1289 lines
31 KiB
C
1289 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
|
|
|
|
/* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
|
|
/* Copyright (c) 2008-2019, IBM Corporation */
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/types.h>
|
|
#include <linux/net.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/highmem.h>
|
|
#include <net/tcp.h>
|
|
|
|
#include <rdma/iw_cm.h>
|
|
#include <rdma/ib_verbs.h>
|
|
#include <rdma/ib_user_verbs.h>
|
|
|
|
#include "siw.h"
|
|
#include "siw_verbs.h"
|
|
#include "siw_mem.h"
|
|
|
|
#define MAX_HDR_INLINE \
|
|
(((uint32_t)(sizeof(struct siw_rreq_pkt) - \
|
|
sizeof(struct iwarp_send))) & 0xF8)
|
|
|
|
static struct page *siw_get_pblpage(struct siw_mem *mem, u64 addr, int *idx)
|
|
{
|
|
struct siw_pbl *pbl = mem->pbl;
|
|
u64 offset = addr - mem->va;
|
|
dma_addr_t paddr = siw_pbl_get_buffer(pbl, offset, NULL, idx);
|
|
|
|
if (paddr)
|
|
return ib_virt_dma_to_page(paddr);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Copy short payload at provided destination payload address
|
|
*/
|
|
static int siw_try_1seg(struct siw_iwarp_tx *c_tx, void *paddr)
|
|
{
|
|
struct siw_wqe *wqe = &c_tx->wqe_active;
|
|
struct siw_sge *sge = &wqe->sqe.sge[0];
|
|
u32 bytes = sge->length;
|
|
|
|
if (bytes > MAX_HDR_INLINE || wqe->sqe.num_sge != 1)
|
|
return MAX_HDR_INLINE + 1;
|
|
|
|
if (!bytes)
|
|
return 0;
|
|
|
|
if (tx_flags(wqe) & SIW_WQE_INLINE) {
|
|
memcpy(paddr, &wqe->sqe.sge[1], bytes);
|
|
} else {
|
|
struct siw_mem *mem = wqe->mem[0];
|
|
|
|
if (!mem->mem_obj) {
|
|
/* Kernel client using kva */
|
|
memcpy(paddr, ib_virt_dma_to_ptr(sge->laddr), bytes);
|
|
} else if (c_tx->in_syscall) {
|
|
if (copy_from_user(paddr, u64_to_user_ptr(sge->laddr),
|
|
bytes))
|
|
return -EFAULT;
|
|
} else {
|
|
unsigned int off = sge->laddr & ~PAGE_MASK;
|
|
struct page *p;
|
|
char *buffer;
|
|
int pbl_idx = 0;
|
|
|
|
if (!mem->is_pbl)
|
|
p = siw_get_upage(mem->umem, sge->laddr);
|
|
else
|
|
p = siw_get_pblpage(mem, sge->laddr, &pbl_idx);
|
|
|
|
if (unlikely(!p))
|
|
return -EFAULT;
|
|
|
|
buffer = kmap_local_page(p);
|
|
|
|
if (likely(PAGE_SIZE - off >= bytes)) {
|
|
memcpy(paddr, buffer + off, bytes);
|
|
} else {
|
|
unsigned long part = bytes - (PAGE_SIZE - off);
|
|
|
|
memcpy(paddr, buffer + off, part);
|
|
kunmap_local(buffer);
|
|
|
|
if (!mem->is_pbl)
|
|
p = siw_get_upage(mem->umem,
|
|
sge->laddr + part);
|
|
else
|
|
p = siw_get_pblpage(mem,
|
|
sge->laddr + part,
|
|
&pbl_idx);
|
|
if (unlikely(!p))
|
|
return -EFAULT;
|
|
|
|
buffer = kmap_local_page(p);
|
|
memcpy(paddr + part, buffer, bytes - part);
|
|
}
|
|
kunmap_local(buffer);
|
|
}
|
|
}
|
|
return (int)bytes;
|
|
}
|
|
|
|
#define PKT_FRAGMENTED 1
|
|
#define PKT_COMPLETE 0
|
|
|
|
/*
|
|
* siw_qp_prepare_tx()
|
|
*
|
|
* Prepare tx state for sending out one fpdu. Builds complete pkt
|
|
* if no user data or only immediate data are present.
|
|
*
|
|
* returns PKT_COMPLETE if complete pkt built, PKT_FRAGMENTED otherwise.
|
|
*/
|
|
static int siw_qp_prepare_tx(struct siw_iwarp_tx *c_tx)
|
|
{
|
|
struct siw_wqe *wqe = &c_tx->wqe_active;
|
|
char *crc = NULL;
|
|
int data = 0;
|
|
|
|
switch (tx_type(wqe)) {
|
|
case SIW_OP_READ:
|
|
case SIW_OP_READ_LOCAL_INV:
|
|
memcpy(&c_tx->pkt.ctrl,
|
|
&iwarp_pktinfo[RDMAP_RDMA_READ_REQ].ctrl,
|
|
sizeof(struct iwarp_ctrl));
|
|
|
|
c_tx->pkt.rreq.rsvd = 0;
|
|
c_tx->pkt.rreq.ddp_qn = htonl(RDMAP_UNTAGGED_QN_RDMA_READ);
|
|
c_tx->pkt.rreq.ddp_msn =
|
|
htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_RDMA_READ]);
|
|
c_tx->pkt.rreq.ddp_mo = 0;
|
|
c_tx->pkt.rreq.sink_stag = htonl(wqe->sqe.sge[0].lkey);
|
|
c_tx->pkt.rreq.sink_to =
|
|
cpu_to_be64(wqe->sqe.sge[0].laddr);
|
|
c_tx->pkt.rreq.source_stag = htonl(wqe->sqe.rkey);
|
|
c_tx->pkt.rreq.source_to = cpu_to_be64(wqe->sqe.raddr);
|
|
c_tx->pkt.rreq.read_size = htonl(wqe->sqe.sge[0].length);
|
|
|
|
c_tx->ctrl_len = sizeof(struct iwarp_rdma_rreq);
|
|
crc = (char *)&c_tx->pkt.rreq_pkt.crc;
|
|
break;
|
|
|
|
case SIW_OP_SEND:
|
|
if (tx_flags(wqe) & SIW_WQE_SOLICITED)
|
|
memcpy(&c_tx->pkt.ctrl,
|
|
