linux-zen-desktop/drivers/media/platform/st/stm32/stm32-dcmi.c

2218 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Digital Camera Memory Interface
*
* Copyright (C) STMicroelectronics SA 2017
* Authors: Yannick Fertre <yannick.fertre@st.com>
* Hugues Fruchet <hugues.fruchet@st.com>
* for STMicroelectronics.
*
* This driver is based on atmel_isi.c
*
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/videodev2.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-image-sizes.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-rect.h>
#include <media/videobuf2-dma-contig.h>
#define DRV_NAME "stm32-dcmi"
/* Registers offset for DCMI */
#define DCMI_CR 0x00 /* Control Register */
#define DCMI_SR 0x04 /* Status Register */
#define DCMI_RIS 0x08 /* Raw Interrupt Status register */
#define DCMI_IER 0x0C /* Interrupt Enable Register */
#define DCMI_MIS 0x10 /* Masked Interrupt Status register */
#define DCMI_ICR 0x14 /* Interrupt Clear Register */
#define DCMI_ESCR 0x18 /* Embedded Synchronization Code Register */
#define DCMI_ESUR 0x1C /* Embedded Synchronization Unmask Register */
#define DCMI_CWSTRT 0x20 /* Crop Window STaRT */
#define DCMI_CWSIZE 0x24 /* Crop Window SIZE */
#define DCMI_DR 0x28 /* Data Register */
#define DCMI_IDR 0x2C /* IDentifier Register */
/* Bits definition for control register (DCMI_CR) */
#define CR_CAPTURE BIT(0)
#define CR_CM BIT(1)
#define CR_CROP BIT(2)
#define CR_JPEG BIT(3)
#define CR_ESS BIT(4)
#define CR_PCKPOL BIT(5)
#define CR_HSPOL BIT(6)
#define CR_VSPOL BIT(7)
#define CR_FCRC_0 BIT(8)
#define CR_FCRC_1 BIT(9)
#define CR_EDM_0 BIT(10)
#define CR_EDM_1 BIT(11)
#define CR_ENABLE BIT(14)
/* Bits definition for status register (DCMI_SR) */
#define SR_HSYNC BIT(0)
#define SR_VSYNC BIT(1)
#define SR_FNE BIT(2)
/*
* Bits definition for interrupt registers
* (DCMI_RIS, DCMI_IER, DCMI_MIS, DCMI_ICR)
*/
#define IT_FRAME BIT(0)
#define IT_OVR BIT(1)
#define IT_ERR BIT(2)
#define IT_VSYNC BIT(3)
#define IT_LINE BIT(4)
enum state {
STOPPED = 0,
WAIT_FOR_BUFFER,
RUNNING,
};
#define MIN_WIDTH 16U
#define MAX_WIDTH 2592U
#define MIN_HEIGHT 16U
#define MAX_HEIGHT 2592U
#define TIMEOUT_MS 1000
#define OVERRUN_ERROR_THRESHOLD 3
struct dcmi_format {
u32 fourcc;
u32 mbus_code;
u8 bpp;
};
struct dcmi_framesize {
u32 width;
u32 height;
};
struct dcmi_buf {
struct vb2_v4l2_buffer vb;
bool prepared;
struct sg_table sgt;
size_t size;
struct list_head list;
};
struct stm32_dcmi {
/* Protects the access of variables shared within the interrupt */
spinlock_t irqlock;
struct device *dev;
void __iomem *regs;
struct resource *res;
struct reset_control *rstc;
int sequence;
struct list_head buffers;
struct dcmi_buf *active;
int irq;
struct v4l2_device v4l2_dev;
struct video_device *vdev;
struct v4l2_async_notifier notifier;
struct v4l2_subdev *source;
struct v4l2_format fmt;
struct v4l2_rect crop;
bool do_crop;
const struct dcmi_format **sd_formats;
unsigned int num_of_sd_formats;
const struct dcmi_format *sd_format;
struct dcmi_framesize *sd_framesizes;
unsigned int num_of_sd_framesizes;
struct dcmi_framesize sd_framesize;
struct v4l2_rect sd_bounds;
/* Protect this data structure */
struct mutex lock;
struct vb2_queue queue;
struct v4l2_mbus_config_parallel bus;
enum v4l2_mbus_type bus_type;
struct completion complete;
struct clk *mclk;
enum state state;
struct dma_chan *dma_chan;
dma_cookie_t dma_cookie;
u32 dma_max_burst;
u32 misr;
int errors_count;
int overrun_count;
int buffers_count;
/* Ensure DMA operations atomicity */
struct mutex dma_lock;
struct media_device mdev;
struct media_pad vid_cap_pad;
struct media_pipeline pipeline;
};
static inline struct stm32_dcmi *notifier_to_dcmi(struct v4l2_async_notifier *n)
{
return container_of(n, struct stm32_dcmi, notifier);
}
static inline u32 reg_read(void __iomem *base, u32 reg)
{
return readl_relaxed(base + reg);
}
static inline void reg_write(void __iomem *base, u32 reg, u32 val)
{
writel_relaxed(val, base + reg);
}
static inline void reg_set(void __iomem *base, u32 reg, u32 mask)
{
reg_write(base, reg, reg_read(base, reg) | mask);
}
static inline void reg_clear(void __iomem *base, u32 reg, u32 mask)
{
reg_write(base, reg, reg_read(base, reg) & ~mask);
}
static int dcmi_start_capture(struct stm32_dcmi *dcmi, struct dcmi_buf *buf);
static void dcmi_buffer_done(struct stm32_dcmi *dcmi,
struct dcmi_buf *buf,
size_t bytesused,
int err)
{
struct vb2_v4l2_buffer *vbuf;
if (!buf)
return;
list_del_init(&buf->list);
vbuf = &buf->vb;
vbuf->sequence = dcmi->sequence++;
vbuf->field = V4L2_FIELD_NONE;
vbuf->vb2_buf.timestamp = ktime_get_ns();
vb2_set_plane_payload(&vbuf->vb2_buf, 0, bytesused);
vb2_buffer_done(&vbuf->vb2_buf,
err ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
dev_dbg(dcmi->dev, "buffer[%d] done seq=%d, bytesused=%zu\n",
vbuf->vb2_buf.index, vbuf->sequence, bytesused);
dcmi->buffers_count++;
dcmi->active = NULL;
}
static int dcmi_restart_capture(struct stm32_dcmi *dcmi)
{
struct dcmi_buf *buf;
spin_lock_irq(&dcmi->irqlock);
if (dcmi->state != RUNNING) {
spin_unlock_irq(&dcmi->irqlock);
return -EINVAL;
}
/* Restart a new DMA transfer with next buffer */
if (list_empty(&dcmi->buffers)) {
dev_dbg(dcmi->dev, "Capture restart is deferred to next buffer queueing\n");
dcmi->state = WAIT_FOR_BUFFER;
spin_unlock_irq(&dcmi->irqlock);
return 0;
}
buf = list_entry(dcmi->buffers.next, struct dcmi_buf, list);
dcmi->active = buf;
spin_unlock_irq(&dcmi->irqlock);
return dcmi_start_capture(dcmi, buf);
}
static void dcmi_dma_callback(void *param)
{
struct stm32_dcmi *dcmi = (struct stm32_dcmi *)param;
struct dma_tx_state state;
enum dma_status status;
struct dcmi_buf *buf = dcmi->active;
spin_lock_irq(&dcmi->irqlock);
/* Check DMA status */
status = dmaengine_tx_status(dcmi->dma_chan, dcmi->dma_cookie, &state);
switch (status) {
case DMA_IN_PROGRESS:
dev_dbg(dcmi->dev, "%s: Received DMA_IN_PROGRESS\n", __func__);
break;
case DMA_PAUSED:
dev_err(dcmi->dev, "%s: Received DMA_PAUSED\n", __func__);
