3080 lines
82 KiB
C
3080 lines
82 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Cadence NAND flash controller driver
|
|
*
|
|
* Copyright (C) 2019 Cadence
|
|
*
|
|
* Author: Piotr Sroka <piotrs@cadence.com>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/slab.h>
|
|
|
|
/*
|
|
* HPNFC can work in 3 modes:
|
|
* - PIO - can work in master or slave DMA
|
|
* - CDMA - needs Master DMA for accessing command descriptors.
|
|
* - Generic mode - can use only slave DMA.
|
|
* CDMA and PIO modes can be used to execute only base commands.
|
|
* Generic mode can be used to execute any command
|
|
* on NAND flash memory. Driver uses CDMA mode for
|
|
* block erasing, page reading, page programing.
|
|
* Generic mode is used for executing rest of commands.
|
|
*/
|
|
|
|
#define MAX_ADDRESS_CYC 6
|
|
#define MAX_ERASE_ADDRESS_CYC 3
|
|
#define MAX_DATA_SIZE 0xFFFC
|
|
#define DMA_DATA_SIZE_ALIGN 8
|
|
|
|
/* Register definition. */
|
|
/*
|
|
* Command register 0.
|
|
* Writing data to this register will initiate a new transaction
|
|
* of the NF controller.
|
|
*/
|
|
#define CMD_REG0 0x0000
|
|
/* Command type field mask. */
|
|
#define CMD_REG0_CT GENMASK(31, 30)
|
|
/* Command type CDMA. */
|
|
#define CMD_REG0_CT_CDMA 0uL
|
|
/* Command type generic. */
|
|
#define CMD_REG0_CT_GEN 3uL
|
|
/* Command thread number field mask. */
|
|
#define CMD_REG0_TN GENMASK(27, 24)
|
|
|
|
/* Command register 2. */
|
|
#define CMD_REG2 0x0008
|
|
/* Command register 3. */
|
|
#define CMD_REG3 0x000C
|
|
/* Pointer register to select which thread status will be selected. */
|
|
#define CMD_STATUS_PTR 0x0010
|
|
/* Command status register for selected thread. */
|
|
#define CMD_STATUS 0x0014
|
|
|
|
/* Interrupt status register. */
|
|
#define INTR_STATUS 0x0110
|
|
#define INTR_STATUS_SDMA_ERR BIT(22)
|
|
#define INTR_STATUS_SDMA_TRIGG BIT(21)
|
|
#define INTR_STATUS_UNSUPP_CMD BIT(19)
|
|
#define INTR_STATUS_DDMA_TERR BIT(18)
|
|
#define INTR_STATUS_CDMA_TERR BIT(17)
|
|
#define INTR_STATUS_CDMA_IDL BIT(16)
|
|
|
|
/* Interrupt enable register. */
|
|
#define INTR_ENABLE 0x0114
|
|
#define INTR_ENABLE_INTR_EN BIT(31)
|
|
#define INTR_ENABLE_SDMA_ERR_EN BIT(22)
|
|
#define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
|
|
#define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
|
|
#define INTR_ENABLE_DDMA_TERR_EN BIT(18)
|
|
#define INTR_ENABLE_CDMA_TERR_EN BIT(17)
|
|
#define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
|
|
|
|
/* Controller internal state. */
|
|
#define CTRL_STATUS 0x0118
|
|
#define CTRL_STATUS_INIT_COMP BIT(9)
|
|
#define CTRL_STATUS_CTRL_BUSY BIT(8)
|
|
|
|
/* Command Engine threads state. */
|
|
#define TRD_STATUS 0x0120
|
|
|
|
/* Command Engine interrupt thread error status. */
|
|
#define TRD_ERR_INT_STATUS 0x0128
|
|
/* Command Engine interrupt thread error enable. */
|
|
#define TRD_ERR_INT_STATUS_EN 0x0130
|
|
/* Command Engine interrupt thread complete status. */
|
|
#define TRD_COMP_INT_STATUS 0x0138
|
|
|
|
/*
|
|
* Transfer config 0 register.
|
|
* Configures data transfer parameters.
|
|
*/
|
|
#define TRAN_CFG_0 0x0400
|
|
/* Offset value from the beginning of the page. */
|
|
#define TRAN_CFG_0_OFFSET GENMASK(31, 16)
|
|
/* Numbers of sectors to transfer within singlNF device's page. */
|
|
#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
|
|
|
|
/*
|
|
* Transfer config 1 register.
|
|
* Configures data transfer parameters.