&iwarp_pktinfo[RDMAP_SEND_SE].ctrl,
|
|
sizeof(struct iwarp_ctrl));
|
|
else
|
|
memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND].ctrl,
|
|
sizeof(struct iwarp_ctrl));
|
|
|
|
c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND;
|
|
c_tx->pkt.send.ddp_msn =
|
|
htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]);
|
|
c_tx->pkt.send.ddp_mo = 0;
|
|
|
|
c_tx->pkt.send_inv.inval_stag = 0;
|
|
|
|
c_tx->ctrl_len = sizeof(struct iwarp_send);
|
|
|
|
crc = (char *)&c_tx->pkt.send_pkt.crc;
|
|
data = siw_try_1seg(c_tx, crc);
|
|
break;
|
|
|
|
case SIW_OP_SEND_REMOTE_INV:
|
|
if (tx_flags(wqe) & SIW_WQE_SOLICITED)
|
|
memcpy(&c_tx->pkt.ctrl,
|
|
&iwarp_pktinfo[RDMAP_SEND_SE_INVAL].ctrl,
|
|
sizeof(struct iwarp_ctrl));
|
|
else
|
|
memcpy(&c_tx->pkt.ctrl,
|
|
&iwarp_pktinfo[RDMAP_SEND_INVAL].ctrl,
|
|
sizeof(struct iwarp_ctrl));
|
|
|
|
c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND;
|
|
c_tx->pkt.send.ddp_msn =
|
|
htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]);
|
|
c_tx->pkt.send.ddp_mo = 0;
|
|
|
|
c_tx->pkt.send_inv.inval_stag = cpu_to_be32(wqe->sqe.rkey);
|
|
|
|
c_tx->ctrl_len = sizeof(struct iwarp_send_inv);
|
|
|
|
crc = (char *)&c_tx->pkt.send_pkt.crc;
|
|
data = siw_try_1seg(c_tx, crc);
|
|
break;
|
|
|
|
case SIW_OP_WRITE:
|
|
memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_RDMA_WRITE].ctrl,
|
|
sizeof(struct iwarp_ctrl));
|
|
|
|
c_tx->pkt.rwrite.sink_stag = htonl(wqe->sqe.rkey);
|
|
c_tx->pkt.rwrite.sink_to = cpu_to_be64(wqe->sqe.raddr);
|
|
c_tx->ctrl_len = sizeof(struct iwarp_rdma_write);
|
|
|
|
crc = (char *)&c_tx->pkt.write_pkt.crc;
|
|
data = siw_try_1seg(c_tx, crc);
|
|
break;
|
|
|
|
case SIW_OP_READ_RESPONSE:
|
|
memcpy(&c_tx->pkt.ctrl,
|
|
&iwarp_pktinfo[RDMAP_RDMA_READ_RESP].ctrl,
|
|
sizeof(struct iwarp_ctrl));
|
|
|
|
/* NBO */
|
|
c_tx->pkt.rresp.sink_stag = cpu_to_be32(wqe->sqe.rkey);
|
|
c_tx->pkt.rresp.sink_to = cpu_to_be64(wqe->sqe.raddr);
|
|
|
|
c_tx->ctrl_len = sizeof(struct iwarp_rdma_rresp);
|
|
|
|
crc = (char *)&c_tx->pkt.write_pkt.crc;
|
|
data = siw_try_1seg(c_tx, crc);
|
|
break;
|
|
|
|
default:
|
|
siw_dbg_qp(tx_qp(c_tx), "stale wqe type %d\n", tx_type(wqe));
|
|
return -EOPNOTSUPP;
|
|
}
|
|
if (unlikely(data < 0))
|
|
return data;
|
|
|
|
c_tx->ctrl_sent = 0;
|
|
|
|
if (data <= MAX_HDR_INLINE) {
|
|
if (data) {
|
|
wqe->processed = data;
|
|
|
|
c_tx->pkt.ctrl.mpa_len =
|
|
htons(c_tx->ctrl_len + data - MPA_HDR_SIZE);
|
|
|
|
/* Add pad, if needed */
|
|
data += -(int)data & 0x3;
|
|
/* advance CRC location after payload */
|
|
crc += data;
|
|
c_tx->ctrl_len += data;
|
|
|
|
if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED))
|
|
c_tx->pkt.c_untagged.ddp_mo = 0;
|
|
else
|
|
c_tx->pkt.c_tagged.ddp_to =
|
|
cpu_to_be64(wqe->sqe.raddr);
|
|
}
|
|
|
|
*(u32 *)crc = 0;
|
|
/*
|
|
* Do complete CRC if enabled and short packet
|
|
*/
|
|
if (c_tx->mpa_crc_hd) {
|
|
crypto_shash_init(c_tx->mpa_crc_hd);
|
|
if (crypto_shash_update(c_tx->mpa_crc_hd,
|
|
(u8 *)&c_tx->pkt,
|
|
c_tx->ctrl_len))
|
|
return -EINVAL;
|
|
crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)crc);
|
|
}
|
|
c_tx->ctrl_len += MPA_CRC_SIZE;
|
|
|
|
return PKT_COMPLETE;
|
|
}
|
|
c_tx->ctrl_len += MPA_CRC_SIZE;
|
|
c_tx->sge_idx = 0;
|
|
c_tx->sge_off = 0;
|
|
c_tx->pbl_idx = 0;
|
|
|
|
/*
|
|
* Allow direct sending out of user buffer if WR is non signalled
|
|
* and payload is over threshold.
|
|
* Per RDMA verbs, the application should not change the send buffer
|
|
* until the work completed. In iWarp, work completion is only
|
|
* local delivery to TCP. TCP may reuse the buffer for
|
|
* retransmission. Changing unsent data also breaks the CRC,
|
|
* if applied.
|
|
*/
|
|
if (c_tx->zcopy_tx && wqe->bytes >= SENDPAGE_THRESH &&
|
|
!(tx_flags(wqe) & SIW_WQE_SIGNALLED))
|
|
c_tx->use_sendpage = 1;
|
|
else
|
|
c_tx->use_sendpage = 0;
|
|
|
|
return PKT_FRAGMENTED;
|
|
}
|
|
|
|
/*
|
|
* Send out one complete control type FPDU, or header of FPDU carrying
|
|
* data. Used for fixed sized packets like Read.Requests or zero length
|
|
* SENDs, WRITEs, READ.Responses, or header only.