break;
case DMA_ERROR:
dev_err(dcmi->dev, "%s: Received DMA_ERROR\n", __func__);
/* Return buffer to V4L2 in error state */
dcmi_buffer_done(dcmi, buf, 0, -EIO);
break;
case DMA_COMPLETE:
dev_dbg(dcmi->dev, "%s: Received DMA_COMPLETE\n", __func__);
/* Return buffer to V4L2 */
dcmi_buffer_done(dcmi, buf, buf->size, 0);
spin_unlock_irq(&dcmi->irqlock);
/* Restart capture */
if (dcmi_restart_capture(dcmi))
dev_err(dcmi->dev, "%s: Cannot restart capture on DMA complete\n",
__func__);
return;
default:
dev_err(dcmi->dev, "%s: Received unknown status\n", __func__);
break;
}
spin_unlock_irq(&dcmi->irqlock);
}
static int dcmi_start_dma(struct stm32_dcmi *dcmi,
struct dcmi_buf *buf)
{
struct dma_async_tx_descriptor *desc = NULL;
struct dma_slave_config config;
int ret;
memset(&config, 0, sizeof(config));
config.src_addr = (dma_addr_t)dcmi->res->start + DCMI_DR;
config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.dst_maxburst = 4;
/* Configure DMA channel */
ret = dmaengine_slave_config(dcmi->dma_chan, &config);
if (ret < 0) {
dev_err(dcmi->dev, "%s: DMA channel config failed (%d)\n",
__func__, ret);
return ret;
}
/*
* Avoid call of dmaengine_terminate_sync() between
* dmaengine_prep_slave_single() and dmaengine_submit()
* by locking the whole DMA submission sequence
*/
mutex_lock(&dcmi->dma_lock);
/* Prepare a DMA transaction */
desc = dmaengine_prep_slave_sg(dcmi->dma_chan, buf->sgt.sgl, buf->sgt.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dcmi->dev, "%s: DMA dmaengine_prep_slave_sg failed\n", __func__);
mutex_unlock(&dcmi->dma_lock);
return -EINVAL;
}
/* Set completion callback routine for notification */
desc->callback = dcmi_dma_callback;
desc->callback_param = dcmi;
/* Push current DMA transaction in the pending queue */
dcmi->dma_cookie = dmaengine_submit(desc);
if (dma_submit_error(dcmi->dma_cookie)) {
dev_err(dcmi->dev, "%s: DMA submission failed\n", __func__);
mutex_unlock(&dcmi->dma_lock);
return -ENXIO;
}
mutex_unlock(&dcmi->dma_lock);
dma_async_issue_pending(dcmi->dma_chan);
return 0;
}
static int dcmi_start_capture(struct stm32_dcmi *dcmi, struct dcmi_buf *buf)
{
int ret;
if (!buf)
return -EINVAL;
ret = dcmi_start_dma(dcmi, buf);
if (ret) {
dcmi->errors_count++;
return ret;
}
/* Enable capture */
reg_set(dcmi->regs, DCMI_CR, CR_CAPTURE);
return 0;
}
static void dcmi_set_crop(struct stm32_dcmi *dcmi)
{
u32 size, start;
/* Crop resolution */
size = ((dcmi->crop.height - 1) << 16) |
((dcmi->crop.width << 1) - 1);
reg_write(dcmi->regs, DCMI_CWSIZE, size);
/* Crop start point */
start = ((dcmi->crop.top) << 16) |
((dcmi->crop.left << 1));
reg_write(dcmi->regs, DCMI_CWSTRT, start);
dev_dbg(dcmi->dev, "Cropping to %ux%u@%u:%u\n",
dcmi->crop.width, dcmi->crop.height,
dcmi->crop.left, dcmi->crop.top);
/* Enable crop */
reg_set(dcmi->regs, DCMI_CR, CR_CROP);
}
static void dcmi_process_jpeg(struct stm32_dcmi *dcmi)
{
struct dma_tx_state state;
enum dma_status status;
struct dcmi_buf *buf = dcmi->active;
if (!buf)
return;
/*
* Because of variable JPEG buffer size sent by sensor,
* DMA transfer never completes due to transfer size never reached.
* In order to ensure that all the JPEG data are transferred
* in active buffer memory, DMA is drained.
* Then DMA tx status gives the amount of data transferred
* to memory, which is then returned to V4L2 through the active
* buffer payload.
*/
/* Drain DMA */
dmaengine_synchronize(dcmi->dma_chan);
/* Get DMA residue to get JPEG size */
status = dmaengine_tx_status(dcmi->dma_chan, dcmi->dma_cookie, &state);
if (status != DMA_ERROR && state.residue < buf->size) {
/* Return JPEG buffer to V4L2 with received JPEG buffer size */
dcmi_buffer_done(dcmi, buf, buf->size - state.residue, 0);
} else {
dcmi->errors_count++;
dev_err(dcmi->dev, "%s: Cannot get JPEG size from DMA\n",
__func__);
/* Return JPEG buffer to V4L2 in ERROR state */
dcmi_buffer_done(dcmi, buf, 0, -EIO);
}
/* Abort DMA operation */
dmaengine_terminate_sync(dcmi->dma_chan);
/* Restart capture */
if (dcmi_restart_capture(dcmi))
dev_err(dcmi->dev, "%s: Cannot restart capture on JPEG received\n",
__func__);
}
static irqreturn_t dcmi_irq_thread(int irq, void *arg)
{
struct stm32_dcmi *dcmi = arg;
spin_lock_irq(&dcmi->irqlock);
if (dcmi->misr & IT_OVR) {
dcmi->overrun_count++;
if (dcmi->overrun_count > OVERRUN_ERROR_THRESHOLD)
dcmi->errors_count++;
}
if (dcmi->misr & IT_ERR)
dcmi->errors_count++;
if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG &&
dcmi->misr & IT_FRAME) {
/* JPEG received */
spin_unlock_irq(&dcmi->irqlock);
dcmi_process_jpeg(dcmi);
return IRQ_HANDLED;
}
spin_unlock_irq(&dcmi->irqlock);
return IRQ_HANDLED;
}
static irqreturn_t dcmi_irq_callback(int irq, void *arg)
{
struct stm32_dcmi *dcmi = arg;
unsigned long flags;
spin_lock_irqsave(&dcmi->irqlock, flags);
dcmi->misr = reg_read(dcmi->regs, DCMI_MIS);
/* Clear interrupt */
reg_set(dcmi->regs, DCMI_ICR, IT_FRAME | IT_OVR | IT_ERR);
spin_unlock_irqrestore(&dcmi->irqlock, flags);
return IRQ_WAKE_THREAD;
}
static int dcmi_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers,
unsigned int *nplanes,
unsigned int sizes[],
struct device *alloc_devs[])
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
unsigned int size;
size = dcmi->fmt.fmt.pix.sizeimage;
/* Make sure the image size is large enough */
if (*nplanes)
return sizes[0] < size ? -EINVAL : 0;
*nplanes = 1;
sizes[0] = size;
dev_dbg(dcmi->dev, "Setup queue, count=%d, size=%d\n",
*nbuffers, size);
return 0;
}
static int dcmi_buf_init(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);
INIT_LIST_HEAD(&buf->list);
return 0;
}
static int dcmi_buf_prepare(struct vb2_buffer *vb)
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);
unsigned long size;
unsigned int num_sgs = 1;
dma_addr_t dma_buf;
struct scatterlist *sg;
int i, ret;
size = dcmi->fmt.fmt.pix.sizeimage;
if (vb2_plane_size(vb, 0) < size) {
dev_err(dcmi->dev, "%s data will not fit into plane (%lu < %lu)\n",
