linux-zen-desktop/drivers/gpu/drm/nouveau/nvkm/engine/disp/dp.c

854 lines
23 KiB
C

/*
* Copyright 2014 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "dp.h"
#include "conn.h"
#include "head.h"
#include "ior.h"
#include <drm/display/drm_dp.h>
#include <subdev/bios.h>
#include <subdev/bios/init.h>
#include <subdev/gpio.h>
#include <subdev/i2c.h>
#include <nvif/event.h>
/* IED scripts are no longer used by UEFI/RM from Ampere, but have been updated for
* the x86 option ROM. However, the relevant VBIOS table versions weren't modified,
* so we're unable to detect this in a nice way.
*/
#define AMPERE_IED_HACK(disp) ((disp)->engine.subdev.device->card_type >= GA100)
struct lt_state {
struct nvkm_outp *outp;
int repeaters;
int repeater;
u8 stat[6];
u8 conf[4];
bool pc2;
u8 pc2stat;
u8 pc2conf[2];
};
static int
nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay)
{
struct nvkm_outp *outp = lt->outp;
u32 addr;
int ret;
usleep_range(delay, delay * 2);
if (lt->repeater)
addr = DPCD_LTTPR_LANE0_1_STATUS(lt->repeater);
else
addr = DPCD_LS02;
ret = nvkm_rdaux(outp->dp.aux, addr, &lt->stat[0], 3);
if (ret)
return ret;
if (lt->repeater)
addr = DPCD_LTTPR_LANE0_1_ADJUST(lt->repeater);
else
addr = DPCD_LS06;
ret = nvkm_rdaux(outp->dp.aux, addr, &lt->stat[4], 2);
if (ret)
return ret;
if (pc) {
ret = nvkm_rdaux(outp->dp.aux, DPCD_LS0C, &lt->pc2stat, 1);
if (ret)
lt->pc2stat = 0x00;
OUTP_TRACE(outp, "status %6ph pc2 %02x", lt->stat, lt->pc2stat);
} else {
OUTP_TRACE(outp, "status %6ph", lt->stat);
}
return 0;
}
static int
nvkm_dp_train_drive(struct lt_state *lt, bool pc)
{
struct nvkm_outp *outp = lt->outp;
struct nvkm_ior *ior = outp->ior;
struct nvkm_bios *bios = ior->disp->engine.subdev.device->bios;
struct nvbios_dpout info;
struct nvbios_dpcfg ocfg;
u8 ver, hdr, cnt, len;
u32 addr;
u32 data;
int ret, i;
for (i = 0; i < ior->dp.nr; i++) {
u8 lane = (lt->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf;
u8 lpc2 = (lt->pc2stat >> (i * 2)) & 0x3;
u8 lpre = (lane & 0x0c) >> 2;
u8 lvsw = (lane & 0x03) >> 0;
u8 hivs = 3 - lpre;
u8 hipe = 3;
u8 hipc = 3;
if (lpc2 >= hipc)
lpc2 = hipc | DPCD_LC0F_LANE0_MAX_POST_CURSOR2_REACHED;
if (lpre >= hipe) {
lpre = hipe | DPCD_LC03_MAX_SWING_REACHED; /* yes. */
lvsw = hivs = 3 - (lpre & 3);
} else
if (lvsw >= hivs) {
lvsw = hivs | DPCD_LC03_MAX_SWING_REACHED;
}
lt->conf[i] = (lpre << 3) | lvsw;
lt->pc2conf[i >> 1] |= lpc2 << ((i & 1) * 4);
OUTP_TRACE(outp, "config lane %d %02x %02x", i, lt->conf[i], lpc2);
if (lt->repeater != lt->repeaters)
continue;
data = nvbios_dpout_match(bios, outp->info.hasht, outp->info.hashm,
&ver, &hdr, &cnt, &len, &info);
if (!data)
continue;
data = nvbios_dpcfg_match(bios, data, lpc2 & 3, lvsw & 3, lpre & 3,
&ver, &hdr, &cnt, &len, &ocfg);
if (!data)
continue;
ior->func->dp->drive(ior, i, ocfg.pc, ocfg.dc, ocfg.pe, ocfg.tx_pu);
}
if (lt->repeater)
addr = DPCD_LTTPR_LANE0_SET(lt->repeater);
else
addr = DPCD_LC03(0);
ret = nvkm_wraux(outp->dp.aux, addr, lt->conf, 4);
if (ret)
return ret;
if (pc) {
ret = nvkm_wraux(outp->dp.aux, DPCD_LC0F, lt->pc2conf, 2);
if (ret)
return ret;
}
return 0;
}
static void
nvkm_dp_train_pattern(struct lt_state *lt, u8 pattern)
{
struct nvkm_outp *outp = lt->outp;