|
|
*/
|
|
static int siw_tx_ctrl(struct siw_iwarp_tx *c_tx, struct socket *s,
|
|
int flags)
|
|
{
|
|
struct msghdr msg = { .msg_flags = flags };
|
|
struct kvec iov = { .iov_base =
|
|
(char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent,
|
|
.iov_len = c_tx->ctrl_len - c_tx->ctrl_sent };
|
|
|
|
int rv = kernel_sendmsg(s, &msg, &iov, 1,
|
|
c_tx->ctrl_len - c_tx->ctrl_sent);
|
|
|
|
if (rv >= 0) {
|
|
c_tx->ctrl_sent += rv;
|
|
|
|
if (c_tx->ctrl_sent == c_tx->ctrl_len)
|
|
rv = 0;
|
|
else
|
|
rv = -EAGAIN;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* 0copy TCP transmit interface: Use MSG_SPLICE_PAGES.
|
|
*
|
|
* Using sendpage to push page by page appears to be less efficient
|
|
* than using sendmsg, even if data are copied.
|
|
*
|
|
* A general performance limitation might be the extra four bytes
|
|
* trailer checksum segment to be pushed after user data.
|
|
*/
|
|
static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset,
|
|
size_t size)
|
|
{
|
|
struct bio_vec bvec;
|
|
struct msghdr msg = {
|
|
.msg_flags = (MSG_MORE | MSG_DONTWAIT | MSG_SPLICE_PAGES),
|
|
};
|
|
struct sock *sk = s->sk;
|
|
int i = 0, rv = 0, sent = 0;
|
|
|
|
while (size) {
|
|
size_t bytes = min_t(size_t, PAGE_SIZE - offset, size);
|
|
|
|
if (size + offset <= PAGE_SIZE)
|
|
msg.msg_flags &= ~MSG_MORE;
|
|
|
|
tcp_rate_check_app_limited(sk);
|
|
bvec_set_page(&bvec, page[i], bytes, offset);
|
|
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
|
|
|
|
try_page_again:
|
|
lock_sock(sk);
|
|
rv = tcp_sendmsg_locked(sk, &msg, size);
|
|
release_sock(sk);
|
|
|
|
if (rv > 0) {
|
|
size -= rv;
|
|
sent += rv;
|
|
if (rv != bytes) {
|
|
offset += rv;
|
|
bytes -= rv;
|
|
goto try_page_again;
|
|
}
|
|
offset = 0;
|
|
} else {
|
|
if (rv == -EAGAIN || rv == 0)
|
|
break;
|
|
return rv;
|
|
}
|
|
i++;
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
/*
|
|
* siw_0copy_tx()
|
|
*
|
|
* Pushes list of pages to TCP socket. If pages from multiple
|
|
* SGE's, all referenced pages of each SGE are pushed in one
|
|
* shot.
|
|
*/
|
|
static int siw_0copy_tx(struct socket *s, struct page **page,
|
|
struct siw_sge *sge, unsigned int offset,
|
|
unsigned int size)
|
|
{
|
|
int i = 0, sent = 0, rv;
|
|
int sge_bytes = min(sge->length - offset, size);
|
|
|
|
offset = (sge->laddr + offset) & ~PAGE_MASK;
|
|
|
|
while (sent != size) {
|
|
rv = siw_tcp_sendpages(s, &page[i], offset, sge_bytes);
|
|
if (rv >= 0) {
|
|
sent += rv;
|
|
if (size == sent || sge_bytes > rv)
|
|
break;
|
|
|
|
i += PAGE_ALIGN(sge_bytes + offset) >> PAGE_SHIFT;
|
|
sge++;
|
|
sge_bytes = min(sge->length, size - sent);
|
|
offset = sge->laddr & ~PAGE_MASK;
|
|
} else {
|
|
sent = rv;
|
|
break;
|
|
}
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
#define MAX_TRAILER (MPA_CRC_SIZE + 4)
|
|
|
|
static void siw_unmap_pages(struct kvec *iov, unsigned long kmap_mask, int len)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Work backwards through the array to honor the kmap_local_page()
|
|
* ordering requirements.
|
|
*/
|
|
for (i = (len-1); i >= 0; i--) {
|
|
if (kmap_mask & BIT(i)) {
|
|
unsigned long addr = (unsigned long)iov[i].iov_base;
|
|
|
|
kunmap_local((void *)(addr & PAGE_MASK));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* siw_tx_hdt() tries to push a complete packet to TCP where all
|
|
* packet fragments are referenced by the elements of one iovec.
|
|
* For the data portion, each involved page must be referenced by
|
|
* one extra element. All sge's data can be non-aligned to page
|
|
* boundaries. Two more elements are referencing iWARP header
|
|
* and trailer:
|
|
* MAX_ARRAY = 64KB/PAGE_SIZE + 1 + (2 * (SIW_MAX_SGE - 1) + HDR + TRL
|
|
*/
|
|
#define MAX_ARRAY ((0xffff / PAGE_SIZE) + 1 + (2 * (SIW_MAX_SGE - 1) + 2))
|
|
|
|
/*
|
|
* Write out iov referencing hdr, data and trailer of current FPDU.