|
|
*/
|
|
#define TRAN_CFG_1 0x0404
|
|
/* Size of last data sector. */
|
|
#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
|
|
/* Size of not-last data sector. */
|
|
#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
|
|
|
|
/* ECC engine configuration register 0. */
|
|
#define ECC_CONFIG_0 0x0428
|
|
/* Correction strength. */
|
|
#define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
|
|
/* Enable erased pages detection mechanism. */
|
|
#define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
|
|
/* Enable controller ECC check bits generation and correction. */
|
|
#define ECC_CONFIG_0_ECC_EN BIT(0)
|
|
|
|
/* ECC engine configuration register 1. */
|
|
#define ECC_CONFIG_1 0x042C
|
|
|
|
/* Multiplane settings register. */
|
|
#define MULTIPLANE_CFG 0x0434
|
|
/* Cache operation settings. */
|
|
#define CACHE_CFG 0x0438
|
|
|
|
/* DMA settings register. */
|
|
#define DMA_SETINGS 0x043C
|
|
/* Enable SDMA error report on access unprepared slave DMA interface. */
|
|
#define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
|
|
|
|
/* Transferred data block size for the slave DMA module. */
|
|
#define SDMA_SIZE 0x0440
|
|
|
|
/* Thread number associated with transferred data block
|
|
* for the slave DMA module.
|
|
*/
|
|
#define SDMA_TRD_NUM 0x0444
|
|
/* Thread number mask. */
|
|
#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
|
|
|
|
#define CONTROL_DATA_CTRL 0x0494
|
|
/* Thread number mask. */
|
|
#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
|
|
|
|
#define CTRL_VERSION 0x800
|
|
#define CTRL_VERSION_REV GENMASK(7, 0)
|
|
|
|
/* Available hardware features of the controller. */
|
|
#define CTRL_FEATURES 0x804
|
|
/* Support for NV-DDR2/3 work mode. */
|
|
#define CTRL_FEATURES_NVDDR_2_3 BIT(28)
|
|
/* Support for NV-DDR work mode. */
|
|
#define CTRL_FEATURES_NVDDR BIT(27)
|
|
/* Support for asynchronous work mode. */
|
|
#define CTRL_FEATURES_ASYNC BIT(26)
|
|
/* Support for asynchronous work mode. */
|
|
#define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
|
|
/* Slave and Master DMA data width. */
|
|
#define CTRL_FEATURES_DMA_DWITH64 BIT(21)
|
|
/* Availability of Control Data feature.*/
|
|
#define CTRL_FEATURES_CONTROL_DATA BIT(10)
|
|
|
|
/* BCH Engine identification register 0 - correction strengths. */
|
|
#define BCH_CFG_0 0x838
|
|
#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
|
|
#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
|
|
#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
|
|
#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
|
|
|
|
/* BCH Engine identification register 1 - correction strengths. */
|
|
#define BCH_CFG_1 0x83C
|
|
#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
|
|
#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
|
|
#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
|
|
#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
|
|
|
|
/* BCH Engine identification register 2 - sector sizes. */
|
|
#define BCH_CFG_2 0x840
|
|
#define BCH_CFG_2_SECT_0 GENMASK(15, 0)
|
|
#define BCH_CFG_2_SECT_1 GENMASK(31, 16)
|
|
|
|
/* BCH Engine identification register 3. */
|
|
#define BCH_CFG_3 0x844
|
|
#define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16)
|
|
|
|
/* Ready/Busy# line status. */
|
|
#define RBN_SETINGS 0x1004
|
|
|
|
/* Common settings. */
|
|
#define COMMON_SET 0x1008
|
|
/* 16 bit device connected to the NAND Flash interface. */
|
|
#define COMMON_SET_DEVICE_16BIT BIT(8)
|
|
|
|
/* Skip_bytes registers. */
|
|
#define SKIP_BYTES_CONF 0x100C
|
|
#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
|
|
#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
|
|
|
|
#define SKIP_BYTES_OFFSET 0x1010
|
|
#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
|
|
|
|
/* Timings configuration. */
|
|
#define ASYNC_TOGGLE_TIMINGS 0x101c
|
|
#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
|
|
#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
|
|
#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
|
|
#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
|
|
|
|
#define TIMINGS0 0x1024
|
|
#define TIMINGS0_TADL GENMASK(31, 24)
|
|
#define TIMINGS0_TCCS GENMASK(23, 16)
|
|
#define TIMINGS0_TWHR GENMASK(15, 8)
|
|
#define TIMINGS0_TRHW GENMASK(7, 0)
|
|
|
|
#define TIMINGS1 0x1028
|
|