u32 addr;
u8 sink_tp;
OUTP_TRACE(outp, "training pattern %d", pattern);
outp->ior->func->dp->pattern(outp->ior, pattern);
if (lt->repeater)
addr = DPCD_LTTPR_PATTERN_SET(lt->repeater);
else
addr = DPCD_LC02;
nvkm_rdaux(outp->dp.aux, addr, &sink_tp, 1);
sink_tp &= ~DPCD_LC02_TRAINING_PATTERN_SET;
sink_tp |= (pattern != 4) ? pattern : 7;
if (pattern != 0)
sink_tp |= DPCD_LC02_SCRAMBLING_DISABLE;
else
sink_tp &= ~DPCD_LC02_SCRAMBLING_DISABLE;
nvkm_wraux(outp->dp.aux, addr, &sink_tp, 1);
}
static int
nvkm_dp_train_eq(struct lt_state *lt)
{
struct nvkm_i2c_aux *aux = lt->outp->dp.aux;
bool eq_done = false, cr_done = true;
int tries = 0, usec = 0, i;
u8 data;
if (lt->repeater) {
if (!nvkm_rdaux(aux, DPCD_LTTPR_AUX_RD_INTERVAL(lt->repeater), &data, sizeof(data)))
usec = (data & DPCD_RC0E_AUX_RD_INTERVAL) * 4000;
nvkm_dp_train_pattern(lt, 4);
} else {
if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] >= 0x14 &&
lt->outp->dp.dpcd[DPCD_RC03] & DPCD_RC03_TPS4_SUPPORTED)
nvkm_dp_train_pattern(lt, 4);
else
if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] >= 0x12 &&
lt->outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED)
nvkm_dp_train_pattern(lt, 3);
else
nvkm_dp_train_pattern(lt, 2);
usec = (lt->outp->dp.dpcd[DPCD_RC0E] & DPCD_RC0E_AUX_RD_INTERVAL) * 4000;
}
do {
if ((tries &&
nvkm_dp_train_drive(lt, lt->pc2)) ||
nvkm_dp_train_sense(lt, lt->pc2, usec ? usec : 400))
break;
eq_done = !!(lt->stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE);
for (i = 0; i < lt->outp->ior->dp.nr && eq_done; i++) {
u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DPCD_LS02_LANE0_CR_DONE))
cr_done = false;
if (!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) ||
!(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED))
eq_done = false;
}
} while (!eq_done && cr_done && ++tries <= 5);
return eq_done ? 0 : -1;
}
static int
nvkm_dp_train_cr(struct lt_state *lt)
{
bool cr_done = false, abort = false;
int voltage = lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET;
int tries = 0, usec = 0, i;
nvkm_dp_train_pattern(lt, 1);
if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] < 0x14 && !lt->repeater)
usec = (lt->outp->dp.dpcd[DPCD_RC0E] & DPCD_RC0E_AUX_RD_INTERVAL) * 4000;
do {
if (nvkm_dp_train_drive(lt, false) ||
nvkm_dp_train_sense(lt, false, usec ? usec : 100))
break;
cr_done = true;
for (i = 0; i < lt->outp->ior->dp.nr; i++) {
u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DPCD_LS02_LANE0_CR_DONE)) {
cr_done = false;
if (lt->conf[i] & DPCD_LC03_MAX_SWING_REACHED)
abort = true;
break;
}
}
if ((lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET) != voltage) {
voltage = lt->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET;
tries = 0;
}
} while (!cr_done && !abort && ++tries < 5);
return cr_done ? 0 : -1;
}
static int
nvkm_dp_train_link(struct nvkm_outp *outp, int rate)
{
struct nvkm_ior *ior = outp->ior;
struct lt_state lt = {
.outp = outp,
.pc2 = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED,
};
u8 sink[2], data;
int ret;
OUTP_DBG(outp, "training %dx%02x", ior->dp.nr, ior->dp.bw);
/* Select LTTPR non-transparent mode if we have a valid configuration,
* use transparent mode otherwise.
