linux-zen-desktop/drivers/gpu/drm/nouveau/nvkm/subdev/ltc/gf100.c

258 lines
7.1 KiB
C

/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "priv.h"
#include <core/memory.h>
#include <subdev/fb.h>
#include <subdev/timer.h>
void
gf100_ltc_cbc_clear(struct nvkm_ltc *ltc, u32 start, u32 limit)
{
struct nvkm_device *device = ltc->subdev.device;
nvkm_wr32(device, 0x17e8cc, start);
nvkm_wr32(device, 0x17e8d0, limit);
nvkm_wr32(device, 0x17e8c8, 0x00000004);
}
void
gf100_ltc_cbc_wait(struct nvkm_ltc *ltc)
{
struct nvkm_device *device = ltc->subdev.device;
int c, s;
for (c = 0; c < ltc->ltc_nr; c++) {
for (s = 0; s < ltc->lts_nr; s++) {
const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400);
nvkm_msec(device, 2000,
if (!nvkm_rd32(device, addr))
break;
);
}
}
}
void
gf100_ltc_zbc_clear_color(struct nvkm_ltc *ltc, int i, const u32 color[4])
{
struct nvkm_device *device = ltc->subdev.device;
nvkm_mask(device, 0x17ea44, 0x0000000f, i);
nvkm_wr32(device, 0x17ea48, color[0]);
nvkm_wr32(device, 0x17ea4c, color[1]);
nvkm_wr32(device, 0x17ea50, color[2]);
nvkm_wr32(device, 0x17ea54, color[3]);
}
void
gf100_ltc_zbc_clear_depth(struct nvkm_ltc *ltc, int i, const u32 depth)
{
struct nvkm_device *device = ltc->subdev.device;
nvkm_mask(device, 0x17ea44, 0x0000000f, i);
nvkm_wr32(device, 0x17ea58, depth);
}
const struct nvkm_bitfield
gf100_ltc_lts_intr_name[] = {
{ 0x00000001, "IDLE_ERROR_IQ" },
{ 0x00000002, "IDLE_ERROR_CBC" },
{ 0x00000004, "IDLE_ERROR_TSTG" },
{ 0x00000008, "IDLE_ERROR_DSTG" },
{ 0x00000010, "EVICTED_CB" },
{ 0x00000020, "ILLEGAL_COMPSTAT" },
{ 0x00000040, "BLOCKLINEAR_CB" },
{ 0x00000100, "ECC_SEC_ERROR" },
{ 0x00000200, "ECC_DED_ERROR" },
{ 0x00000400, "DEBUG" },
{ 0x00000800, "ATOMIC_TO_Z" },
{ 0x00001000, "ILLEGAL_ATOMIC" },
{ 0x00002000, "BLKACTIVITY_ERR" },
{}
};
static void
gf100_ltc_lts_intr(struct nvkm_ltc *ltc, int c, int s)
{
struct nvkm_subdev *subdev = &ltc->subdev;
struct nvkm_device *device = subdev->device;
u32 base = 0x141000 + (c * 0x2000) + (s * 0x400);
u32 intr = nvkm_rd32(device, base + 0x020);
u32 stat = intr & 0x0000ffff;
char msg[128];
if (stat) {
nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat);
nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg);
}
nvkm_wr32(device, base + 0x020, intr);
}
void
gf100_ltc_intr(struct nvkm_ltc *ltc)
{
struct nvkm_device *device = ltc->subdev.device;
u32 mask;
mask = nvkm_rd32(device, 0x00017c);
while (mask) {
u32 s, c = __ffs(mask);
for (s = 0; s < ltc->lts_nr; s++)
gf100_ltc_lts_intr(ltc, c, s);
mask &= ~(1 << c);
}
}
void
gf100_ltc_invalidate(struct nvkm_ltc *ltc)
{
struct nvkm_device *device = ltc->subdev.device;
s64 taken;
nvkm_wr32(device, 0x70004, 0x00000001);
taken = nvkm_wait_msec(device, 2000, 0x70004, 0x00000003, 0x00000000);
if (taken > 0)
nvkm_debug(&ltc->subdev, "LTC invalidate took %lld ns\n", taken);
}
void
gf100_ltc_flush(struct nvkm_ltc *ltc)
{
struct nvkm_device *device = ltc->subdev.device;
s64 taken;
nvkm_wr32(device, 0x70010, 0x00000001);
taken = nvkm_wait_msec(device, 2000, 0x70010, 0x00000003, 0x00000000);
if (taken > 0)
nvkm_debug(&ltc->subdev, "LTC flush took %lld ns\n", taken);
}
/* TODO: Figure out tag memory details and drop the over-cautious allocation.