#define TIMINGS1_TRHZ GENMASK(31, 24)
|
|
#define TIMINGS1_TWB GENMASK(23, 16)
|
|
#define TIMINGS1_TVDLY GENMASK(7, 0)
|
|
|
|
#define TIMINGS2 0x102c
|
|
#define TIMINGS2_TFEAT GENMASK(25, 16)
|
|
#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
|
|
#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
|
|
|
|
/* Configuration of the resynchronization of slave DLL of PHY. */
|
|
#define DLL_PHY_CTRL 0x1034
|
|
#define DLL_PHY_CTRL_DLL_RST_N BIT(24)
|
|
#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
|
|
#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
|
|
#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
|
|
#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
|
|
|
|
/* Register controlling DQ related timing. */
|
|
#define PHY_DQ_TIMING 0x2000
|
|
/* Register controlling DSQ related timing. */
|
|
#define PHY_DQS_TIMING 0x2004
|
|
#define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
|
|
#define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
|
|
#define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
|
|
|
|
/* Register controlling the gate and loopback control related timing. */
|
|
#define PHY_GATE_LPBK_CTRL 0x2008
|
|
#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
|
|
|
|
/* Register holds the control for the master DLL logic. */
|
|
#define PHY_DLL_MASTER_CTRL 0x200C
|
|
#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
|
|
|
|
/* Register holds the control for the slave DLL logic. */
|
|
#define PHY_DLL_SLAVE_CTRL 0x2010
|
|
|
|
/* This register handles the global control settings for the PHY. */
|
|
#define PHY_CTRL 0x2080
|
|
#define PHY_CTRL_SDR_DQS BIT(14)
|
|
#define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
|
|
|
|
/*
|
|
* This register handles the global control settings
|
|
* for the termination selects for reads.
|
|
*/
|
|
#define PHY_TSEL 0x2084
|
|
|
|
/* Generic command layout. */
|
|
#define GCMD_LAY_CS GENMASK_ULL(11, 8)
|
|
/*
|
|
* This bit informs the minicotroller if it has to wait for tWB
|
|
* after sending the last CMD/ADDR/DATA in the sequence.
|
|
*/
|
|
#define GCMD_LAY_TWB BIT_ULL(6)
|
|
/* Type of generic instruction. */
|
|
#define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
|
|
|
|
/* Generic CMD sequence type. */
|
|
#define GCMD_LAY_INSTR_CMD 0
|
|
/* Generic ADDR sequence type. */
|
|
#define GCMD_LAY_INSTR_ADDR 1
|
|
/* Generic data transfer sequence type. */
|
|
#define GCMD_LAY_INSTR_DATA 2
|
|
|
|
/* Input part of generic command type of input is command. */
|
|
#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
|
|
|
|
/* Generic command address sequence - address fields. */
|
|
#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
|
|
/* Generic command address sequence - address size. */
|
|
#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
|
|
|
|
/* Transfer direction field of generic command data sequence. */
|
|
#define GCMD_DIR BIT_ULL(11)
|
|
/* Read transfer direction of generic command data sequence. */
|
|
#define GCMD_DIR_READ 0
|
|
/* Write transfer direction of generic command data sequence. */
|
|
#define GCMD_DIR_WRITE 1
|
|
|
|
/* ECC enabled flag of generic command data sequence - ECC enabled. */
|
|
#define GCMD_ECC_EN BIT_ULL(12)
|
|
/* Generic command data sequence - sector size. */
|
|
#define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
|
|
/* Generic command data sequence - sector count. */
|
|
#define GCMD_SECT_CNT GENMASK_ULL(39, 32)
|
|
/* Generic command data sequence - last sector size. */
|
|
#define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
|
|
|
|
/* CDMA descriptor fields. */
|
|
/* Erase command type of CDMA descriptor. */
|
|
#define CDMA_CT_ERASE 0x1000
|
|
/* Program page command type of CDMA descriptor. */
|
|
#define CDMA_CT_WR 0x2100
|
|
/* Read page command type of CDMA descriptor. */
|
|
#define CDMA_CT_RD 0x2200
|
|
|
|
/* Flash pointer memory shift. */
|
|
#define CDMA_CFPTR_MEM_SHIFT 24
|
|
/* Flash pointer memory mask. */
|
|
#define CDMA_CFPTR_MEM GENMASK(26, 24)
|
|
|
|
/*
|
|
* Command DMA descriptor flags. If set causes issue interrupt after
|
|
* the completion of descriptor processing.
|
|
*/
|
|
#define CDMA_CF_INT BIT(8)
|
|
/*
|
|
* Command DMA descriptor flags - the next descriptor
|
|
* address field is valid and descriptor processing should continue.