*/
if (outp->dp.lttpr[0] >= 0x14) {
data = DPCD_LTTPR_MODE_TRANSPARENT;
nvkm_wraux(outp->dp.aux, DPCD_LTTPR_MODE, &data, sizeof(data));
if (outp->dp.lttprs) {
data = DPCD_LTTPR_MODE_NON_TRANSPARENT;
nvkm_wraux(outp->dp.aux, DPCD_LTTPR_MODE, &data, sizeof(data));
lt.repeaters = outp->dp.lttprs;
}
}
/* Set desired link configuration on the sink. */
sink[0] = (outp->dp.rate[rate].dpcd < 0) ? ior->dp.bw : 0;
sink[1] = ior->dp.nr;
if (ior->dp.ef)
sink[1] |= DPCD_LC01_ENHANCED_FRAME_EN;
ret = nvkm_wraux(outp->dp.aux, DPCD_LC00_LINK_BW_SET, sink, 2);
if (ret)
return ret;
if (outp->dp.rate[rate].dpcd >= 0) {
ret = nvkm_rdaux(outp->dp.aux, DPCD_LC15_LINK_RATE_SET, &sink[0], sizeof(sink[0]));
if (ret)
return ret;
sink[0] &= ~DPCD_LC15_LINK_RATE_SET_MASK;
sink[0] |= outp->dp.rate[rate].dpcd;
ret = nvkm_wraux(outp->dp.aux, DPCD_LC15_LINK_RATE_SET, &sink[0], sizeof(sink[0]));
if (ret)
return ret;
}
/* Attempt to train the link in this configuration. */
for (lt.repeater = lt.repeaters; lt.repeater >= 0; lt.repeater--) {
if (lt.repeater)
OUTP_DBG(outp, "training LTTPR%d", lt.repeater);
else
OUTP_DBG(outp, "training sink");
memset(lt.stat, 0x00, sizeof(lt.stat));
ret = nvkm_dp_train_cr(&lt);
if (ret == 0)
ret = nvkm_dp_train_eq(&lt);
nvkm_dp_train_pattern(&lt, 0);
}
return ret;
}
static int
nvkm_dp_train_links(struct nvkm_outp *outp, int rate)
{
struct nvkm_ior *ior = outp->ior;
struct nvkm_disp *disp = outp->disp;
struct nvkm_subdev *subdev = &disp->engine.subdev;
struct nvkm_bios *bios = subdev->device->bios;
u32 lnkcmp;
int ret;
OUTP_DBG(outp, "programming link for %dx%02x", ior->dp.nr, ior->dp.bw);
/* Intersect misc. capabilities of the OR and sink. */
if (disp->engine.subdev.device->chipset < 0x110)
outp->dp.dpcd[DPCD_RC03] &= ~DPCD_RC03_TPS4_SUPPORTED;
if (disp->engine.subdev.device->chipset < 0xd0)
outp->dp.dpcd[DPCD_RC02] &= ~DPCD_RC02_TPS3_SUPPORTED;
if (AMPERE_IED_HACK(disp) && (lnkcmp = outp->dp.info.script[0])) {
/* Execute BeforeLinkTraining script from DP Info table. */
while (ior->dp.bw < nvbios_rd08(bios, lnkcmp))
lnkcmp += 3;
lnkcmp = nvbios_rd16(bios, lnkcmp + 1);
nvbios_init(&outp->disp->engine.subdev, lnkcmp,
init.outp = &outp->info;
init.or = ior->id;
init.link = ior->asy.link;
);
}
/* Set desired link configuration on the source. */
if ((lnkcmp = outp->dp.info.lnkcmp)) {
if (outp->dp.version < 0x30) {
while ((ior->dp.bw * 2700) < nvbios_rd16(bios, lnkcmp))
lnkcmp += 4;
lnkcmp = nvbios_rd16(bios, lnkcmp + 2);
} else {
while (ior->dp.bw < nvbios_rd08(bios, lnkcmp))
lnkcmp += 3;
lnkcmp = nvbios_rd16(bios, lnkcmp + 1);
}
nvbios_init(subdev, lnkcmp,
init.outp = &outp->info;
init.or = ior->id;
init.link = ior->asy.link;
);
}
ret = ior->func->dp->links(ior, outp->dp.aux);
if (ret) {
if (ret < 0) {