__func__, vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(vb, 0, size);
if (!buf->prepared) {
/* Get memory addresses */
buf->size = vb2_plane_size(&buf->vb.vb2_buf, 0);
if (buf->size > dcmi->dma_max_burst)
num_sgs = DIV_ROUND_UP(buf->size, dcmi->dma_max_burst);
ret = sg_alloc_table(&buf->sgt, num_sgs, GFP_ATOMIC);
if (ret) {
dev_err(dcmi->dev, "sg table alloc failed\n");
return ret;
}
dma_buf = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
dev_dbg(dcmi->dev, "buffer[%d] phy=%pad size=%zu\n",
vb->index, &dma_buf, buf->size);
for_each_sg(buf->sgt.sgl, sg, num_sgs, i) {
size_t bytes = min_t(size_t, size, dcmi->dma_max_burst);
sg_dma_address(sg) = dma_buf;
sg_dma_len(sg) = bytes;
dma_buf += bytes;
size -= bytes;
}
buf->prepared = true;
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, buf->size);
}
return 0;
}
static void dcmi_buf_queue(struct vb2_buffer *vb)
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);
spin_lock_irq(&dcmi->irqlock);
/* Enqueue to video buffers list */
list_add_tail(&buf->list, &dcmi->buffers);
if (dcmi->state == WAIT_FOR_BUFFER) {
dcmi->state = RUNNING;
dcmi->active = buf;
dev_dbg(dcmi->dev, "Starting capture on buffer[%d] queued\n",
buf->vb.vb2_buf.index);
spin_unlock_irq(&dcmi->irqlock);
if (dcmi_start_capture(dcmi, buf))
dev_err(dcmi->dev, "%s: Cannot restart capture on overflow or error\n",
__func__);
return;
}
spin_unlock_irq(&dcmi->irqlock);
}
static struct media_entity *dcmi_find_source(struct stm32_dcmi *dcmi)
{
struct media_entity *entity = &dcmi->vdev->entity;
struct media_pad *pad;
/* Walk searching for entity having no sink */
while (1) {
pad = &entity->pads[0];
if (!(pad->flags & MEDIA_PAD_FL_SINK))
break;
pad = media_pad_remote_pad_first(pad);
if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
break;
entity = pad->entity;
}
return entity;
}
static int dcmi_pipeline_s_fmt(struct stm32_dcmi *dcmi,
struct v4l2_subdev_format *format)
{
struct media_entity *entity = &dcmi->source->entity;
struct v4l2_subdev *subdev;
struct media_pad *sink_pad = NULL;
struct media_pad *src_pad = NULL;
struct media_pad *pad = NULL;
struct v4l2_subdev_format fmt = *format;
bool found = false;
int ret;
/*
* Starting from sensor subdevice, walk within
* pipeline and set format on each subdevice
*/
while (1) {
unsigned int i;
/* Search if current entity has a source pad */
for (i = 0; i < entity->num_pads; i++) {
pad = &entity->pads[i];
if (pad->flags & MEDIA_PAD_FL_SOURCE) {
src_pad = pad;
found = true;
break;
}
}
if (!found)
break;
subdev = media_entity_to_v4l2_subdev(entity);
/* Propagate format on sink pad if any, otherwise source pad */
if (sink_pad)
pad = sink_pad;
dev_dbg(dcmi->dev, "\"%s\":%d pad format set to 0x%x %ux%u\n",
subdev->name, pad->index, format->format.code,
format->format.width, format->format.height);
fmt.pad = pad->index;
ret = v4l2_subdev_call(subdev, pad, set_fmt, NULL, &fmt);
if (ret < 0) {
dev_err(dcmi->dev, "%s: Failed to set format 0x%x %ux%u on \"%s\":%d pad (%d)\n",
__func__, format->format.code,
format->format.width, format->format.height,
subdev->name, pad->index, ret);
return ret;
}
if (fmt.format.code != format->format.code ||
fmt.format.width != format->format.width ||
fmt.format.height != format->format.height) {
dev_dbg(dcmi->dev, "\"%s\":%d pad format has been changed to 0x%x %ux%u\n",
subdev->name, pad->index, fmt.format.code,
fmt.format.width, fmt.format.height);
}
/* Walk to next entity */
sink_pad = media_pad_remote_pad_first(src_pad);
if (!sink_pad || !is_media_entity_v4l2_subdev(sink_pad->entity))
break;
entity = sink_pad->entity;
}
*format = fmt;
return 0;
}
static int dcmi_pipeline_s_stream(struct stm32_dcmi *dcmi, int state)
{
struct media_entity *entity = &dcmi->vdev->entity;
struct v4l2_subdev *subdev;
struct media_pad *pad;
int ret;
/* Start/stop all entities within pipeline */
while (1) {
pad = &entity->pads[0];
if (!(pad->flags & MEDIA_PAD_FL_SINK))
break;
pad = media_pad_remote_pad_first(pad);
if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
break;
entity = pad->entity;
subdev = media_entity_to_v4l2_subdev(entity);
ret = v4l2_subdev_call(subdev, video, s_stream, state);
if (ret < 0 && ret != -ENOIOCTLCMD) {
dev_err(dcmi->dev, "%s: \"%s\" failed to %s streaming (%d)\n",
__func__, subdev->name,
state ? "start" : "stop", ret);
return ret;
}
dev_dbg(dcmi->dev, "\"%s\" is %s\n",
subdev->name, state ? "started" : "stopped");
}
return 0;
}
static int dcmi_pipeline_start(struct stm32_dcmi *dcmi)
{
return dcmi_pipeline_s_stream(dcmi, 1);
}
static void dcmi_pipeline_stop(struct stm32_dcmi *dcmi)
{
dcmi_pipeline_s_stream(dcmi, 0);
}
static int dcmi_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
struct dcmi_buf *buf, *node;
u32 val = 0;
int ret;
ret = pm_runtime_resume_and_get(dcmi->dev);
if (ret < 0) {
dev_err(dcmi->dev, "%s: Failed to start streaming, cannot get sync (%d)\n",
__func__, ret);
goto err_unlocked;
}
ret = video_device_pipeline_start(dcmi->vdev, &dcmi->pipeline);
if (ret < 0) {
dev_err(dcmi->dev, "%s: Failed to start streaming, media pipeline start error (%d)\n",
__func__, ret);
goto err_pm_put;
}
ret = dcmi_pipeline_start(dcmi);
if (ret)
goto err_media_pipeline_stop;
spin_lock_irq(&dcmi->irqlock);
/* Set bus width */
switch (dcmi->bus.bus_width) {
case 14:
val |= CR_EDM_0 | CR_EDM_1;
break;
case 12:
val |= CR_EDM_1;
break;
case 10:
val |= CR_EDM_0;
break;
default:
/* Set bus width to 8 bits by default */
break;
}
/* Set vertical synchronization polarity */
if (dcmi->bus.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
val |= CR_VSPOL;
/* Set horizontal synchronization polarity */
if (dcmi->bus.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
val |= CR_HSPOL;
/* Set pixel clock polarity */
if (dcmi->bus.flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
val |= CR_PCKPOL;
/*
* BT656 embedded synchronisation bus mode.
*
* Default SAV/EAV mode is supported here with default codes
* SAV=0xff000080 & EAV=0xff00009d.
* With DCMI this means LSC=SAV=0x80 & LEC=EAV=0x9d.