|
|
* Update transmit state dependent on write return status
|
|
*/
|
|
static int siw_tx_hdt(struct siw_iwarp_tx *c_tx, struct socket *s)
|
|
{
|
|
struct siw_wqe *wqe = &c_tx->wqe_active;
|
|
struct siw_sge *sge = &wqe->sqe.sge[c_tx->sge_idx];
|
|
struct kvec iov[MAX_ARRAY];
|
|
struct page *page_array[MAX_ARRAY];
|
|
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
|
|
|
|
int seg = 0, do_crc = c_tx->do_crc, is_kva = 0, rv;
|
|
unsigned int data_len = c_tx->bytes_unsent, hdr_len = 0, trl_len = 0,
|
|
sge_off = c_tx->sge_off, sge_idx = c_tx->sge_idx,
|
|
pbl_idx = c_tx->pbl_idx;
|
|
unsigned long kmap_mask = 0L;
|
|
|
|
if (c_tx->state == SIW_SEND_HDR) {
|
|
if (c_tx->use_sendpage) {
|
|
rv = siw_tx_ctrl(c_tx, s, MSG_DONTWAIT | MSG_MORE);
|
|
if (rv)
|
|
goto done;
|
|
|
|
c_tx->state = SIW_SEND_DATA;
|
|
} else {
|
|
iov[0].iov_base =
|
|
(char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent;
|
|
iov[0].iov_len = hdr_len =
|
|
c_tx->ctrl_len - c_tx->ctrl_sent;
|
|
seg = 1;
|
|
}
|
|
}
|
|
|
|
wqe->processed += data_len;
|
|
|
|
while (data_len) { /* walk the list of SGE's */
|
|
unsigned int sge_len = min(sge->length - sge_off, data_len);
|
|
unsigned int fp_off = (sge->laddr + sge_off) & ~PAGE_MASK;
|
|
struct siw_mem *mem;
|
|
|
|
if (!(tx_flags(wqe) & SIW_WQE_INLINE)) {
|
|
mem = wqe->mem[sge_idx];
|
|
is_kva = mem->mem_obj == NULL ? 1 : 0;
|
|
} else {
|
|
is_kva = 1;
|
|
}
|
|
if (is_kva && !c_tx->use_sendpage) {
|
|
/*
|
|
* tx from kernel virtual address: either inline data
|
|
* or memory region with assigned kernel buffer
|
|
*/
|
|
iov[seg].iov_base =
|
|
ib_virt_dma_to_ptr(sge->laddr + sge_off);
|
|
iov[seg].iov_len = sge_len;
|
|
|
|
if (do_crc)
|
|
crypto_shash_update(c_tx->mpa_crc_hd,
|
|
iov[seg].iov_base,
|
|
sge_len);
|
|
sge_off += sge_len;
|
|
data_len -= sge_len;
|
|
seg++;
|
|
goto sge_done;
|
|
}
|
|
|
|
while (sge_len) {
|
|
size_t plen = min((int)PAGE_SIZE - fp_off, sge_len);
|
|
void *kaddr;
|
|
|
|
if (!is_kva) {
|
|
struct page *p;
|
|
|
|
if (mem->is_pbl)
|
|
p = siw_get_pblpage(
|
|
mem, sge->laddr + sge_off,
|
|
&pbl_idx);
|
|
else
|
|
p = siw_get_upage(mem->umem,
|
|
sge->laddr + sge_off);
|
|
if (unlikely(!p)) {
|
|
siw_unmap_pages(iov, kmap_mask, seg);
|
|
wqe->processed -= c_tx->bytes_unsent;
|
|
rv = -EFAULT;
|
|
goto done_crc;
|
|
}
|
|
page_array[seg] = p;
|
|
|
|
if (!c_tx->use_sendpage) {
|
|
void *kaddr = kmap_local_page(p);
|
|
|
|
/* Remember for later kunmap() */
|
|
kmap_mask |= BIT(seg);
|
|
iov[seg].iov_base = kaddr + fp_off;
|
|
iov[seg].iov_len = plen;
|
|
|
|
if (do_crc)
|
|
crypto_shash_update(
|
|
c_tx->mpa_crc_hd,
|
|
iov[seg].iov_base,
|
|
plen);
|
|
} else if (do_crc) {
|
|
kaddr = kmap_local_page(p);
|
|
crypto_shash_update(c_tx->mpa_crc_hd,
|
|
kaddr + fp_off,
|
|
plen);
|
|
kunmap_local(kaddr);
|
|
}
|
|
} else {
|
|
/*
|
|
* Cast to an uintptr_t to preserve all 64 bits
|
|
* in sge->laddr.
|
|
*/
|
|
u64 va = sge->laddr + sge_off;
|
|
|
|
page_array[seg] = ib_virt_dma_to_page(va);
|
|
if (do_crc)
|
|
crypto_shash_update(
|
|
c_tx->mpa_crc_hd,
|
|
ib_virt_dma_to_ptr(va),
|
|
plen);
|
|
}
|
|
|
|
sge_len -= plen;
|
|
sge_off += plen;
|
|
data_len -= plen;
|
|
fp_off = 0;
|
|
|
|
if (++seg >= (int)MAX_ARRAY) {
|
|
siw_dbg_qp(tx_qp(c_tx), "to many fragments\n");
|
|
siw_unmap_pages(iov, kmap_mask, seg-1);
|
|
wqe->processed -= c_tx->bytes_unsent;
|
|
rv = -EMSGSIZE;
|
|
goto done_crc;
|
|
}
|
|
}
|
|
sge_done:
|
|
/* Update SGE variables at end of SGE */
|
|
if (sge_off == sge->length &&
|
|
(data_len != 0 || wqe->processed < wqe->bytes)) {
|
|
sge_idx++;
|
|
sge++;
|
|
sge_off = 0;
|
|
}
|
|
}
|
|
/* trailer */
|
|
if (likely(c_tx->state != SIW_SEND_TRAILER)) {
|
|
iov[seg].iov_base = &c_tx->trailer.pad[4 - c_tx->pad];
|
|
iov[seg].iov_len = trl_len = MAX_TRAILER - (4 - c_tx->pad);
|
|
} else {
|
|
iov[seg].iov_base = &c_tx->trailer.pad[c_tx->ctrl_sent];
|
|
iov[seg].iov_len = trl_len = MAX_TRAILER - c_tx->ctrl_sent;
|
|
}
|
|
|
|
if (c_tx->pad) {
|
|
*(u32 *)c_tx->trailer.pad = 0;
|
|
if (do_crc)
|
|
crypto_shash_update(c_tx->mpa_crc_hd,
|
|
(u8 *)&c_tx->trailer.crc - c_tx->pad,
|
|
c_tx->pad);
|
|
}
|
|
if (!c_tx->mpa_crc_hd)
|
|
c_tx->trailer.crc = 0;
|
|
else if (do_crc)
|
|
crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)&c_tx->trailer.crc);
|
|
|
|
data_len = c_tx->bytes_unsent;
|
|
|
|
if (c_tx->use_sendpage) {
|
|
rv = siw_0copy_tx(s, page_array, &wqe->sqe.sge[c_tx->sge_idx],
|
|
c_tx->sge_off, data_len);
|
|
if (rv == data_len) {
|
|
rv = kernel_sendmsg(s, &msg, &iov[seg], 1, trl_len);
|
|
if (rv > 0)
|
|
rv += data_len;
|
|
else
|
|
rv = data_len;
|
|
}
|
|
} else {
|
|
rv = kernel_sendmsg(s, &msg, iov, seg + 1,
|
|
hdr_len + data_len + trl_len);
|
|
siw_unmap_pages(iov, kmap_mask, seg);
|
|
}
|
|
if (rv < (int)hdr_len) {
|
|
/* Not even complete hdr pushed or negative rv */