OUTP_ERR(outp, "train failed with %d", ret);
return ret;
}
return 0;
}
ior->func->dp->power(ior, ior->dp.nr);
/* Attempt to train the link in this configuration. */
return nvkm_dp_train_link(outp, rate);
}
static void
nvkm_dp_train_fini(struct nvkm_outp *outp)
{
/* Execute AfterLinkTraining script from DP Info table. */
nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[1],
init.outp = &outp->info;
init.or = outp->ior->id;
init.link = outp->ior->asy.link;
);
}
static void
nvkm_dp_train_init(struct nvkm_outp *outp)
{
/* Execute EnableSpread/DisableSpread script from DP Info table. */
if (outp->dp.dpcd[DPCD_RC03] & DPCD_RC03_MAX_DOWNSPREAD) {
nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[2],
init.outp = &outp->info;
init.or = outp->ior->id;
init.link = outp->ior->asy.link;
);
} else {
nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[3],
init.outp = &outp->info;
init.or = outp->ior->id;
init.link = outp->ior->asy.link;
);
}
if (!AMPERE_IED_HACK(outp->disp)) {
/* Execute BeforeLinkTraining script from DP Info table. */
nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[0],
init.outp = &outp->info;
init.or = outp->ior->id;
init.link = outp->ior->asy.link;
);
}
}
static int
nvkm_dp_train(struct nvkm_outp *outp, u32 dataKBps)
{
struct nvkm_ior *ior = outp->ior;
int ret = -EINVAL, nr, rate;
u8 pwr;
/* Retraining link? Skip source configuration, it can mess up the active modeset. */
if (atomic_read(&outp->dp.lt.done)) {
for (rate = 0; rate < outp->dp.rates; rate++) {
if (outp->dp.rate[rate].rate == ior->dp.bw * 27000)
return nvkm_dp_train_link(outp, ret);
}
WARN_ON(1);
return -EINVAL;
}
/* Ensure sink is not in a low-power state. */
if (!nvkm_rdaux(outp->dp.aux, DPCD_SC00, &pwr, 1)) {
if ((pwr & DPCD_SC00_SET_POWER) != DPCD_SC00_SET_POWER_D0) {
pwr &= ~DPCD_SC00_SET_POWER;
pwr |= DPCD_SC00_SET_POWER_D0;
nvkm_wraux(outp->dp.aux, DPCD_SC00, &pwr, 1);
}
}
ior->dp.mst = outp->dp.lt.mst;
ior->dp.ef = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP;
ior->dp.nr = 0;
/* Link training. */
OUTP_DBG(outp, "training");
nvkm_dp_train_init(outp);
/* Validate and train at configuration requested (if any) on ACQUIRE. */
if (outp->dp.lt.nr) {
for (nr = outp->dp.links; ret < 0 && nr; nr >>= 1) {
for (rate = 0; nr == outp->dp.lt.nr && rate < outp->dp.rates; rate++) {
if (outp->dp.rate[rate].rate / 27000 == outp->dp.lt.bw) {
ior->dp.bw = outp->dp.rate[rate].rate / 27000;
ior->dp.nr = nr;
ret = nvkm_dp_train_links(outp, rate);
}
}
}
}
/* Otherwise, loop through all valid link configurations that support the data rate. */
for (nr = outp->dp.links; ret < 0 && nr; nr >>= 1) {
for (rate = 0; ret < 0 && rate < outp->dp.rates; rate++) {
if (outp->dp.rate[rate].rate * nr >= dataKBps || WARN_ON(!ior->dp.nr)) {