|
|
*/
|
|
#define CDMA_CF_CONT BIT(9)
|
|
/* DMA master flag of command DMA descriptor. */
|
|
#define CDMA_CF_DMA_MASTER BIT(10)
|
|
|
|
/* Operation complete status of command descriptor. */
|
|
#define CDMA_CS_COMP BIT(15)
|
|
/* Operation complete status of command descriptor. */
|
|
/* Command descriptor status - operation fail. */
|
|
#define CDMA_CS_FAIL BIT(14)
|
|
/* Command descriptor status - page erased. */
|
|
#define CDMA_CS_ERP BIT(11)
|
|
/* Command descriptor status - timeout occurred. */
|
|
#define CDMA_CS_TOUT BIT(10)
|
|
/*
|
|
* Maximum amount of correction applied to one ECC sector.
|
|
* It is part of command descriptor status.
|
|
*/
|
|
#define CDMA_CS_MAXERR GENMASK(9, 2)
|
|
/* Command descriptor status - uncorrectable ECC error. */
|
|
#define CDMA_CS_UNCE BIT(1)
|
|
/* Command descriptor status - descriptor error. */
|
|
#define CDMA_CS_ERR BIT(0)
|
|
|
|
/* Status of operation - OK. */
|
|
#define STAT_OK 0
|
|
/* Status of operation - FAIL. */
|
|
#define STAT_FAIL 2
|
|
/* Status of operation - uncorrectable ECC error. */
|
|
#define STAT_ECC_UNCORR 3
|
|
/* Status of operation - page erased. */
|
|
#define STAT_ERASED 5
|
|
/* Status of operation - correctable ECC error. */
|
|
#define STAT_ECC_CORR 6
|
|
/* Status of operation - unsuspected state. */
|
|
#define STAT_UNKNOWN 7
|
|
/* Status of operation - operation is not completed yet. */
|
|
#define STAT_BUSY 0xFF
|
|
|
|
#define BCH_MAX_NUM_CORR_CAPS 8
|
|
#define BCH_MAX_NUM_SECTOR_SIZES 2
|
|
|
|
struct cadence_nand_timings {
|
|
u32 async_toggle_timings;
|
|
u32 timings0;
|
|
u32 timings1;
|
|
u32 timings2;
|
|
u32 dll_phy_ctrl;
|
|
u32 phy_ctrl;
|
|
u32 phy_dqs_timing;
|
|
u32 phy_gate_lpbk_ctrl;
|
|
};
|
|
|
|
/* Command DMA descriptor. */
|
|
struct cadence_nand_cdma_desc {
|
|
/* Next descriptor address. */
|
|
u64 next_pointer;
|
|
|
|
/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
|
|
u32 flash_pointer;
|
|
/*field appears in HPNFC version 13*/
|
|
u16 bank;
|
|
u16 rsvd0;
|
|
|
|
/* Operation the controller needs to perform. */
|
|
u16 command_type;
|
|
u16 rsvd1;
|
|
/* Flags for operation of this command. */
|
|
u16 command_flags;
|
|
u16 rsvd2;
|
|
|
|
/* System/host memory address required for data DMA commands. */
|
|
u64 memory_pointer;
|
|
|
|
/* Status of operation. */
|
|
u32 status;
|
|
u32 rsvd3;
|
|
|
|
/* Address pointer to sync buffer location. */
|
|
u64 sync_flag_pointer;
|
|
|
|
/* Controls the buffer sync mechanism. */
|
|
u32 sync_arguments;
|
|
u32 rsvd4;
|
|
|
|
/* Control data pointer. */
|
|
u64 ctrl_data_ptr;
|
|
};
|
|
|
|
/* Interrupt status. */
|
|
struct cadence_nand_irq_status {
|
|
/* Thread operation complete status. */
|
|
u32 trd_status;
|
|
/* Thread operation error. */
|
|
u32 trd_error;
|
|
/* Controller status. */
|
|
u32 status;
|
|
};
|
|
|
|
/* Cadence NAND flash controller capabilities get from driver data. */
|
|
struct cadence_nand_dt_devdata {
|
|
/* Skew value of the output signals of the NAND Flash interface. */
|
|
u32 if_skew;
|
|
/* It informs if slave DMA interface is connected to DMA engine. */
|
|
unsigned int has_dma:1;
|
|
};
|
|
|
|
/* Cadence NAND flash controller capabilities read from registers. */
|
|
struct cdns_nand_caps {
|
|
/* Maximum number of banks supported by hardware. */
|
|
u8 max_banks;
|
|
/* Slave and Master DMA data width in bytes (4 or 8). */
|
|
u8 data_dma_width;
|
|
/* Control Data feature supported. */
|
|
bool data_control_supp;
|
|
/* Is PHY type DLL. */
|
|
bool is_phy_type_dll;
|
|
};
|
|
|
|
struct cdns_nand_ctrl {
|
|
struct device *dev;
|
|
struct nand_controller controller;
|
|
struct cadence_nand_cdma_desc *cdma_desc;
|
|
/* IP capability. */
|
|
const struct cadence_nand_dt_devdata *caps1;
|
|
struct cdns_nand_caps caps2;
|
|
u8 ctrl_rev;
|
|
dma_addr_t dma_cdma_desc;
|
|
u8 *buf;
|
|
u32 buf_size;
|
|
u8 curr_corr_str_idx;
|
|
|
|
/* Register interface. */
|
|
void __iomem *reg;
|
|
|
|
struct {
|
|
void __iomem *virt;
|
|
dma_addr_t dma;
|
|
} io;
|
|
|
|
int irq;
|
|
/* Interrupts that have happened. */
|
|
struct cadence_nand_irq_status irq_status;
|
|
/* Interrupts we are waiting for. */
|
|
struct cadence_nand_irq_status irq_mask;
|
|
struct completion complete;
|
|
/* Protect irq_mask and irq_status. */
|
|
spinlock_t irq_lock;
|
|
|
|
int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
|
|
struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
|
|
struct nand_ecc_caps ecc_caps;
|
|
|
|