|
|
wqe->processed -= data_len;
|
|
if (rv >= 0) {
|
|
c_tx->ctrl_sent += rv;
|
|
rv = -EAGAIN;
|
|
}
|
|
goto done_crc;
|
|
}
|
|
rv -= hdr_len;
|
|
|
|
if (rv >= (int)data_len) {
|
|
/* all user data pushed to TCP or no data to push */
|
|
if (data_len > 0 && wqe->processed < wqe->bytes) {
|
|
/* Save the current state for next tx */
|
|
c_tx->sge_idx = sge_idx;
|
|
c_tx->sge_off = sge_off;
|
|
c_tx->pbl_idx = pbl_idx;
|
|
}
|
|
rv -= data_len;
|
|
|
|
if (rv == trl_len) /* all pushed */
|
|
rv = 0;
|
|
else {
|
|
c_tx->state = SIW_SEND_TRAILER;
|
|
c_tx->ctrl_len = MAX_TRAILER;
|
|
c_tx->ctrl_sent = rv + 4 - c_tx->pad;
|
|
c_tx->bytes_unsent = 0;
|
|
rv = -EAGAIN;
|
|
}
|
|
|
|
} else if (data_len > 0) {
|
|
/* Maybe some user data pushed to TCP */
|
|
c_tx->state = SIW_SEND_DATA;
|
|
wqe->processed -= data_len - rv;
|
|
|
|
if (rv) {
|
|
/*
|
|
* Some bytes out. Recompute tx state based
|
|
* on old state and bytes pushed
|
|
*/
|
|
unsigned int sge_unsent;
|
|
|
|
c_tx->bytes_unsent -= rv;
|
|
sge = &wqe->sqe.sge[c_tx->sge_idx];
|
|
sge_unsent = sge->length - c_tx->sge_off;
|
|
|
|
while (sge_unsent <= rv) {
|
|
rv -= sge_unsent;
|
|
c_tx->sge_idx++;
|
|
c_tx->sge_off = 0;
|
|
sge++;
|
|
sge_unsent = sge->length;
|
|
}
|
|
c_tx->sge_off += rv;
|
|
}
|
|
rv = -EAGAIN;
|
|
}
|
|
done_crc:
|
|
c_tx->do_crc = 0;
|
|
done:
|
|
return rv;
|
|
}
|
|
|
|
static void siw_update_tcpseg(struct siw_iwarp_tx *c_tx,
|
|
struct socket *s)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(s->sk);
|
|
|
|
if (tp->gso_segs) {
|
|
if (c_tx->gso_seg_limit == 0)
|
|
c_tx->tcp_seglen = tp->mss_cache * tp->gso_segs;
|
|
else
|
|
c_tx->tcp_seglen =
|
|
tp->mss_cache *
|
|
min_t(u16, c_tx->gso_seg_limit, tp->gso_segs);
|
|
} else {
|
|
c_tx->tcp_seglen = tp->mss_cache;
|
|
}
|
|
/* Loopback may give odd numbers */
|
|
c_tx->tcp_seglen &= 0xfffffff8;
|
|
}
|
|
|
|
/*
|
|
* siw_prepare_fpdu()
|
|
*
|
|
* Prepares transmit context to send out one FPDU if FPDU will contain
|
|
* user data and user data are not immediate data.
|
|
* Computes maximum FPDU length to fill up TCP MSS if possible.
|
|
*
|
|
* @qp: QP from which to transmit
|
|
* @wqe: Current WQE causing transmission
|
|
*
|
|
* TODO: Take into account real available sendspace on socket
|
|
* to avoid header misalignment due to send pausing within
|
|
* fpdu transmission
|
|
*/
|
|
static void siw_prepare_fpdu(struct siw_qp *qp, struct siw_wqe *wqe)
|
|
{
|
|
struct siw_iwarp_tx *c_tx = &qp->tx_ctx;
|
|
int data_len;
|
|
|
|
c_tx->ctrl_len =
|
|
iwarp_pktinfo[__rdmap_get_opcode(&c_tx->pkt.ctrl)].hdr_len;
|
|
c_tx->ctrl_sent = 0;
|
|
|
|
/*
|
|
* Update target buffer offset if any
|
|
*/
|
|
if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED))
|
|
/* Untagged message */
|
|
c_tx->pkt.c_untagged.ddp_mo = cpu_to_be32(wqe->processed);
|
|
else /* Tagged message */
|
|
c_tx->pkt.c_tagged.ddp_to =
|
|
cpu_to_be64(wqe->sqe.raddr + wqe->processed);
|
|
|
|
data_len = wqe->bytes - wqe->processed;
|
|
if (data_len + c_tx->ctrl_len + MPA_CRC_SIZE > c_tx->tcp_seglen) {
|
|
/* Trim DDP payload to fit into current TCP segment */
|
|
data_len = c_tx->tcp_seglen - (c_tx->ctrl_len + MPA_CRC_SIZE);
|
|
c_tx->pkt.ctrl.ddp_rdmap_ctrl &= ~DDP_FLAG_LAST;
|
|
c_tx->pad = 0;
|
|
} else {
|
|
c_tx->pkt.ctrl.ddp_rdmap_ctrl |= DDP_FLAG_LAST;
|
|
c_tx->pad = -data_len & 0x3;
|
|
}
|
|
c_tx->bytes_unsent = data_len;
|
|
|
|
c_tx->pkt.ctrl.mpa_len =
|
|
htons(c_tx->ctrl_len + data_len - MPA_HDR_SIZE);
|
|
|
|
/*
|
|
* Init MPA CRC computation
|
|
*/
|
|
if (c_tx->mpa_crc_hd) {
|
|
crypto_shash_init(c_tx->mpa_crc_hd);
|
|
crypto_shash_update(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt,
|
|
c_tx->ctrl_len);
|
|
c_tx->do_crc = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* siw_check_sgl_tx()
|
|
*
|
|
* Check permissions for a list of SGE's (SGL).
|
|
* A successful check will have all memory referenced
|
|
* for transmission resolved and assigned to the WQE.
|
|
*
|
|
* @pd: Protection Domain SGL should belong to
|
|
* @wqe: WQE to be checked
|
|
* @perms: requested access permissions
|
|
*
|
|
*/
|
|
|
|
static int siw_check_sgl_tx(struct ib_pd *pd, struct siw_wqe *wqe,
|
|
enum ib_access_flags perms)
|
|
{
|
|
struct siw_sge *sge = &wqe->sqe.sge[0];
|
|
int i, len, num_sge = wqe->sqe.num_sge;
|
|
|
|
if (unlikely(num_sge > SIW_MAX_SGE))
|
|
return -EINVAL;
|
|
|
|
for (i = 0, len = 0; num_sge; num_sge--, i++, sge++) {
|
|
/*
|
|
* rdma verbs: do not check stag for a zero length sge
|
|
*/
|
|
if (sge->length) {
|
|
int rv = siw_check_sge(pd, sge, &wqe->mem[i], perms, 0,
|
|
sge->length);
|
|
|
|
if (unlikely(rv != E_ACCESS_OK))
|
|
return rv;
|
|
}
|
|
len += sge->length;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* siw_qp_sq_proc_tx()
|
|
*
|
|
* Process one WQE which needs transmission on the wire.