*/
if (dcmi->bus_type == V4L2_MBUS_BT656) {
val |= CR_ESS;
/* Unmask all codes */
reg_write(dcmi->regs, DCMI_ESUR, 0xffffffff);/* FEC:LEC:LSC:FSC */
/* Trig on LSC=0x80 & LEC=0x9d codes, ignore FSC and FEC */
reg_write(dcmi->regs, DCMI_ESCR, 0xff9d80ff);/* FEC:LEC:LSC:FSC */
}
reg_write(dcmi->regs, DCMI_CR, val);
/* Set crop */
if (dcmi->do_crop)
dcmi_set_crop(dcmi);
/* Enable jpeg capture */
if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG)
reg_set(dcmi->regs, DCMI_CR, CR_CM);/* Snapshot mode */
/* Enable dcmi */
reg_set(dcmi->regs, DCMI_CR, CR_ENABLE);
dcmi->sequence = 0;
dcmi->errors_count = 0;
dcmi->overrun_count = 0;
dcmi->buffers_count = 0;
/*
* Start transfer if at least one buffer has been queued,
* otherwise transfer is deferred at buffer queueing
*/
if (list_empty(&dcmi->buffers)) {
dev_dbg(dcmi->dev, "Start streaming is deferred to next buffer queueing\n");
dcmi->state = WAIT_FOR_BUFFER;
spin_unlock_irq(&dcmi->irqlock);
return 0;
}
buf = list_entry(dcmi->buffers.next, struct dcmi_buf, list);
dcmi->active = buf;
dcmi->state = RUNNING;
dev_dbg(dcmi->dev, "Start streaming, starting capture\n");
spin_unlock_irq(&dcmi->irqlock);
ret = dcmi_start_capture(dcmi, buf);
if (ret) {
dev_err(dcmi->dev, "%s: Start streaming failed, cannot start capture\n",
__func__);
goto err_pipeline_stop;
}
/* Enable interruptions */
if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG)
reg_set(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR);
else
reg_set(dcmi->regs, DCMI_IER, IT_OVR | IT_ERR);
return 0;
err_pipeline_stop:
dcmi_pipeline_stop(dcmi);
err_media_pipeline_stop:
video_device_pipeline_stop(dcmi->vdev);
err_pm_put:
pm_runtime_put(dcmi->dev);
err_unlocked:
spin_lock_irq(&dcmi->irqlock);
/*
* Return all buffers to vb2 in QUEUED state.
* This will give ownership back to userspace
*/
list_for_each_entry_safe(buf, node, &dcmi->buffers, list) {
list_del_init(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
}
dcmi->active = NULL;
spin_unlock_irq(&dcmi->irqlock);
return ret;
}
static void dcmi_stop_streaming(struct vb2_queue *vq)
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
struct dcmi_buf *buf, *node;
dcmi_pipeline_stop(dcmi);
video_device_pipeline_stop(dcmi->vdev);
spin_lock_irq(&dcmi->irqlock);
/* Disable interruptions */
reg_clear(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR);
/* Disable DCMI */
reg_clear(dcmi->regs, DCMI_CR, CR_ENABLE);
/* Return all queued buffers to vb2 in ERROR state */
list_for_each_entry_safe(buf, node, &dcmi->buffers, list) {
list_del_init(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
}
dcmi->active = NULL;
dcmi->state = STOPPED;
spin_unlock_irq(&dcmi->irqlock);
/* Stop all pending DMA operations */
mutex_lock(&dcmi->dma_lock);
dmaengine_terminate_sync(dcmi->dma_chan);
mutex_unlock(&dcmi->dma_lock);
pm_runtime_put(dcmi->dev);
if (dcmi->errors_count)
dev_warn(dcmi->dev, "Some errors found while streaming: errors=%d (overrun=%d), buffers=%d\n",
dcmi->errors_count, dcmi->overrun_count,
dcmi->buffers_count);
dev_dbg(dcmi->dev, "Stop streaming, errors=%d (overrun=%d), buffers=%d\n",
dcmi->errors_count, dcmi->overrun_count,
dcmi->buffers_count);
}
static const struct vb2_ops dcmi_video_qops = {
.queue_setup = dcmi_queue_setup,
.buf_init = dcmi_buf_init,
.buf_prepare = dcmi_buf_prepare,
.buf_queue = dcmi_buf_queue,
.start_streaming = dcmi_start_streaming,
.stop_streaming = dcmi_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static int dcmi_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *fmt)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
*fmt = dcmi->fmt;
return 0;
}
static const struct dcmi_format *find_format_by_fourcc(struct stm32_dcmi *dcmi,
unsigned int fourcc)
{
unsigned int num_formats = dcmi->num_of_sd_formats;
const struct dcmi_format *fmt;
unsigned int i;
for (i = 0; i < num_formats; i++) {
fmt = dcmi->sd_formats[i];
if (fmt->fourcc == fourcc)
return fmt;
}
return NULL;
}
static void __find_outer_frame_size(struct stm32_dcmi *dcmi,
struct v4l2_pix_format *pix,
struct dcmi_framesize *framesize)
{
struct dcmi_framesize *match = NULL;
unsigned int i;
unsigned int min_err = UINT_MAX;
for (i = 0; i < dcmi->num_of_sd_framesizes; i++) {
struct dcmi_framesize *fsize = &dcmi->sd_framesizes[i];
int w_err = (fsize->width - pix->width);
int h_err = (fsize->height - pix->height);
int err = w_err + h_err;
if (w_err >= 0 && h_err >= 0 && err < min_err) {
min_err = err;
match = fsize;
}
}
if (!match)
match = &dcmi->sd_framesizes[0];
*framesize = *match;
}
static int dcmi_try_fmt(struct stm32_dcmi *dcmi, struct v4l2_format *f,
const struct dcmi_format **sd_format,
struct dcmi_framesize *sd_framesize)
{
const struct dcmi_format *sd_fmt;
struct dcmi_framesize sd_fsize;
struct v4l2_pix_format *pix = &f->fmt.pix;
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_TRY,
};
bool do_crop;
int ret;
sd_fmt = find_format_by_fourcc(dcmi, pix->pixelformat);
if (!sd_fmt) {
if (!dcmi->num_of_sd_formats)
return -ENODATA;
sd_fmt = dcmi->sd_formats[dcmi->num_of_sd_formats - 1];
pix->pixelformat = sd_fmt->fourcc;
}
/* Limit to hardware capabilities */
pix->width = clamp(pix->width, MIN_WIDTH, MAX_WIDTH);
pix->height = clamp(pix->height, MIN_HEIGHT, MAX_HEIGHT);
/* No crop if JPEG is requested */
do_crop = dcmi->do_crop && (pix->pixelformat != V4L2_PIX_FMT_JPEG);
if (do_crop && dcmi->num_of_sd_framesizes) {
struct dcmi_framesize outer_sd_fsize;
/*
* If crop is requested and sensor have discrete frame sizes,
* select the frame size that is just larger than request
*/
__find_outer_frame_size(dcmi, pix, &outer_sd_fsize);
pix->width = outer_sd_fsize.width;
pix->height = outer_sd_fsize.height;
}
v4l2_fill_mbus_format(&format.format, pix, sd_fmt->mbus_code);
ret = v4l2_subdev_call_state_try(dcmi->source, pad, set_fmt, &format);
if (ret < 0)
return ret;
/* Update pix regarding to what sensor can do */
v4l2_fill_pix_format(pix, &format.format);
/* Save resolution that sensor can actually do */
sd_fsize.width = pix->width;
sd_fsize.height = pix->height;
if (do_crop) {
struct v4l2_rect c = dcmi->crop;
struct v4l2_rect max_rect;
/*
* Adjust crop by making the intersection between
* format resolution request and crop request
*/
max_rect.top = 0;
max_rect.left = 0;
max_rect.width = pix->width;
max_rect.height = pix->height;
v4l2_rect_map_inside(&c, &max_rect);
c.top = clamp_t(s32, c.top, 0, pix->height - c.height);
c.left = clamp_t(s32, c.left, 0, pix->width - c.width);
dcmi->crop = c;
/* Adjust format resolution request to crop */
pix->width = dcmi->crop.width;
pix->height = dcmi->crop.height;
}
pix->field = V4L2_FIELD_NONE;
pix->bytesperline = pix->width * sd_fmt->bpp;
pix->sizeimage = pix->bytesperline * pix->height;
if (sd_format)
*sd_format = sd_fmt;
if (sd_framesize)
*sd_framesize = sd_fsize;
return 0;
}
static int dcmi_set_fmt(struct stm32_dcmi *dcmi, struct v4l2_format *f)
{
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
const struct dcmi_format *sd_format;
struct dcmi_framesize sd_framesize;
struct v4l2_mbus_framefmt *mf = &format.format;
struct v4l2_pix_format *pix = &f->fmt.pix;
int ret;
/*
* Try format, fmt.width/height could have been changed
* to match sensor capability or crop request
* sd_format & sd_framesize will contain what subdev
* can do for this request.