int curr_trans_type;
|
|
|
|
struct dma_chan *dmac;
|
|
|
|
u32 nf_clk_rate;
|
|
/*
|
|
* Estimated Board delay. The value includes the total
|
|
* round trip delay for the signals and is used for deciding on values
|
|
* associated with data read capture.
|
|
*/
|
|
u32 board_delay;
|
|
|
|
struct nand_chip *selected_chip;
|
|
|
|
unsigned long assigned_cs;
|
|
struct list_head chips;
|
|
u8 bch_metadata_size;
|
|
};
|
|
|
|
struct cdns_nand_chip {
|
|
struct cadence_nand_timings timings;
|
|
struct nand_chip chip;
|
|
u8 nsels;
|
|
struct list_head node;
|
|
|
|
/*
|
|
* part of oob area of NAND flash memory page.
|
|
* This part is available for user to read or write.
|
|
*/
|
|
u32 avail_oob_size;
|
|
|
|
/* Sector size. There are few sectors per mtd->writesize */
|
|
u32 sector_size;
|
|
u32 sector_count;
|
|
|
|
/* Offset of BBM. */
|
|
u8 bbm_offs;
|
|
/* Number of bytes reserved for BBM. */
|
|
u8 bbm_len;
|
|
/* ECC strength index. */
|
|
u8 corr_str_idx;
|
|
|
|
u8 cs[];
|
|
};
|
|
|
|
struct ecc_info {
|
|
int (*calc_ecc_bytes)(int step_size, int strength);
|
|
int max_step_size;
|
|
};
|
|
|
|
static inline struct
|
|
cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct cdns_nand_chip, chip);
|
|
}
|
|
|
|
static inline struct
|
|
cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
|
|
{
|
|
return container_of(controller, struct cdns_nand_ctrl, controller);
|
|
}
|
|
|
|
static bool
|
|
cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
|
|
u32 buf_len)
|
|
{
|
|
u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
|
|
|
|
return buf && virt_addr_valid(buf) &&
|
|
likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
|
|
likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
|
|
}
|
|
|
|
static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u32 reg_offset, u32 timeout_us,
|
|
u32 mask, bool is_clear)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
|
|
val, !(val & mask) == is_clear,
|
|
10, timeout_us);
|
|
|
|
if (ret < 0) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"Timeout while waiting for reg %x with mask %x is clear %d\n",
|
|
reg_offset, mask, is_clear);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
|
|
bool enable)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
|
|
|
|
if (enable)
|
|
reg |= ECC_CONFIG_0_ECC_EN;
|
|
else
|
|
reg &= ~ECC_CONFIG_0_ECC_EN;
|
|
|
|
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 corr_str_idx)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
|
|
return;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
|
|
reg &= ~ECC_CONFIG_0_CORR_STR;
|
|
reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
|
|
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
|
|
|
|
cdns_ctrl->curr_corr_str_idx = corr_str_idx;
|
|
}
|
|
|
|
static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 strength)
|
|
{
|
|
int i, corr_str_idx = -1;
|
|
|
|
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
|
|
if (cdns_ctrl->ecc_strengths[i] == strength) {
|
|
corr_str_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return corr_str_idx;
|
|
}
|
|
|
|
static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u16 marker_value)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
|
|
reg &= ~SKIP_BYTES_MARKER_VALUE;
|
|
reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
|
|
marker_value);
|
|
|
|
writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 num_of_bytes,
|
|
u32 offset_value,
|
|
int enable)
|
|
{
|
|
u32 reg, skip_bytes_offset;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
if (!enable) {
|
|
num_of_bytes = 0;
|
|
offset_value = 0;
|
|
}
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
|
|
reg &= ~SKIP_BYTES_NUM_OF_BYTES;
|
|
reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
|
|
num_of_bytes);
|
|
skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
|
|
offset_value);
|
|
|
|
writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
|
|
writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Functions enables/disables hardware detection of erased data */
|
|
static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
|
|
bool enable,
|
|
u8 bitflips_threshold)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
|
|
|
|
if (enable)
|
|
reg |= ECC_CONFIG_0_ERASE_DET_EN;
|
|
else
|
|
reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
|
|
|
|
writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
|
|
writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
|
|
}
|
|
|
|