*/
int
gf100_ltc_oneinit_tag_ram(struct nvkm_ltc *ltc)
{
struct nvkm_device *device = ltc->subdev.device;
struct nvkm_fb *fb = device->fb;
struct nvkm_ram *ram = fb->ram;
u32 bits = (nvkm_rd32(device, 0x100c80) & 0x00001000) ? 16 : 17;
u32 tag_size, tag_margin, tag_align;
int ret;
/* No VRAM, no tags for now. */
if (!ram) {
ltc->num_tags = 0;
goto mm_init;
}
/* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
ltc->num_tags = (ram->size >> 17) / 4;
if (ltc->num_tags > (1 << bits))
ltc->num_tags = 1 << bits; /* we have 16/17 bits in PTE */
ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */
tag_align = ltc->ltc_nr * 0x800;
tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
/* 4 part 4 sub: 0x2000 bytes for 56 tags */
/* 3 part 4 sub: 0x6000 bytes for 168 tags */
/*
* About 147 bytes per tag. Let's be safe and allocate x2, which makes
* 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
*
* For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
*/
tag_size = (ltc->num_tags / 64) * 0x6000 + tag_margin;
tag_size += tag_align;
ret = nvkm_ram_get(device, NVKM_RAM_MM_NORMAL, 0x01, 12, tag_size,
true, true, &ltc->tag_ram);
if (ret) {
ltc->num_tags = 0;
} else {
u64 tag_base = nvkm_memory_addr(ltc->tag_ram) + tag_margin;
tag_base += tag_align - 1;
do_div(tag_base, tag_align);
ltc->tag_base = tag_base;
}
mm_init:
nvkm_mm_fini(&fb->tags.mm);
return nvkm_mm_init(&fb->tags.mm, 0, 0, ltc->num_tags, 1);
}
int
gf100_ltc_oneinit(struct nvkm_ltc *ltc)
{
struct nvkm_device *device = ltc->subdev.device;
const u32 parts = nvkm_rd32(device, 0x022438);
const u32 mask = nvkm_rd32(device, 0x022554);
const u32 slice = nvkm_rd32(device, 0x17e8dc) >> 28;
int i;
for (i = 0; i < parts; i++) {
if (!(mask & (1 << i)))
ltc->ltc_nr++;
}
ltc->lts_nr = slice;
return gf100_ltc_oneinit_tag_ram(ltc);
}
static void
gf100_ltc_init(struct nvkm_ltc *ltc)
{
struct nvkm_device *device = ltc->subdev.device;
u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001);
nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr);
nvkm_wr32(device, 0x17e8d4, ltc->tag_base);
nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
}
static const struct nvkm_ltc_func
gf100_ltc = {
.oneinit = gf100_ltc_oneinit,
.init = gf100_ltc_init,
.intr = gf100_ltc_intr,
.cbc_clear = gf100_ltc_cbc_clear,
.cbc_wait = gf100_ltc_cbc_wait,
.zbc_color = 16,
.zbc_depth = 16,
.zbc_clear_color = gf100_ltc_zbc_clear_color,
.zbc_clear_depth = gf100_ltc_zbc_clear_depth,
.invalidate = gf100_ltc_invalidate,
.flush = gf100_ltc_flush,
};
int
gf100_ltc_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
struct nvkm_ltc **pltc)
{
return nvkm_ltc_new_(&gf100_ltc, device, type, inst, pltc);
}