linux-zen-desktop/drivers/gpu/drm/msm/disp/dpu1/dpu_hw_top.c

327 lines
8.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
*/
#include "dpu_hwio.h"
#include "dpu_hw_catalog.h"
#include "dpu_hw_top.h"
#include "dpu_kms.h"
#define FLD_SPLIT_DISPLAY_CMD BIT(1)
#define FLD_SMART_PANEL_FREE_RUN BIT(2)
#define FLD_INTF_1_SW_TRG_MUX BIT(4)
#define FLD_INTF_2_SW_TRG_MUX BIT(8)
#define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
#define TRAFFIC_SHAPER_EN BIT(31)
#define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
#define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
#define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
#define MDP_TICK_COUNT 16
#define XO_CLK_RATE 19200
#define MS_TICKS_IN_SEC 1000
#define CALCULATE_WD_LOAD_VALUE(fps) \
((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
struct split_pipe_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c;
u32 upper_pipe = 0;
u32 lower_pipe = 0;
if (!mdp || !cfg)
return;
c = &mdp->hw;
if (cfg->en) {
if (cfg->mode == INTF_MODE_CMD) {
lower_pipe = FLD_SPLIT_DISPLAY_CMD;
/* interface controlling sw trigger */
if (cfg->intf == INTF_2)
lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
else
lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
upper_pipe = lower_pipe;
} else {
if (cfg->intf == INTF_2) {
lower_pipe = FLD_INTF_1_SW_TRG_MUX;
upper_pipe = FLD_INTF_2_SW_TRG_MUX;
} else {
lower_pipe = FLD_INTF_2_SW_TRG_MUX;
upper_pipe = FLD_INTF_1_SW_TRG_MUX;
}
}
}
DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
}
static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
enum dpu_clk_ctrl_type clk_ctrl, bool enable)
{
struct dpu_hw_blk_reg_map *c;
u32 reg_off, bit_off;
u32 reg_val, new_val;
bool clk_forced_on;
if (!mdp)
return false;
c = &mdp->hw;
if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
return false;
reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
reg_val = DPU_REG_READ(c, reg_off);
if (enable)
new_val = reg_val | BIT(bit_off);
else
new_val = reg_val & ~BIT(bit_off);
DPU_REG_WRITE(c, reg_off, new_val);
clk_forced_on = !(reg_val & BIT(bit_off));
return clk_forced_on;
}
static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
struct dpu_danger_safe_status *status)
{
struct dpu_hw_blk_reg_map *c;
u32 value;
if (!mdp || !status)
return;
c = &mdp->hw;
value = DPU_REG_READ(c, DANGER_STATUS);
status->mdp = (value >> 0) & 0x3;
status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
}
static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
struct dpu_vsync_source_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c;
u32 reg, wd_load_value, wd_ctl, wd_ctl2;
if (!mdp || !cfg)
return;
c = &mdp->hw;
if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
switch (cfg->vsync_source) {
case DPU_VSYNC_SOURCE_WD_TIMER_4:
wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_4_CTL;
wd_ctl2 = MDP_WD_TIMER_4_CTL2;
break;
case DPU_VSYNC_SOURCE_WD_TIMER_3:
wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_3_CTL;
wd_ctl2 = MDP_WD_TIMER_3_CTL2;
break;
case DPU_VSYNC_SOURCE_WD_TIMER_2:
wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_2_CTL;
wd_ctl2 = MDP_WD_TIMER_2_CTL2;
break;
case DPU_VSYNC_SOURCE_WD_TIMER_1:
wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_1_CTL;
wd_ctl2 = MDP_WD_TIMER_1_CTL2;
break;
case DPU_VSYNC_SOURCE_WD_TIMER_0:
default:
wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
wd_ctl = MDP_WD_TIMER_0_CTL;
wd_ctl2 = MDP_WD_TIMER_0_CTL2;
break;
}
DPU_REG_WRITE(c, wd_load_value,
CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
reg = DPU_REG_READ(c, wd_ctl2);
reg |= BIT(8); /* enable heartbeat timer */
reg |= BIT(0); /* enable WD timer */
DPU_REG_WRITE(c, wd_ctl2, reg);
/* make sure that timers are enabled/disabled for vsync state */
wmb();
}
}
static void dpu_hw_setup_vsync_source_and_vsync_sel(struct dpu_hw_mdp *mdp,
struct dpu_vsync_source_cfg *cfg)
{
struct dpu_hw_blk_reg_map *c;
u32 reg, i;
static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
return;
c = &mdp->hw;
reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
for (i = 0; i < cfg->pp_count; i++) {
int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
if (pp_idx >= ARRAY_SIZE(pp_offset))
continue;
reg &= ~(0xf << pp_offset[pp_idx]);
reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
}
DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
dpu_hw_setup_vsync_source(mdp, cfg);
}
static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
struct dpu_danger_safe_status *status)
{
struct dpu_hw_blk_reg_map *c;
u32 value;
if (!mdp || !status)
return;
c = &mdp->hw;
value = DPU_REG_READ(c, SAFE_STATUS);
status->mdp = (value >> 0) & 0x1;
status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
}
static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
{
struct dpu_hw_blk_reg_map *c;
if (!mdp)
return;
c = &mdp->hw;
DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
}
static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
unsigned long cap)
{
ops->setup_split_pipe = dpu_hw_setup_split_pipe;
ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
ops->get_danger_status = dpu_hw_get_danger_status;
if (cap & BIT(DPU_MDP_VSYNC_SEL))
ops->setup_vsync_source = dpu_hw_setup_vsync_source_and_vsync_sel;
else
ops->setup_vsync_source = dpu_hw_setup_vsync_source;
ops->get_safe_status = dpu_hw_get_safe_status;
if (cap & BIT(DPU_MDP_AUDIO_SELECT))
ops->intf_audio_select = dpu_hw_intf_audio_select;
}
static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp,
const struct dpu_mdss_cfg *m,
void __iomem *addr,
struct dpu_hw_blk_reg_map *b)
{
int i;
if (!m || !addr || !b)
return ERR_PTR(-EINVAL);
for (i = 0; i < m->mdp_count; i++) {
if (mdp == m->mdp[i].id) {
b->blk_addr = addr + m->mdp[i].base;
b->log_mask = DPU_DBG_MASK_TOP;
return &m->mdp[i];
}
}
return ERR_PTR(-EINVAL);
}
struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx,
void __iomem *addr,
const struct dpu_mdss_cfg *m)
{
struct dpu_hw_mdp *mdp;
const struct dpu_mdp_cfg *cfg;
if (!addr || !m)
return ERR_PTR(-EINVAL);
mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
if (!mdp)
return ERR_PTR(-ENOMEM);
cfg = _top_offset(idx, m, addr, &mdp->hw);
if (IS_ERR_OR_NULL(cfg)) {
kfree(mdp);
return ERR_PTR(-EINVAL);
}
/*
* Assign ops
*/
mdp->idx = idx;
mdp->caps = cfg;
_setup_mdp_ops(&mdp->ops, mdp->caps->features);
return mdp;
}
void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
{
kfree(mdp);
}