static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
|
|
bool bit_bus16)
|
|
{
|
|
u32 reg;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
|
|
|
|
if (!bit_bus16)
|
|
reg &= ~COMMON_SET_DEVICE_16BIT;
|
|
else
|
|
reg |= COMMON_SET_DEVICE_16BIT;
|
|
writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
|
|
writel_relaxed(irq_status->trd_status,
|
|
cdns_ctrl->reg + TRD_COMP_INT_STATUS);
|
|
writel_relaxed(irq_status->trd_error,
|
|
cdns_ctrl->reg + TRD_ERR_INT_STATUS);
|
|
}
|
|
|
|
static void
|
|
cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
|
|
irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
|
|
+ TRD_COMP_INT_STATUS);
|
|
irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
|
|
+ TRD_ERR_INT_STATUS);
|
|
}
|
|
|
|
static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
cadence_nand_read_int_status(cdns_ctrl, irq_status);
|
|
|
|
return irq_status->status || irq_status->trd_status ||
|
|
irq_status->trd_error;
|
|
}
|
|
|
|
static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
|
|
memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
|
|
memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
|
|
spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This is the interrupt service routine. It handles all interrupts
|
|
* sent to this device.
|
|
*/
|
|
static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = dev_id;
|
|
struct cadence_nand_irq_status irq_status;
|
|
irqreturn_t result = IRQ_NONE;
|
|
|
|
spin_lock(&cdns_ctrl->irq_lock);
|
|
|
|
if (irq_detected(cdns_ctrl, &irq_status)) {
|
|
/* Handle interrupt. */
|
|
/* First acknowledge it. */
|
|
cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
|
|
/* Status in the device context for someone to read. */
|
|
cdns_ctrl->irq_status.status |= irq_status.status;
|
|
cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
|
|
cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
|
|
/* Notify anyone who cares that it happened. */
|
|
complete(&cdns_ctrl->complete);
|
|
/* Tell the OS that we've handled this. */
|
|
result = IRQ_HANDLED;
|
|
}
|
|
spin_unlock(&cdns_ctrl->irq_lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_mask)
|
|
{
|
|
writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
|
|
cdns_ctrl->reg + INTR_ENABLE);
|
|
|
|
writel_relaxed(irq_mask->trd_error,
|
|
cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
|
|
}
|
|
|
|
static void
|
|
cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_irq_status *irq_mask,
|
|
struct cadence_nand_irq_status *irq_status)
|
|
{
|
|
unsigned long timeout = msecs_to_jiffies(10000);
|
|
unsigned long time_left;
|
|
|
|
time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
|
|
timeout);
|
|
|
|
*irq_status = cdns_ctrl->irq_status;
|
|
if (time_left == 0) {
|
|
/* Timeout error. */
|
|
dev_err(cdns_ctrl->dev, "timeout occurred:\n");
|
|
dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
|
|
irq_status->status, irq_mask->status);
|
|
dev_err(cdns_ctrl->dev,
|
|
"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
|
|
irq_status->trd_status, irq_mask->trd_status);
|
|
dev_err(cdns_ctrl->dev,
|
|
"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
|
|
irq_status->trd_error, irq_mask->trd_error);
|
|
}
|
|
}
|
|
|
|
/* Execute generic command on NAND controller. */
|
|
static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 chip_nr,
|
|
u64 mini_ctrl_cmd)
|
|
{
|
|
u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
|
|
mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
|
|
mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_reset_irq(cdns_ctrl);
|
|
|
|
writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
|
|
writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
|
|
|
|
/* Select generic command. */
|
|
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
|
|
/* Thread number. */
|
|
reg |= FIELD_PREP(CMD_REG0_TN, 0);
|
|
|
|
/* Issue command. */
|
|
writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Wait for data on slave DMA interface. */
|
|
static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 *out_sdma_trd,
|
|
u32 *out_sdma_size)
|
|
{
|
|
struct cadence_nand_irq_status irq_mask, irq_status;
|
|
|
|
irq_mask.trd_status = 0;
|
|
irq_mask.trd_error = 0;
|
|
irq_mask.status = INTR_STATUS_SDMA_TRIGG
|
|
| INTR_STATUS_SDMA_ERR
|
|
| INTR_STATUS_UNSUPP_CMD;
|
|
|
|
cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
|
|
cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
|
|
if (irq_status.status == 0) {
