gpu_state_put = a6xx_gpu_state_put,
#endif
.create_address_space = a6xx_create_address_space,
.create_private_address_space = a6xx_create_private_address_space,
.get_rptr = a6xx_get_rptr,
.progress = a6xx_progress,
},
.get_timestamp = a6xx_get_timestamp,
};
struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct platform_device *pdev = priv->gpu_pdev;
struct adreno_platform_config *config = pdev->dev.platform_data;
const struct adreno_info *info;
struct device_node *node;
struct a6xx_gpu *a6xx_gpu;
struct adreno_gpu *adreno_gpu;
struct msm_gpu *gpu;
int ret;
a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
if (!a6xx_gpu)
return ERR_PTR(-ENOMEM);
adreno_gpu = &a6xx_gpu->base;
gpu = &adreno_gpu->base;
mutex_init(&a6xx_gpu->gmu.lock);
adreno_gpu->registers = NULL;
/* Check if there is a GMU phandle and set it up */
node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
/* FIXME: How do we gracefully handle this? */
BUG_ON(!node);
adreno_gpu->gmu_is_wrapper = of_device_is_compatible(node, "qcom,adreno-gmu-wrapper");
/*
* We need to know the platform type before calling into adreno_gpu_init
* so that the hw_apriv flag can be correctly set. Snoop into the info
* and grab the revision number
*/
info = adreno_info(config->rev);
if (!info)
return ERR_PTR(-EINVAL);
/* Assign these early so that we can use the is_aXYZ helpers */
/* Numeric revision IDs (e.g. 630) */
adreno_gpu->revn = info->revn;
/* New-style ADRENO_REV()-only */
adreno_gpu->rev = info->rev;
/* Quirk data */
adreno_gpu->info = info;
adreno_gpu->base.hw_apriv = !!(info->quirks & ADRENO_QUIRK_HAS_HW_APRIV);
a6xx_llc_slices_init(pdev, a6xx_gpu);
ret = a6xx_set_supported_hw(&pdev->dev, adreno_gpu);
if (ret) {
a6xx_destroy(&(a6xx_gpu->base.base));
return ERR_PTR(ret);
}
if (adreno_has_gmu_wrapper(adreno_gpu))
ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_gmuwrapper, 1);
else
ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
if (ret) {
a6xx_destroy(&(a6xx_gpu->base.base));
return ERR_PTR(ret);
}
/*
* For now only clamp to idle freq for devices where this is known not
* to cause power supply issues:
*/
if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu))
priv->gpu_clamp_to_idle = true;
if (adreno_has_gmu_wrapper(adreno_gpu))
ret = a6xx_gmu_wrapper_init(a6xx_gpu, node);
else
ret = a6xx_gmu_init(a6xx_gpu, node);
of_node_put(node);
if (ret) {
a6xx_destroy(&(a6xx_gpu->base.base));
return ERR_PTR(ret);
}
if (gpu->aspace)
msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
a6xx_fault_handler);
return gpu;
}