*/
ret = dcmi_try_fmt(dcmi, f, &sd_format, &sd_framesize);
if (ret)
return ret;
/* Disable crop if JPEG is requested or BT656 bus is selected */
if (pix->pixelformat == V4L2_PIX_FMT_JPEG &&
dcmi->bus_type != V4L2_MBUS_BT656)
dcmi->do_crop = false;
/* pix to mbus format */
v4l2_fill_mbus_format(mf, pix,
sd_format->mbus_code);
mf->width = sd_framesize.width;
mf->height = sd_framesize.height;
ret = dcmi_pipeline_s_fmt(dcmi, &format);
if (ret < 0)
return ret;
dev_dbg(dcmi->dev, "Sensor format set to 0x%x %ux%u\n",
mf->code, mf->width, mf->height);
dev_dbg(dcmi->dev, "Buffer format set to %4.4s %ux%u\n",
(char *)&pix->pixelformat,
pix->width, pix->height);
dcmi->fmt = *f;
dcmi->sd_format = sd_format;
dcmi->sd_framesize = sd_framesize;
return 0;
}
static int dcmi_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
if (vb2_is_streaming(&dcmi->queue))
return -EBUSY;
return dcmi_set_fmt(dcmi, f);
}
static int dcmi_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
return dcmi_try_fmt(dcmi, f, NULL, NULL);
}
static int dcmi_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
if (f->index >= dcmi->num_of_sd_formats)
return -EINVAL;
f->pixelformat = dcmi->sd_formats[f->index]->fourcc;
return 0;
}
static int dcmi_get_sensor_format(struct stm32_dcmi *dcmi,
struct v4l2_pix_format *pix)
{
struct v4l2_subdev_format fmt = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
ret = v4l2_subdev_call(dcmi->source, pad, get_fmt, NULL, &fmt);
if (ret)
return ret;
v4l2_fill_pix_format(pix, &fmt.format);
return 0;
}
static int dcmi_set_sensor_format(struct stm32_dcmi *dcmi,
struct v4l2_pix_format *pix)
{
const struct dcmi_format *sd_fmt;
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_TRY,
};
int ret;
sd_fmt = find_format_by_fourcc(dcmi, pix->pixelformat);
if (!sd_fmt) {
if (!dcmi->num_of_sd_formats)
return -ENODATA;
sd_fmt = dcmi->sd_formats[dcmi->num_of_sd_formats - 1];
pix->pixelformat = sd_fmt->fourcc;
}
v4l2_fill_mbus_format(&format.format, pix, sd_fmt->mbus_code);
ret = v4l2_subdev_call_state_try(dcmi->source, pad, set_fmt, &format);
if (ret < 0)
return ret;
return 0;
}
static int dcmi_get_sensor_bounds(struct stm32_dcmi *dcmi,
struct v4l2_rect *r)
{
struct v4l2_subdev_selection bounds = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.target = V4L2_SEL_TGT_CROP_BOUNDS,
};
unsigned int max_width, max_height, max_pixsize;
struct v4l2_pix_format pix;
unsigned int i;
int ret;
/*
* Get sensor bounds first
*/
ret = v4l2_subdev_call(dcmi->source, pad, get_selection,
NULL, &bounds);
if (!ret)
*r = bounds.r;
if (ret != -ENOIOCTLCMD)
return ret;
/*
* If selection is not implemented,
* fallback by enumerating sensor frame sizes
* and take the largest one
*/
max_width = 0;
max_height = 0;
max_pixsize = 0;
for (i = 0; i < dcmi->num_of_sd_framesizes; i++) {
struct dcmi_framesize *fsize = &dcmi->sd_framesizes[i];
unsigned int pixsize = fsize->width * fsize->height;
if (pixsize > max_pixsize) {
max_pixsize = pixsize;
max_width = fsize->width;
max_height = fsize->height;
}
}
if (max_pixsize > 0) {
r->top = 0;
r->left = 0;
r->width = max_width;
r->height = max_height;
return 0;
}
/*
* If frame sizes enumeration is not implemented,
* fallback by getting current sensor frame size
*/
ret = dcmi_get_sensor_format(dcmi, &pix);
if (ret)
return ret;
r->top = 0;
r->left = 0;
r->width = pix.width;
r->height = pix.height;
return 0;
}
static int dcmi_g_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
switch (s->target) {
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
s->r = dcmi->sd_bounds;
return 0;
case V4L2_SEL_TGT_CROP:
if (dcmi->do_crop) {
s->r = dcmi->crop;
} else {
s->r.top = 0;
s->r.left = 0;
s->r.width = dcmi->fmt.fmt.pix.width;
s->r.height = dcmi->fmt.fmt.pix.height;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int dcmi_s_selection(struct file *file, void *priv,
struct v4l2_selection *s)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
struct v4l2_rect r = s->r;
struct v4l2_rect max_rect;
struct v4l2_pix_format pix;
if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE ||
s->target != V4L2_SEL_TGT_CROP)
return -EINVAL;
/* Reset sensor resolution to max resolution */
pix.pixelformat = dcmi->fmt.fmt.pix.pixelformat;
pix.width = dcmi->sd_bounds.width;
pix.height = dcmi->sd_bounds.height;
dcmi_set_sensor_format(dcmi, &pix);
/*
* Make the intersection between
* sensor resolution
* and crop request
*/
max_rect.top = 0;
max_rect.left = 0;
max_rect.width = pix.width;
max_rect.height = pix.height;
v4l2_rect_map_inside(&r, &max_rect);
r.top = clamp_t(s32, r.top, 0, pix.height - r.height);
r.left = clamp_t(s32, r.left, 0, pix.width - r.width);
if (!(r.top == dcmi->sd_bounds.top &&
r.left == dcmi->sd_bounds.left &&
r.width == dcmi->sd_bounds.width &&
r.height == dcmi->sd_bounds.height)) {
/* Crop if request is different than sensor resolution */
dcmi->do_crop = true;
dcmi->crop = r;
dev_dbg(dcmi->dev, "s_selection: crop %ux%u@(%u,%u) from %ux%u\n",
r.width, r.height, r.left, r.top,
pix.width, pix.height);
} else {
/* Disable crop */
dcmi->do_crop = false;
dev_dbg(dcmi->dev, "s_selection: crop is disabled\n");
}
s->r = r;
return 0;
}
static int dcmi_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strscpy(cap->driver, DRV_NAME, sizeof(cap->driver));
strscpy(cap->card, "STM32 Camera Memory Interface",
sizeof(cap->card));
strscpy(cap->bus_info, "platform:dcmi", sizeof(cap->bus_info));
return 0;
}
static int dcmi_enum_input(struct file *file, void *priv,
struct v4l2_input *i)
{
if (i->index != 0)
return -EINVAL;
i->type = V4L2_INPUT_TYPE_CAMERA;
strscpy(i->name, "Camera", sizeof(i->name));
return 0;
}
static int dcmi_g_input(struct file *file, void *priv, unsigned int *i)
{
*i = 0;
return 0;
}
static int dcmi_s_input(struct file *file, void *priv, unsigned int i)
{
if (i > 0)
return -EINVAL;
return 0;
}
static int dcmi_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
const struct dcmi_format *sd_fmt;
struct v4l2_subdev_frame_size_enum fse = {
.index = fsize->index,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
sd_fmt = find_format_by_fourcc(dcmi, fsize->pixel_format);
if (!sd_fmt)
return -EINVAL;
fse.code = sd_fmt->mbus_code;
ret = v4l2_subdev_call(dcmi->source, pad, enum_frame_size,
NULL, &fse);
if (ret)
return ret;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = fse.max_width;