|
|
*/
|
|
static int siw_qp_sq_proc_tx(struct siw_qp *qp, struct siw_wqe *wqe)
|
|
{
|
|
struct siw_iwarp_tx *c_tx = &qp->tx_ctx;
|
|
struct socket *s = qp->attrs.sk;
|
|
int rv = 0, burst_len = qp->tx_ctx.burst;
|
|
enum rdmap_ecode ecode = RDMAP_ECODE_CATASTROPHIC_STREAM;
|
|
|
|
if (unlikely(wqe->wr_status == SIW_WR_IDLE))
|
|
return 0;
|
|
|
|
if (!burst_len)
|
|
burst_len = SQ_USER_MAXBURST;
|
|
|
|
if (wqe->wr_status == SIW_WR_QUEUED) {
|
|
if (!(wqe->sqe.flags & SIW_WQE_INLINE)) {
|
|
if (tx_type(wqe) == SIW_OP_READ_RESPONSE)
|
|
wqe->sqe.num_sge = 1;
|
|
|
|
if (tx_type(wqe) != SIW_OP_READ &&
|
|
tx_type(wqe) != SIW_OP_READ_LOCAL_INV) {
|
|
/*
|
|
* Reference memory to be tx'd w/o checking
|
|
* access for LOCAL_READ permission, since
|
|
* not defined in RDMA core.
|
|
*/
|
|
rv = siw_check_sgl_tx(qp->pd, wqe, 0);
|
|
if (rv < 0) {
|
|
if (tx_type(wqe) ==
|
|
SIW_OP_READ_RESPONSE)
|
|
ecode = siw_rdmap_error(-rv);
|
|
rv = -EINVAL;
|
|
goto tx_error;
|
|
}
|
|
wqe->bytes = rv;
|
|
} else {
|
|
wqe->bytes = 0;
|
|
}
|
|
} else {
|
|
wqe->bytes = wqe->sqe.sge[0].length;
|
|
if (!rdma_is_kernel_res(&qp->base_qp.res)) {
|
|
if (wqe->bytes > SIW_MAX_INLINE) {
|
|
rv = -EINVAL;
|
|
goto tx_error;
|
|
}
|
|
wqe->sqe.sge[0].laddr =
|
|
(u64)(uintptr_t)&wqe->sqe.sge[1];
|
|
}
|
|
}
|
|
wqe->wr_status = SIW_WR_INPROGRESS;
|
|
wqe->processed = 0;
|
|
|
|
siw_update_tcpseg(c_tx, s);
|
|
|
|
rv = siw_qp_prepare_tx(c_tx);
|
|
if (rv == PKT_FRAGMENTED) {
|
|
c_tx->state = SIW_SEND_HDR;
|
|
siw_prepare_fpdu(qp, wqe);
|
|
} else if (rv == PKT_COMPLETE) {
|
|
c_tx->state = SIW_SEND_SHORT_FPDU;
|
|
} else {
|
|
goto tx_error;
|
|
}
|
|
}
|
|
|
|
next_segment:
|
|
siw_dbg_qp(qp, "wr type %d, state %d, data %u, sent %u, id %llx\n",
|
|
tx_type(wqe), wqe->wr_status, wqe->bytes, wqe->processed,
|
|
wqe->sqe.id);
|
|
|
|
if (--burst_len == 0) {
|
|
rv = -EINPROGRESS;
|
|
goto tx_done;
|
|
}
|
|
if (c_tx->state == SIW_SEND_SHORT_FPDU) {
|
|
enum siw_opcode tx_type = tx_type(wqe);
|
|
unsigned int msg_flags;
|
|
|
|
if (siw_sq_empty(qp) || !siw_tcp_nagle || burst_len == 1)
|
|
/*
|
|
* End current TCP segment, if SQ runs empty,
|
|
* or siw_tcp_nagle is not set, or we bail out
|
|
* soon due to no burst credit left.
|
|
*/
|
|
msg_flags = MSG_DONTWAIT;
|
|
else
|
|
msg_flags = MSG_DONTWAIT | MSG_MORE;
|
|
|
|
rv = siw_tx_ctrl(c_tx, s, msg_flags);
|
|
|
|
if (!rv && tx_type != SIW_OP_READ &&
|
|
tx_type != SIW_OP_READ_LOCAL_INV)
|
|
wqe->processed = wqe->bytes;
|
|
|
|
goto tx_done;
|
|
|
|
} else {
|
|
rv = siw_tx_hdt(c_tx, s);
|
|
}
|
|
if (!rv) {
|
|
/*
|
|
* One segment sent. Processing completed if last
|
|
* segment, Do next segment otherwise.