/* Program selected link configuration. */
ior->dp.bw = outp->dp.rate[rate].rate / 27000;
ior->dp.nr = nr;
ret = nvkm_dp_train_links(outp, rate);
}
}
}
/* Finish up. */
nvkm_dp_train_fini(outp);
if (ret < 0)
OUTP_ERR(outp, "training failed");
else
OUTP_DBG(outp, "training done");
atomic_set(&outp->dp.lt.done, 1);
return ret;
}
void
nvkm_dp_disable(struct nvkm_outp *outp, struct nvkm_ior *ior)
{
/* Execute DisableLT script from DP Info Table. */
nvbios_init(&ior->disp->engine.subdev, outp->dp.info.script[4],
init.outp = &outp->info;
init.or = ior->id;
init.link = ior->arm.link;
);
}
static void
nvkm_dp_release(struct nvkm_outp *outp)
{
/* Prevent link from being retrained if sink sends an IRQ. */
atomic_set(&outp->dp.lt.done, 0);
outp->ior->dp.nr = 0;
}
static int
nvkm_dp_acquire(struct nvkm_outp *outp)
{
struct nvkm_ior *ior = outp->ior;
struct nvkm_head *head;
bool retrain = true;
u32 datakbps = 0;
u32 dataKBps;
u32 linkKBps;
u8 stat[3];
int ret, i;
mutex_lock(&outp->dp.mutex);
/* Check that link configuration meets current requirements. */
list_for_each_entry(head, &outp->disp->heads, head) {
if (ior->asy.head & (1 << head->id)) {
u32 khz = (head->asy.hz >> ior->asy.rgdiv) / 1000;
datakbps += khz * head->asy.or.depth;
}
}
linkKBps = ior->dp.bw * 27000 * ior->dp.nr;
dataKBps = DIV_ROUND_UP(datakbps, 8);
OUTP_DBG(outp, "data %d KB/s link %d KB/s mst %d->%d",
dataKBps, linkKBps, ior->dp.mst, outp->dp.lt.mst);
if (linkKBps < dataKBps || ior->dp.mst != outp->dp.lt.mst) {
OUTP_DBG(outp, "link requirements changed");
goto done;
}
/* Check that link is still trained. */
ret = nvkm_rdaux(outp->dp.aux, DPCD_LS02, stat, 3);
if (ret) {
OUTP_DBG(outp, "failed to read link status, assuming no sink");
goto done;
}
if (stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE) {
for (i = 0; i < ior->dp.nr; i++) {
u8 lane = (stat[i >> 1] >> ((i & 1) * 4)) & 0x0f;
if (!(lane & DPCD_LS02_LANE0_CR_DONE) ||
!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) ||
!(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) {
OUTP_DBG(outp, "lane %d not equalised", lane);
goto done;
}
}
retrain = false;
} else {
OUTP_DBG(outp, "no inter-lane alignment");
}
done:
if (retrain || !atomic_read(&outp->dp.lt.done))
ret = nvkm_dp_train(outp, dataKBps);
mutex_unlock(&outp->dp.mutex);
return ret;
}
static bool
nvkm_dp_enable_supported_link_rates(struct nvkm_outp *outp)
{
u8 sink_rates[DPCD_RC10_SUPPORTED_LINK_RATES__SIZE];
int i, j, k;
if (outp->conn->info.type != DCB_CONNECTOR_eDP ||
outp->dp.dpcd[DPCD_RC00_DPCD_REV] < 0x13 ||
nvkm_rdaux(outp->dp.aux, DPCD_RC10_SUPPORTED_LINK_RATES(0),
sink_rates, sizeof(sink_rates)))
return false;
for (i = 0; i < ARRAY_SIZE(sink_rates); i += 2) {
const u32 rate = ((sink_rates[i + 1] << 8) | sink_rates[i]) * 200 / 10;