fsize->discrete.height = fse.max_height;
return 0;
}
static int dcmi_g_parm(struct file *file, void *priv,
struct v4l2_streamparm *p)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
return v4l2_g_parm_cap(video_devdata(file), dcmi->source, p);
}
static int dcmi_s_parm(struct file *file, void *priv,
struct v4l2_streamparm *p)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
return v4l2_s_parm_cap(video_devdata(file), dcmi->source, p);
}
static int dcmi_enum_frameintervals(struct file *file, void *fh,
struct v4l2_frmivalenum *fival)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
const struct dcmi_format *sd_fmt;
struct v4l2_subdev_frame_interval_enum fie = {
.index = fival->index,
.width = fival->width,
.height = fival->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
sd_fmt = find_format_by_fourcc(dcmi, fival->pixel_format);
if (!sd_fmt)
return -EINVAL;
fie.code = sd_fmt->mbus_code;
ret = v4l2_subdev_call(dcmi->source, pad,
enum_frame_interval, NULL, &fie);
if (ret)
return ret;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = fie.interval;
return 0;
}
static const struct of_device_id stm32_dcmi_of_match[] = {
{ .compatible = "st,stm32-dcmi"},
{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, stm32_dcmi_of_match);
static int dcmi_open(struct file *file)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
struct v4l2_subdev *sd = dcmi->source;
int ret;
if (mutex_lock_interruptible(&dcmi->lock))
return -ERESTARTSYS;
ret = v4l2_fh_open(file);
if (ret < 0)
goto unlock;
if (!v4l2_fh_is_singular_file(file))
goto fh_rel;
ret = v4l2_subdev_call(sd, core, s_power, 1);
if (ret < 0 && ret != -ENOIOCTLCMD)
goto fh_rel;
ret = dcmi_set_fmt(dcmi, &dcmi->fmt);
if (ret)
v4l2_subdev_call(sd, core, s_power, 0);
fh_rel:
if (ret)
v4l2_fh_release(file);
unlock:
mutex_unlock(&dcmi->lock);
return ret;
}
static int dcmi_release(struct file *file)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
struct v4l2_subdev *sd = dcmi->source;
bool fh_singular;
int ret;
mutex_lock(&dcmi->lock);
fh_singular = v4l2_fh_is_singular_file(file);
ret = _vb2_fop_release(file, NULL);
if (fh_singular)
v4l2_subdev_call(sd, core, s_power, 0);
mutex_unlock(&dcmi->lock);
return ret;
}
static const struct v4l2_ioctl_ops dcmi_ioctl_ops = {
.vidioc_querycap = dcmi_querycap,
.vidioc_try_fmt_vid_cap = dcmi_try_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = dcmi_g_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = dcmi_s_fmt_vid_cap,
.vidioc_enum_fmt_vid_cap = dcmi_enum_fmt_vid_cap,
.vidioc_g_selection = dcmi_g_selection,
.vidioc_s_selection = dcmi_s_selection,
.vidioc_enum_input = dcmi_enum_input,
.vidioc_g_input = dcmi_g_input,
.vidioc_s_input = dcmi_s_input,
.vidioc_g_parm = dcmi_g_parm,
.vidioc_s_parm = dcmi_s_parm,
.vidioc_enum_framesizes = dcmi_enum_framesizes,
.vidioc_enum_frameintervals = dcmi_enum_frameintervals,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_log_status = v4l2_ctrl_log_status,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
static const struct v4l2_file_operations dcmi_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = video_ioctl2,
.open = dcmi_open,
.release = dcmi_release,
.poll = vb2_fop_poll,
.mmap = vb2_fop_mmap,
#ifndef CONFIG_MMU
.get_unmapped_area = vb2_fop_get_unmapped_area,
#endif
.read = vb2_fop_read,
};
static int dcmi_set_default_fmt(struct stm32_dcmi *dcmi)
{
struct v4l2_format f = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.fmt.pix = {
.width = CIF_WIDTH,
.height = CIF_HEIGHT,
.field = V4L2_FIELD_NONE,
.pixelformat = dcmi->sd_formats[0]->fourcc,
},
};
int ret;
ret = dcmi_try_fmt(dcmi, &f, NULL, NULL);
if (ret)
return ret;
dcmi->sd_format = dcmi->sd_formats[0];
dcmi->fmt = f;
return 0;
}
static const struct dcmi_format dcmi_formats[] = {
{
.fourcc = V4L2_PIX_FMT_RGB565,
.mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_RGB565,
.mbus_code = MEDIA_BUS_FMT_RGB565_1X16,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_YUYV,
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_YUYV,
.mbus_code = MEDIA_BUS_FMT_YUYV8_1X16,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.mbus_code = MEDIA_BUS_FMT_UYVY8_2X8,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.mbus_code = MEDIA_BUS_FMT_UYVY8_1X16,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_JPEG,
.mbus_code = MEDIA_BUS_FMT_JPEG_1X8,
.bpp = 1,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR8,
.mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8,
.bpp = 1,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.mbus_code = MEDIA_BUS_FMT_SGBRG8_1X8,
.bpp = 1,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.mbus_code = MEDIA_BUS_FMT_SGRBG8_1X8,
.bpp = 1,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.mbus_code = MEDIA_BUS_FMT_SRGGB8_1X8,
.bpp = 1,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10,
.mbus_code = MEDIA_BUS_FMT_SBGGR10_1X10,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10,
.mbus_code = MEDIA_BUS_FMT_SGBRG10_1X10,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10,
.mbus_code = MEDIA_BUS_FMT_SGRBG10_1X10,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10,
.mbus_code = MEDIA_BUS_FMT_SRGGB10_1X10,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12,
.mbus_code = MEDIA_BUS_FMT_SBGGR12_1X12,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12,
.mbus_code = MEDIA_BUS_FMT_SGBRG12_1X12,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12,
.mbus_code = MEDIA_BUS_FMT_SGRBG12_1X12,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12,
.mbus_code = MEDIA_BUS_FMT_SRGGB12_1X12,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR14,
.mbus_code = MEDIA_BUS_FMT_SBGGR14_1X14,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG14,
.mbus_code = MEDIA_BUS_FMT_SGBRG14_1X14,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG14,
.mbus_code = MEDIA_BUS_FMT_SGRBG14_1X14,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB14,
.mbus_code = MEDIA_BUS_FMT_SRGGB14_1X14,
.bpp = 2,
},
};
static int dcmi_formats_init(struct stm32_dcmi *dcmi)
{
const struct dcmi_format *sd_fmts[ARRAY_SIZE(dcmi_formats)];
unsigned int num_fmts = 0, i, j;
struct v4l2_subdev *subdev = dcmi->source;
struct v4l2_subdev_mbus_code_enum mbus_code = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
while (!v4l2_subdev_call(subdev, pad, enum_mbus_code,
NULL, &mbus_code)) {