|
|
dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
|
|
*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
|
|
*out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
|
|
*out_sdma_trd =
|
|
FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
|
|
} else {
|
|
dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
|
|
irq_status.status);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
|
|
|
|
cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
|
|
|
|
if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
|
|
cdns_ctrl->caps2.data_dma_width = 8;
|
|
else
|
|
cdns_ctrl->caps2.data_dma_width = 4;
|
|
|
|
if (reg & CTRL_FEATURES_CONTROL_DATA)
|
|
cdns_ctrl->caps2.data_control_supp = true;
|
|
|
|
if (reg & (CTRL_FEATURES_NVDDR_2_3
|
|
| CTRL_FEATURES_NVDDR))
|
|
cdns_ctrl->caps2.is_phy_type_dll = true;
|
|
}
|
|
|
|
/* Prepare CDMA descriptor. */
|
|
static void
|
|
cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
|
|
char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
|
|
dma_addr_t ctrl_data_ptr, u16 ctype)
|
|
{
|
|
struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
|
|
|
|
memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
|
|
|
|
/* Set fields for one descriptor. */
|
|
cdma_desc->flash_pointer = flash_ptr;
|
|
if (cdns_ctrl->ctrl_rev >= 13)
|
|
cdma_desc->bank = nf_mem;
|
|
else
|
|
cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
|
|
|
|
cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
|
|
cdma_desc->command_flags |= CDMA_CF_INT;
|
|
|
|
cdma_desc->memory_pointer = mem_ptr;
|
|
cdma_desc->status = 0;
|
|
cdma_desc->sync_flag_pointer = 0;
|
|
cdma_desc->sync_arguments = 0;
|
|
|
|
cdma_desc->command_type = ctype;
|
|
cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
|
|
}
|
|
|
|
static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u32 desc_status)
|
|
{
|
|
if (desc_status & CDMA_CS_ERP)
|
|
return STAT_ERASED;
|
|
|
|
if (desc_status & CDMA_CS_UNCE)
|
|
return STAT_ECC_UNCORR;
|
|
|
|
if (desc_status & CDMA_CS_ERR) {
|
|
dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
|
|
return STAT_FAIL;
|
|
}
|
|
|
|
if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
|
|
return STAT_ECC_CORR;
|
|
|
|
return STAT_FAIL;
|
|
}
|
|
|
|
static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
|
|
u8 status = STAT_BUSY;
|
|
|
|
if (desc_ptr->status & CDMA_CS_FAIL) {
|
|
status = cadence_nand_check_desc_error(cdns_ctrl,
|
|
desc_ptr->status);
|
|
dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
|
|
} else if (desc_ptr->status & CDMA_CS_COMP) {
|
|
/* Descriptor finished with no errors. */
|
|
if (desc_ptr->command_flags & CDMA_CF_CONT) {
|
|
dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
|
|
status = STAT_UNKNOWN;
|
|
} else {
|
|
/* Last descriptor. */
|
|
status = STAT_OK;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 thread)
|
|
{
|
|
u32 reg;
|
|
int status;
|
|
|
|
/* Wait for thread ready. */
|
|
status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
|
|
1000000,
|
|
BIT(thread), true);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_reset_irq(cdns_ctrl);
|
|
reinit_completion(&cdns_ctrl->complete);
|
|
|
|
writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
|
|
cdns_ctrl->reg + CMD_REG2);
|
|
writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
|
|
|
|
/* Select CDMA mode. */
|
|
reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
|
|
/* Thread number. */
|
|
reg |= FIELD_PREP(CMD_REG0_TN, thread);
|
|
/* Issue command. */
|
|
writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Send SDMA command and wait for finish. */
|
|
static u32
|
|
cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 thread)
|
|
{
|
|
struct cadence_nand_irq_status irq_mask, irq_status = {0};
|
|
int status;
|
|
|
|
irq_mask.trd_status = BIT(thread);
|
|
irq_mask.trd_error = BIT(thread);
|
|
irq_mask.status = INTR_STATUS_CDMA_TERR;
|
|
|
|
cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
|
|
|
|
status = cadence_nand_cdma_send(cdns_ctrl, thread);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
|
|
|
|
if (irq_status.status == 0 && irq_status.trd_status == 0 &&
|
|
irq_status.trd_error == 0) {
|
|
dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
if (irq_status.status & irq_mask.status) {
|
|
dev_err(cdns_ctrl->dev, "CDMA command failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ECC size depends on configured ECC strength and on maximum supported
|
|
* ECC step size.