if (!rate || WARN_ON(outp->dp.rates == ARRAY_SIZE(outp->dp.rate)))
break;
if (rate > outp->info.dpconf.link_bw * 27000) {
OUTP_DBG(outp, "rate %d !outp", rate);
continue;
}
for (j = 0; j < outp->dp.rates; j++) {
if (rate > outp->dp.rate[j].rate) {
for (k = outp->dp.rates; k > j; k--)
outp->dp.rate[k] = outp->dp.rate[k - 1];
break;
}
}
outp->dp.rate[j].dpcd = i / 2;
outp->dp.rate[j].rate = rate;
outp->dp.rates++;
}
for (i = 0; i < outp->dp.rates; i++)
OUTP_DBG(outp, "link_rate[%d] = %d", outp->dp.rate[i].dpcd, outp->dp.rate[i].rate);
return outp->dp.rates != 0;
}
/* XXX: This is a big fat hack, and this is just drm_dp_read_dpcd_caps()
* converted to work inside nvkm. This is a temporary holdover until we start
* passing the drm_dp_aux device through NVKM
*/
static int
nvkm_dp_read_dpcd_caps(struct nvkm_outp *outp)
{
struct nvkm_i2c_aux *aux = outp->dp.aux;
u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
int ret;
ret = nvkm_rdaux(aux, DPCD_RC00_DPCD_REV, outp->dp.dpcd, DP_RECEIVER_CAP_SIZE);
if (ret < 0)
return ret;
/*
* Prior to DP1.3 the bit represented by
* DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
* If it is set DP_DPCD_REV at 0000h could be at a value less than
* the true capability of the panel. The only way to check is to
* then compare 0000h and 2200h.
*/
if (!(outp->dp.dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
return 0;
ret = nvkm_rdaux(aux, DP_DP13_DPCD_REV, dpcd_ext, sizeof(dpcd_ext));
if (ret < 0)
return ret;
if (outp->dp.dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
OUTP_DBG(outp, "Extended DPCD rev less than base DPCD rev (%d > %d)\n",
outp->dp.dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
return 0;
}
if (!memcmp(outp->dp.dpcd, dpcd_ext, sizeof(dpcd_ext)))
return 0;
memcpy(outp->dp.dpcd, dpcd_ext, sizeof(dpcd_ext));
return 0;
}
void
nvkm_dp_enable(struct nvkm_outp *outp, bool auxpwr)
{
struct nvkm_gpio *gpio = outp->disp->engine.subdev.device->gpio;
struct nvkm_i2c_aux *aux = outp->dp.aux;
if (auxpwr && !outp->dp.aux_pwr) {
/* eDP panels need powering on by us (if the VBIOS doesn't default it
* to on) before doing any AUX channel transactions. LVDS panel power
* is handled by the SOR itself, and not required for LVDS DDC.
*/
if (outp->conn->info.type == DCB_CONNECTOR_eDP) {
int power = nvkm_gpio_get(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff);
if (power == 0) {
nvkm_gpio_set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 1);
outp->dp.aux_pwr_pu = true;
}
/* We delay here unconditionally, even if already powered,
* because some laptop panels having a significant resume
* delay before the panel begins responding.
*
* This is likely a bit of a hack, but no better idea for
* handling this at the moment.