for (i = 0; i < ARRAY_SIZE(dcmi_formats); i++) {
if (dcmi_formats[i].mbus_code != mbus_code.code)
continue;
/* Exclude JPEG if BT656 bus is selected */
if (dcmi_formats[i].fourcc == V4L2_PIX_FMT_JPEG &&
dcmi->bus_type == V4L2_MBUS_BT656)
continue;
/* Code supported, have we got this fourcc yet? */
for (j = 0; j < num_fmts; j++)
if (sd_fmts[j]->fourcc ==
dcmi_formats[i].fourcc) {
/* Already available */
dev_dbg(dcmi->dev, "Skipping fourcc/code: %4.4s/0x%x\n",
(char *)&sd_fmts[j]->fourcc,
mbus_code.code);
break;
}
if (j == num_fmts) {
/* New */
sd_fmts[num_fmts++] = dcmi_formats + i;
dev_dbg(dcmi->dev, "Supported fourcc/code: %4.4s/0x%x\n",
(char *)&sd_fmts[num_fmts - 1]->fourcc,
sd_fmts[num_fmts - 1]->mbus_code);
}
}
mbus_code.index++;
}
if (!num_fmts)
return -ENXIO;
dcmi->num_of_sd_formats = num_fmts;
dcmi->sd_formats = devm_kcalloc(dcmi->dev,
num_fmts, sizeof(struct dcmi_format *),
GFP_KERNEL);
if (!dcmi->sd_formats) {
dev_err(dcmi->dev, "Could not allocate memory\n");
return -ENOMEM;
}
memcpy(dcmi->sd_formats, sd_fmts,
num_fmts * sizeof(struct dcmi_format *));
dcmi->sd_format = dcmi->sd_formats[0];
return 0;
}
static int dcmi_framesizes_init(struct stm32_dcmi *dcmi)
{
unsigned int num_fsize = 0;
struct v4l2_subdev *subdev = dcmi->source;
struct v4l2_subdev_frame_size_enum fse = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.code = dcmi->sd_format->mbus_code,
};
unsigned int ret;
unsigned int i;
/* Allocate discrete framesizes array */
while (!v4l2_subdev_call(subdev, pad, enum_frame_size,
NULL, &fse))
fse.index++;
num_fsize = fse.index;
if (!num_fsize)
return 0;
dcmi->num_of_sd_framesizes = num_fsize;
dcmi->sd_framesizes = devm_kcalloc(dcmi->dev, num_fsize,
sizeof(struct dcmi_framesize),
GFP_KERNEL);
if (!dcmi->sd_framesizes) {
dev_err(dcmi->dev, "Could not allocate memory\n");
return -ENOMEM;
}
/* Fill array with sensor supported framesizes */
dev_dbg(dcmi->dev, "Sensor supports %u frame sizes:\n", num_fsize);
for (i = 0; i < dcmi->num_of_sd_framesizes; i++) {
fse.index = i;
ret = v4l2_subdev_call(subdev, pad, enum_frame_size,
NULL, &fse);
if (ret)
return ret;
dcmi->sd_framesizes[fse.index].width = fse.max_width;
dcmi->sd_framesizes[fse.index].height = fse.max_height;
dev_dbg(dcmi->dev, "%ux%u\n", fse.max_width, fse.max_height);
}
return 0;
}
static int dcmi_graph_notify_complete(struct v4l2_async_notifier *notifier)
{
struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);
int ret;
/*
* Now that the graph is complete,
* we search for the source subdevice
* in order to expose it through V4L2 interface
*/
dcmi->source = media_entity_to_v4l2_subdev(dcmi_find_source(dcmi));
if (!dcmi->source) {
dev_err(dcmi->dev, "Source subdevice not found\n");
return -ENODEV;
}
dcmi->vdev->ctrl_handler = dcmi->source->ctrl_handler;
ret = dcmi_formats_init(dcmi);
if (ret) {
dev_err(dcmi->dev, "No supported mediabus format found\n");
return ret;
}
ret = dcmi_framesizes_init(dcmi);
if (ret) {
dev_err(dcmi->dev, "Could not initialize framesizes\n");
return ret;
}
ret = dcmi_get_sensor_bounds(dcmi, &dcmi->sd_bounds);
if (ret) {
dev_err(dcmi->dev, "Could not get sensor bounds\n");
return ret;
}
ret = dcmi_set_default_fmt(dcmi);
if (ret) {
dev_err(dcmi->dev, "Could not set default format\n");
return ret;
}
ret = devm_request_threaded_irq(dcmi->dev, dcmi->irq, dcmi_irq_callback,
dcmi_irq_thread, IRQF_ONESHOT,
dev_name(dcmi->dev), dcmi);
if (ret) {
dev_err(dcmi->dev, "Unable to request irq %d\n", dcmi->irq);
return ret;
}
return 0;
}
static void dcmi_graph_notify_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd,
struct v4l2_async_subdev *asd)
{
struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);
dev_dbg(dcmi->dev, "Removing %s\n", video_device_node_name(dcmi->vdev));
/* Checks internally if vdev has been init or not */
video_unregister_device(dcmi->vdev);
}
static int dcmi_graph_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);
unsigned int ret;
int src_pad;
dev_dbg(dcmi->dev, "Subdev \"%s\" bound\n", subdev->name);
/*
* Link this sub-device to DCMI, it could be
* a parallel camera sensor or a bridge
*/
src_pad = media_entity_get_fwnode_pad(&subdev->entity,
subdev->fwnode,
MEDIA_PAD_FL_SOURCE);
ret = media_create_pad_link(&subdev->entity, src_pad,
&dcmi->vdev->entity, 0,
MEDIA_LNK_FL_IMMUTABLE |
MEDIA_LNK_FL_ENABLED);
if (ret)
dev_err(dcmi->dev, "Failed to create media pad link with subdev \"%s\"\n",
subdev->name);
else
dev_dbg(dcmi->dev, "DCMI is now linked to \"%s\"\n",
subdev->name);
return ret;
}
static const struct v4l2_async_notifier_operations dcmi_graph_notify_ops = {
.bound = dcmi_graph_notify_bound,
.unbind = dcmi_graph_notify_unbind,
.complete = dcmi_graph_notify_complete,
};
static int dcmi_graph_init(struct stm32_dcmi *dcmi)
{
struct v4l2_async_subdev *asd;
struct device_node *ep;
int ret;
ep = of_graph_get_next_endpoint(dcmi->dev->of_node, NULL);
if (!ep) {
dev_err(dcmi->dev, "Failed to get next endpoint\n");
return -EINVAL;
}
v4l2_async_nf_init(&dcmi->notifier);
asd = v4l2_async_nf_add_fwnode_remote(&dcmi->notifier,
of_fwnode_handle(ep),
struct v4l2_async_subdev);
of_node_put(ep);
if (IS_ERR(asd)) {
dev_err(dcmi->dev, "Failed to add subdev notifier\n");
return PTR_ERR(asd);
}
dcmi->notifier.ops = &dcmi_graph_notify_ops;
ret = v4l2_async_nf_register(&dcmi->v4l2_dev, &dcmi->notifier);
if (ret < 0) {
dev_err(dcmi->dev, "Failed to register notifier\n");
v4l2_async_nf_cleanup(&dcmi->notifier);
return ret;
}
return 0;
}
static int dcmi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *match = NULL;
struct v4l2_fwnode_endpoint ep = { .bus_type = 0 };
struct stm32_dcmi *dcmi;
struct vb2_queue *q;
struct dma_chan *chan;
struct dma_slave_caps caps;
struct clk *mclk;
int irq;
int ret = 0;
match = of_match_device(of_match_ptr(stm32_dcmi_of_match), &pdev->dev);
if (!match) {
dev_err(&pdev->dev, "Could not find a match in devicetree\n");
return -ENODEV;
}
dcmi = devm_kzalloc(&pdev->dev, sizeof(struct stm32_dcmi), GFP_KERNEL);
if (!dcmi)
return -ENOMEM;
dcmi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(dcmi->rstc))
return dev_err_probe(&pdev->dev, PTR_ERR(dcmi->rstc),
"Could not get reset control\n");
/* Get bus characteristics from devicetree */
np = of_graph_get_next_endpoint(np, NULL);
if (!np) {
dev_err(&pdev->dev, "Could not find the endpoint\n");
return -ENODEV;