|
|
*/
|
|
if (unlikely(c_tx->tx_suspend)) {
|
|
/*
|
|
* Verbs, 6.4.: Try stopping sending after a full
|
|
* DDP segment if the connection goes down
|
|
* (== peer halfclose)
|
|
*/
|
|
rv = -ECONNABORTED;
|
|
goto tx_done;
|
|
}
|
|
if (c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_LAST) {
|
|
siw_dbg_qp(qp, "WQE completed\n");
|
|
goto tx_done;
|
|
}
|
|
c_tx->state = SIW_SEND_HDR;
|
|
|
|
siw_update_tcpseg(c_tx, s);
|
|
|
|
siw_prepare_fpdu(qp, wqe);
|
|
goto next_segment;
|
|
}
|
|
tx_done:
|
|
qp->tx_ctx.burst = burst_len;
|
|
return rv;
|
|
|
|
tx_error:
|
|
if (ecode != RDMAP_ECODE_CATASTROPHIC_STREAM)
|
|
siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP,
|
|
RDMAP_ETYPE_REMOTE_PROTECTION, ecode, 1);
|
|
else
|
|
siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP,
|
|
RDMAP_ETYPE_CATASTROPHIC,
|
|
RDMAP_ECODE_UNSPECIFIED, 1);
|
|
return rv;
|
|
}
|
|
|
|
static int siw_fastreg_mr(struct ib_pd *pd, struct siw_sqe *sqe)
|
|
{
|
|
struct ib_mr *base_mr = (struct ib_mr *)(uintptr_t)sqe->base_mr;
|
|
struct siw_device *sdev = to_siw_dev(pd->device);
|
|
struct siw_mem *mem;
|
|
int rv = 0;
|
|
|
|
siw_dbg_pd(pd, "STag 0x%08x\n", sqe->rkey);
|
|
|
|
if (unlikely(!base_mr)) {
|
|
pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely(base_mr->rkey >> 8 != sqe->rkey >> 8)) {
|
|
pr_warn("siw: fastreg: STag 0x%08x: bad MR\n", sqe->rkey);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mem = siw_mem_id2obj(sdev, sqe->rkey >> 8);
|
|
if (unlikely(!mem)) {
|
|
pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely(mem->pd != pd)) {
|
|
pr_warn("siw: fastreg: PD mismatch\n");
|
|
rv = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (unlikely(mem->stag_valid)) {
|
|
pr_warn("siw: fastreg: STag 0x%08x already valid\n", sqe->rkey);
|
|
rv = -EINVAL;
|
|
goto out;
|
|
}
|
|
/* Refresh STag since user may have changed key part */
|
|
mem->stag = sqe->rkey;
|
|
mem->perms = sqe->access;
|
|
|
|
siw_dbg_mem(mem, "STag 0x%08x now valid\n", sqe->rkey);
|
|
mem->va = base_mr->iova;
|
|
mem->stag_valid = 1;
|
|
out:
|
|
siw_mem_put(mem);
|
|
return rv;
|
|
}
|
|
|
|
static int siw_qp_sq_proc_local(struct siw_qp *qp, struct siw_wqe *wqe)
|
|
{
|
|
int rv;
|
|
|
|
switch (tx_type(wqe)) {
|
|
case SIW_OP_REG_MR:
|
|
rv = siw_fastreg_mr(qp->pd, &wqe->sqe);
|
|
break;
|
|
|
|
case SIW_OP_INVAL_STAG:
|
|
rv = siw_invalidate_stag(qp->pd, wqe->sqe.rkey);
|
|
break;
|
|
|
|
default:
|
|
rv = -EINVAL;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* siw_qp_sq_process()
|
|
*
|
|
* Core TX path routine for RDMAP/DDP/MPA using a TCP kernel socket.
|
|
* Sends RDMAP payload for the current SQ WR @wqe of @qp in one or more
|
|
* MPA FPDUs, each containing a DDP segment.
|
|
*
|
|
* SQ processing may occur in user context as a result of posting
|
|
* new WQE's or from siw_sq_work_handler() context. Processing in
|
|
* user context is limited to non-kernel verbs users.
|
|
*
|
|
* SQ processing may get paused anytime, possibly in the middle of a WR
|
|
* or FPDU, if insufficient send space is available. SQ processing
|
|
* gets resumed from siw_sq_work_handler(), if send space becomes
|
|
* available again.
|
|
*
|
|
* Must be called with the QP state read-locked.
|
|
*
|
|
* Note:
|
|
* An outbound RREQ can be satisfied by the corresponding RRESP
|
|
* _before_ it gets assigned to the ORQ. This happens regularly
|
|
* in RDMA READ via loopback case. Since both outbound RREQ and
|
|
* inbound RRESP can be handled by the same CPU, locking the ORQ
|
|
* is dead-lock prone and thus not an option. With that, the
|
|
* RREQ gets assigned to the ORQ _before_ being sent - see
|
|
* siw_activate_tx() - and pulled back in case of send failure.
|
|
*/
|
|
int siw_qp_sq_process(struct siw_qp *qp)
|
|
{
|
|
struct siw_wqe *wqe = tx_wqe(qp);
|
|
enum siw_opcode tx_type;
|
|
unsigned long flags;
|
|
int rv = 0;
|
|
|
|
siw_dbg_qp(qp, "enter for type %d\n", tx_type(wqe));
|
|
|
|
next_wqe:
|
|
/*
|
|
* Stop QP processing if SQ state changed
|
|
*/
|
|
if (unlikely(qp->tx_ctx.tx_suspend)) {
|
|
siw_dbg_qp(qp, "tx suspended\n");
|
|
goto done;
|
|
}
|
|
tx_type = tx_type(wqe);
|
|
|
|
if (tx_type <= SIW_OP_READ_RESPONSE)
|
|
rv = siw_qp_sq_proc_tx(qp, wqe);
|
|
else
|
|
rv = siw_qp_sq_proc_local(qp, wqe);
|
|
|
|
if (!rv) {
|
|
/*
|
|
* WQE processing done
|
|
*/
|
|
switch (tx_type) {
|
|
case SIW_OP_SEND:
|
|
case SIW_OP_SEND_REMOTE_INV:
|
|
case SIW_OP_WRITE:
|
|
siw_wqe_put_mem(wqe, tx_type);
|
|
fallthrough;
|
|
|
|
case SIW_OP_INVAL_STAG:
|
|
case SIW_OP_REG_MR:
|
|
if (tx_flags(wqe) & SIW_WQE_SIGNALLED)
|
|
siw_sqe_complete(qp, &wqe->sqe, wqe->bytes,
|
|
SIW_WC_SUCCESS);
|
|
break;
|
|
|
|
case SIW_OP_READ:
|
|
case SIW_OP_READ_LOCAL_INV:
|
|
/*
|
|
* already enqueued to ORQ queue
|
|
*/
|
|
break;
|
|
|
|
case SIW_OP_READ_RESPONSE:
|
|
siw_wqe_put_mem(wqe, tx_type);
|
|
break;
|
|
|
|
default:
|
|
WARN(1, "undefined WQE type %d\n", tx_type);
|
|
rv = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
spin_lock_irqsave(&qp->sq_lock, flags);
|
|
wqe->wr_status = SIW_WR_IDLE;
|
|
rv = siw_activate_tx(qp);
|
|
spin_unlock_irqrestore(&qp->sq_lock, flags);
|
|
|
|
if (rv <= 0)
|
|
goto done;
|
|
|
|
goto next_wqe;
|
|
|
|
} else if (rv == -EAGAIN) {
|
|
siw_dbg_qp(qp, "sq paused: hd/tr %d of %d, data %d\n",
|
|
qp->tx_ctx.ctrl_sent, qp->tx_ctx.ctrl_len,
|
|
qp->tx_ctx.bytes_unsent);
|
|
rv = 0;
|
|
goto done;
|
|
} else if (rv == -EINPROGRESS) {
|
|
rv = siw_sq_start(qp);
|
|
goto done;
|
|
} else {
|
|
/*
|
|
* WQE processing failed.
|
|
* Verbs 8.3.2:
|
|
* o It turns any WQE into a signalled WQE.
|
|
* o Local catastrophic error must be surfaced
|
|
* o QP must be moved into Terminate state: done by code
|
|
* doing socket state change processing
|
|
*
|
|
* o TODO: Termination message must be sent.