*/
msleep(300);
}
OUTP_DBG(outp, "aux power -> always");
nvkm_i2c_aux_monitor(aux, true);
outp->dp.aux_pwr = true;
/* Detect any LTTPRs before reading DPCD receiver caps. */
if (!nvkm_rdaux(aux, DPCD_LTTPR_REV, outp->dp.lttpr, sizeof(outp->dp.lttpr)) &&
outp->dp.lttpr[0] >= 0x14 && outp->dp.lttpr[2]) {
switch (outp->dp.lttpr[2]) {
case 0x80: outp->dp.lttprs = 1; break;
case 0x40: outp->dp.lttprs = 2; break;
case 0x20: outp->dp.lttprs = 3; break;
case 0x10: outp->dp.lttprs = 4; break;
case 0x08: outp->dp.lttprs = 5; break;
case 0x04: outp->dp.lttprs = 6; break;
case 0x02: outp->dp.lttprs = 7; break;
case 0x01: outp->dp.lttprs = 8; break;
default:
/* Unknown LTTPR count, we'll switch to transparent mode. */
WARN_ON(1);
outp->dp.lttprs = 0;
break;
}
} else {
/* No LTTPR support, or zero LTTPR count - don't touch it at all. */
memset(outp->dp.lttpr, 0x00, sizeof(outp->dp.lttpr));
}
if (!nvkm_dp_read_dpcd_caps(outp)) {
const u8 rates[] = { 0x1e, 0x14, 0x0a, 0x06, 0 };
const u8 *rate;
int rate_max;
outp->dp.rates = 0;
outp->dp.links = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_MAX_LANE_COUNT;
outp->dp.links = min(outp->dp.links, outp->info.dpconf.link_nr);
if (outp->dp.lttprs && outp->dp.lttpr[4])
outp->dp.links = min_t(int, outp->dp.links, outp->dp.lttpr[4]);
rate_max = outp->dp.dpcd[DPCD_RC01_MAX_LINK_RATE];
rate_max = min(rate_max, outp->info.dpconf.link_bw);
if (outp->dp.lttprs && outp->dp.lttpr[1])
rate_max = min_t(int, rate_max, outp->dp.lttpr[1]);
if (!nvkm_dp_enable_supported_link_rates(outp)) {
for (rate = rates; *rate; rate++) {
if (*rate > rate_max)
continue;
if (WARN_ON(outp->dp.rates == ARRAY_SIZE(outp->dp.rate)))
break;
outp->dp.rate[outp->dp.rates].dpcd = -1;
outp->dp.rate[outp->dp.rates].rate = *rate * 27000;
outp->dp.rates++;
}
}
}
} else
if (!auxpwr && outp->dp.aux_pwr) {
OUTP_DBG(outp, "aux power -> demand");
nvkm_i2c_aux_monitor(aux, false);
outp->dp.aux_pwr = false;
atomic_set(&outp->dp.lt.done, 0);
/* Restore eDP panel GPIO to its prior state if we changed it, as
* it could potentially interfere with other outputs.
*/
if (outp->conn->info.type == DCB_CONNECTOR_eDP) {
if (outp->dp.aux_pwr_pu) {
nvkm_gpio_set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 0);
outp->dp.aux_pwr_pu = false;
}
}
}
}
static void
nvkm_dp_fini(struct nvkm_outp *outp)
{
nvkm_dp_enable(outp, false);
}
static void
nvkm_dp_init(struct nvkm_outp *outp)
{
nvkm_dp_enable(outp, outp->dp.enabled);
}
static void *
nvkm_dp_dtor(struct nvkm_outp *outp)
{
return outp;
}
static const struct nvkm_outp_func
nvkm_dp_func = {
.dtor = nvkm_dp_dtor,
.init = nvkm_dp_init,
.fini = nvkm_dp_fini,
.acquire = nvkm_dp_acquire,
.release = nvkm_dp_release,
.disable = nvkm_dp_disable,
};
int
nvkm_dp_new(struct nvkm_disp *disp, int index, struct dcb_output *dcbE, struct nvkm_outp **poutp)
{
struct nvkm_device *device = disp->engine.subdev.device;
struct nvkm_bios *bios = device->bios;
struct nvkm_i2c *i2c = device->i2c;
struct nvkm_outp *outp;
u8 hdr, cnt, len;
u32 data;
int ret;
ret = nvkm_outp_new_(&nvkm_dp_func, disp, index, dcbE, poutp);
outp = *poutp;
if (ret)
return ret;
if (dcbE->location == 0)
outp->dp.aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_CCB(dcbE->i2c_index));
else
outp->dp.aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbE->extdev));
if (!outp->dp.aux) {
OUTP_ERR(outp, "no aux");
return -EINVAL;
}
/* bios data is not optional */
data = nvbios_dpout_match(bios, outp->info.hasht, outp->info.hashm,
&outp->dp.version, &hdr, &cnt, &len, &outp->dp.info);
if (!data) {
OUTP_ERR(outp, "no bios dp data");
return -EINVAL;
}
OUTP_DBG(outp, "bios dp %02x %02x %02x %02x", outp->dp.version, hdr, cnt, len);
mutex_init(&outp->dp.mutex);
atomic_set(&outp->dp.lt.done, 0);
return 0;
}