}
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(np), &ep);
of_node_put(np);
if (ret) {
dev_err(&pdev->dev, "Could not parse the endpoint\n");
return ret;
}
if (ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
dev_err(&pdev->dev, "CSI bus not supported\n");
return -ENODEV;
}
if (ep.bus_type == V4L2_MBUS_BT656 &&
ep.bus.parallel.bus_width != 8) {
dev_err(&pdev->dev, "BT656 bus conflicts with %u bits bus width (8 bits required)\n",
ep.bus.parallel.bus_width);
return -ENODEV;
}
dcmi->bus.flags = ep.bus.parallel.flags;
dcmi->bus.bus_width = ep.bus.parallel.bus_width;
dcmi->bus.data_shift = ep.bus.parallel.data_shift;
dcmi->bus_type = ep.bus_type;
irq = platform_get_irq(pdev, 0);
if (irq <= 0)
return irq ? irq : -ENXIO;
dcmi->irq = irq;
dcmi->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!dcmi->res) {
dev_err(&pdev->dev, "Could not get resource\n");
return -ENODEV;
}
dcmi->regs = devm_ioremap_resource(&pdev->dev, dcmi->res);
if (IS_ERR(dcmi->regs))
return PTR_ERR(dcmi->regs);
mclk = devm_clk_get(&pdev->dev, "mclk");
if (IS_ERR(mclk))
return dev_err_probe(&pdev->dev, PTR_ERR(mclk),
"Unable to get mclk\n");
chan = dma_request_chan(&pdev->dev, "tx");
if (IS_ERR(chan))
return dev_err_probe(&pdev->dev, PTR_ERR(chan),
"Failed to request DMA channel\n");
dcmi->dma_max_burst = UINT_MAX;
ret = dma_get_slave_caps(chan, &caps);
if (!ret && caps.max_sg_burst)
dcmi->dma_max_burst = caps.max_sg_burst * DMA_SLAVE_BUSWIDTH_4_BYTES;
spin_lock_init(&dcmi->irqlock);
mutex_init(&dcmi->lock);
mutex_init(&dcmi->dma_lock);
init_completion(&dcmi->complete);
INIT_LIST_HEAD(&dcmi->buffers);
dcmi->dev = &pdev->dev;
dcmi->mclk = mclk;
dcmi->state = STOPPED;
dcmi->dma_chan = chan;
q = &dcmi->queue;
dcmi->v4l2_dev.mdev = &dcmi->mdev;
/* Initialize media device */
strscpy(dcmi->mdev.model, DRV_NAME, sizeof(dcmi->mdev.model));
dcmi->mdev.dev = &pdev->dev;
media_device_init(&dcmi->mdev);
/* Initialize the top-level structure */
ret = v4l2_device_register(&pdev->dev, &dcmi->v4l2_dev);
if (ret)
goto err_media_device_cleanup;
dcmi->vdev = video_device_alloc();
if (!dcmi->vdev) {
ret = -ENOMEM;
goto err_device_unregister;
}
/* Video node */
dcmi->vdev->fops = &dcmi_fops;
dcmi->vdev->v4l2_dev = &dcmi->v4l2_dev;
dcmi->vdev->queue = &dcmi->queue;
strscpy(dcmi->vdev->name, KBUILD_MODNAME, sizeof(dcmi->vdev->name));
dcmi->vdev->release = video_device_release;
dcmi->vdev->ioctl_ops = &dcmi_ioctl_ops;
dcmi->vdev->lock = &dcmi->lock;
dcmi->vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING |
V4L2_CAP_READWRITE;
video_set_drvdata(dcmi->vdev, dcmi);
/* Media entity pads */
dcmi->vid_cap_pad.flags = MEDIA_PAD_FL_SINK;
ret = media_entity_pads_init(&dcmi->vdev->entity,
1, &dcmi->vid_cap_pad);
if (ret) {
dev_err(dcmi->dev, "Failed to init media entity pad\n");
goto err_device_release;
}
dcmi->vdev->entity.flags |= MEDIA_ENT_FL_DEFAULT;
ret = video_register_device(dcmi->vdev, VFL_TYPE_VIDEO, -1);
if (ret) {
dev_err(dcmi->dev, "Failed to register video device\n");
goto err_media_entity_cleanup;
}
dev_dbg(dcmi->dev, "Device registered as %s\n",
video_device_node_name(dcmi->vdev));
/* Buffer queue */
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
q->io_modes = VB2_MMAP | VB2_READ | VB2_DMABUF;
q->lock = &dcmi->lock;
q->drv_priv = dcmi;
q->buf_struct_size = sizeof(struct dcmi_buf);
q->ops = &dcmi_video_qops;
q->mem_ops = &vb2_dma_contig_memops;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->min_buffers_needed = 2;
q->allow_cache_hints = 1;
q->dev = &pdev->dev;
ret = vb2_queue_init(q);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to initialize vb2 queue\n");
goto err_media_entity_cleanup;
}
ret = dcmi_graph_init(dcmi);
if (ret < 0)
goto err_media_entity_cleanup;
/* Reset device */
ret = reset_control_assert(dcmi->rstc);
if (ret) {
dev_err(&pdev->dev, "Failed to assert the reset line\n");
goto err_cleanup;
}
usleep_range(3000, 5000);
ret = reset_control_deassert(dcmi->rstc);
if (ret) {
dev_err(&pdev->dev, "Failed to deassert the reset line\n");
goto err_cleanup;
}
dev_info(&pdev->dev, "Probe done\n");
platform_set_drvdata(pdev, dcmi);
pm_runtime_enable(&pdev->dev);
return 0;
err_cleanup:
v4l2_async_nf_cleanup(&dcmi->notifier);
err_media_entity_cleanup:
media_entity_cleanup(&dcmi->vdev->entity);
err_device_release:
video_device_release(dcmi->vdev);
err_device_unregister:
v4l2_device_unregister(&dcmi->v4l2_dev);
err_media_device_cleanup:
media_device_cleanup(&dcmi->mdev);
dma_release_channel(dcmi->dma_chan);
return ret;
}
static void dcmi_remove(struct platform_device *pdev)
{
struct stm32_dcmi *dcmi = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
v4l2_async_nf_unregister(&dcmi->notifier);
v4l2_async_nf_cleanup(&dcmi->notifier);
media_entity_cleanup(&dcmi->vdev->entity);
v4l2_device_unregister(&dcmi->v4l2_dev);
media_device_cleanup(&dcmi->mdev);
dma_release_channel(dcmi->dma_chan);
}
static __maybe_unused int dcmi_runtime_suspend(struct device *dev)
{
struct stm32_dcmi *dcmi = dev_get_drvdata(dev);
clk_disable_unprepare(dcmi->mclk);
return 0;
}
static __maybe_unused int dcmi_runtime_resume(struct device *dev)
{
struct stm32_dcmi *dcmi = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(dcmi->mclk);
if (ret)
dev_err(dev, "%s: Failed to prepare_enable clock\n", __func__);
return ret;
}
static __maybe_unused int dcmi_suspend(struct device *dev)
{
/* disable clock */
pm_runtime_force_suspend(dev);
/* change pinctrl state */
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static __maybe_unused int dcmi_resume(struct device *dev)
{
/* restore pinctl default state */
pinctrl_pm_select_default_state(dev);
/* clock enable */
pm_runtime_force_resume(dev);
return 0;
}
static const struct dev_pm_ops dcmi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(dcmi_suspend, dcmi_resume)
SET_RUNTIME_PM_OPS(dcmi_runtime_suspend,
dcmi_runtime_resume, NULL)
};
static struct platform_driver stm32_dcmi_driver = {
.probe = dcmi_probe,
.remove_new = dcmi_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(stm32_dcmi_of_match),
.pm = &dcmi_pm_ops,
},
};
module_platform_driver(stm32_dcmi_driver);
MODULE_AUTHOR("Yannick Fertre <yannick.fertre@st.com>");
MODULE_AUTHOR("Hugues Fruchet <hugues.fruchet@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 Digital Camera Memory Interface driver");
MODULE_LICENSE("GPL");