|
|
* o TODO: Implement more precise work completion errors,
|
|
* see enum ib_wc_status in ib_verbs.h
|
|
*/
|
|
siw_dbg_qp(qp, "wqe type %d processing failed: %d\n",
|
|
tx_type(wqe), rv);
|
|
|
|
spin_lock_irqsave(&qp->sq_lock, flags);
|
|
/*
|
|
* RREQ may have already been completed by inbound RRESP!
|
|
*/
|
|
if ((tx_type == SIW_OP_READ ||
|
|
tx_type == SIW_OP_READ_LOCAL_INV) && qp->attrs.orq_size) {
|
|
/* Cleanup pending entry in ORQ */
|
|
qp->orq_put--;
|
|
qp->orq[qp->orq_put % qp->attrs.orq_size].flags = 0;
|
|
}
|
|
spin_unlock_irqrestore(&qp->sq_lock, flags);
|
|
/*
|
|
* immediately suspends further TX processing
|
|
*/
|
|
if (!qp->tx_ctx.tx_suspend)
|
|
siw_qp_cm_drop(qp, 0);
|
|
|
|
switch (tx_type) {
|
|
case SIW_OP_SEND:
|
|
case SIW_OP_SEND_REMOTE_INV:
|
|
case SIW_OP_SEND_WITH_IMM:
|
|
case SIW_OP_WRITE:
|
|
case SIW_OP_READ:
|
|
case SIW_OP_READ_LOCAL_INV:
|
|
siw_wqe_put_mem(wqe, tx_type);
|
|
fallthrough;
|
|
|
|
case SIW_OP_INVAL_STAG:
|
|
case SIW_OP_REG_MR:
|
|
siw_sqe_complete(qp, &wqe->sqe, wqe->bytes,
|
|
SIW_WC_LOC_QP_OP_ERR);
|
|
|
|
siw_qp_event(qp, IB_EVENT_QP_FATAL);
|
|
|
|
break;
|
|
|
|
case SIW_OP_READ_RESPONSE:
|
|
siw_dbg_qp(qp, "proc. read.response failed: %d\n", rv);
|
|
|
|
siw_qp_event(qp, IB_EVENT_QP_REQ_ERR);
|
|
|
|
siw_wqe_put_mem(wqe, SIW_OP_READ_RESPONSE);
|
|
|
|
break;
|
|
|
|
default:
|
|
WARN(1, "undefined WQE type %d\n", tx_type);
|
|
rv = -EINVAL;
|
|
}
|
|
wqe->wr_status = SIW_WR_IDLE;
|
|
}
|
|
done:
|
|
return rv;
|
|
}
|
|
|
|
static void siw_sq_resume(struct siw_qp *qp)
|
|
{
|
|
if (down_read_trylock(&qp->state_lock)) {
|
|
if (likely(qp->attrs.state == SIW_QP_STATE_RTS &&
|
|
!qp->tx_ctx.tx_suspend)) {
|
|
int rv = siw_qp_sq_process(qp);
|
|
|
|
up_read(&qp->state_lock);
|
|
|
|
if (unlikely(rv < 0)) {
|
|
siw_dbg_qp(qp, "SQ task failed: err %d\n", rv);
|
|
|
|
if (!qp->tx_ctx.tx_suspend)
|
|
siw_qp_cm_drop(qp, 0);
|
|
}
|
|
} else {
|
|
up_read(&qp->state_lock);
|
|
}
|
|
} else {
|
|
siw_dbg_qp(qp, "Resume SQ while QP locked\n");
|
|
}
|
|
siw_qp_put(qp);
|
|
}
|
|
|
|
struct tx_task_t {
|
|
struct llist_head active;
|
|
wait_queue_head_t waiting;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct tx_task_t, siw_tx_task_g);
|
|
|
|
void siw_stop_tx_thread(int nr_cpu)
|
|
{
|
|
kthread_stop(siw_tx_thread[nr_cpu]);
|
|
wake_up(&per_cpu(siw_tx_task_g, nr_cpu).waiting);
|
|
}
|
|
|
|
int siw_run_sq(void *data)
|
|
{
|
|
const int nr_cpu = (unsigned int)(long)data;
|
|
struct llist_node *active;
|
|
struct siw_qp *qp;
|
|
struct tx_task_t *tx_task = &per_cpu(siw_tx_task_g, nr_cpu);
|
|
|
|
init_llist_head(&tx_task->active);
|
|
init_waitqueue_head(&tx_task->waiting);
|
|
|
|
while (1) {
|
|
struct llist_node *fifo_list = NULL;
|
|
|
|
wait_event_interruptible(tx_task->waiting,
|
|
!llist_empty(&tx_task->active) ||
|
|
kthread_should_stop());
|
|
|
|
if (kthread_should_stop())
|
|
break;
|
|
|
|
active = llist_del_all(&tx_task->active);
|
|
/*
|
|
* llist_del_all returns a list with newest entry first.
|
|
* Re-order list for fairness among QP's.
|
|
*/
|
|
while (active) {
|
|
struct llist_node *tmp = active;
|
|
|
|
active = llist_next(active);
|
|
tmp->next = fifo_list;
|
|
fifo_list = tmp;
|
|
}
|
|
while (fifo_list) {
|
|
qp = container_of(fifo_list, struct siw_qp, tx_list);
|
|
fifo_list = llist_next(fifo_list);
|
|
qp->tx_list.next = NULL;
|
|
|
|
siw_sq_resume(qp);
|
|
}
|
|
}
|
|
active = llist_del_all(&tx_task->active);
|
|
if (active) {
|
|
llist_for_each_entry(qp, active, tx_list) {
|
|
qp->tx_list.next = NULL;
|
|
siw_sq_resume(qp);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int siw_sq_start(struct siw_qp *qp)
|
|
{
|
|
if (tx_wqe(qp)->wr_status == SIW_WR_IDLE)
|
|
return 0;
|
|
|
|
if (unlikely(!cpu_online(qp->tx_cpu))) {
|
|
siw_put_tx_cpu(qp->tx_cpu);
|
|
qp->tx_cpu = siw_get_tx_cpu(qp->sdev);
|
|
if (qp->tx_cpu < 0) {
|
|
pr_warn("siw: no tx cpu available\n");
|
|
|
|
return -EIO;
|
|
}
|
|
}
|
|
siw_qp_get(qp);
|
|
|
|
llist_add(&qp->tx_list, &per_cpu(siw_tx_task_g, qp->tx_cpu).active);
|
|
|
|
wake_up(&per_cpu(siw_tx_task_g, qp->tx_cpu).waiting);
|
|
|
|
return 0;
|
|
}
|