|
|
*/
|
|
static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
|
|
{
|
|
int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
|
|
|
|
return ALIGN(nbytes, 2);
|
|
}
|
|
|
|
#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
|
|
static int \
|
|
cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
|
|
int strength)\
|
|
{\
|
|
return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
|
|
}
|
|
|
|
CADENCE_NAND_CALC_ECC_BYTES(256)
|
|
CADENCE_NAND_CALC_ECC_BYTES(512)
|
|
CADENCE_NAND_CALC_ECC_BYTES(1024)
|
|
CADENCE_NAND_CALC_ECC_BYTES(2048)
|
|
CADENCE_NAND_CALC_ECC_BYTES(4096)
|
|
|
|
/* Function reads BCH capabilities. */
|
|
static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
|
|
int max_step_size = 0, nstrengths, i;
|
|
u32 reg;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
|
|
cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
|
|
if (cdns_ctrl->bch_metadata_size < 4) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"Driver needs at least 4 bytes of BCH meta data\n");
|
|
return -EIO;
|
|
}
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
|
|
cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
|
|
cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
|
|
cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
|
|
cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
|
|
cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
|
|
cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
|
|
cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
|
|
cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
|
|
cdns_ctrl->ecc_stepinfos[0].stepsize =
|
|
FIELD_GET(BCH_CFG_2_SECT_0, reg);
|
|
|
|
cdns_ctrl->ecc_stepinfos[1].stepsize =
|
|
FIELD_GET(BCH_CFG_2_SECT_1, reg);
|
|
|
|
nstrengths = 0;
|
|
for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
|
|
if (cdns_ctrl->ecc_strengths[i] != 0)
|
|
nstrengths++;
|
|
}
|
|
|
|
ecc_caps->nstepinfos = 0;
|
|
for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
|
|
/* ECC strengths are common for all step infos. */
|
|
cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
|
|
cdns_ctrl->ecc_stepinfos[i].strengths =
|
|
cdns_ctrl->ecc_strengths;
|
|
|
|
if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
|
|
ecc_caps->nstepinfos++;
|
|
|
|
if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
|
|
max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
|
|
}
|
|
ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
|
|
|
|
switch (max_step_size) {
|
|
case 256:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
|
|
break;
|
|
case 512:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
|
|
break;
|
|
case 1024:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
|
|
break;
|
|
case 2048:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
|
|
break;
|
|
case 4096:
|
|
ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
|
|
break;
|
|
default:
|
|
dev_err(cdns_ctrl->dev,
|
|
"Unsupported sector size(ecc step size) %d\n",
|
|
max_step_size);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Hardware initialization. */
|
|
static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
int status;
|
|
u32 reg;
|
|
|
|
status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_INIT_COMP, false);
|
|
if (status)
|
|
return status;
|
|
|
|
reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
|
|
cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
|
|
|
|
dev_info(cdns_ctrl->dev,
|
|
"%s: cadence nand controller version reg %x\n",
|
|
__func__, reg);
|
|
|
|
/* Disable cache and multiplane. */
|
|
writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
|
|
writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
|
|
|
|
/* Clear all interrupts. */
|
|
writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
|
|
|
|
cadence_nand_get_caps(cdns_ctrl);
|
|
if (cadence_nand_read_bch_caps(cdns_ctrl))
|
|
return -EIO;
|
|
|
|
#ifndef CONFIG_64BIT
|
|
if (cdns_ctrl->caps2.data_dma_width == 8) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"cannot access 64-bit dma on !64-bit architectures");
|
|
return -EIO;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set IO width access to 8.
|
|
* It is because during SW device discovering width access
|
|
* is expected to be 8.
|
|
*/
|
|
status = cadence_nand_set_access_width16(cdns_ctrl, false);
|
|
|
|
return status;
|
|
}
|
|
|
|
#define TT_MAIN_OOB_AREAS 2
|
|
#define TT_RAW_PAGE 3
|
|
#define TT_BBM 4
|
|
#define TT_MAIN_OOB_AREA_EXT 5
|
|
|
|
/* Prepare size of data to transfer. */
|
|
static void
|
|
cadence_nand_prepare_data_size(struct nand_chip *chip,
|
|
int transfer_type)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u32 sec_size = 0, offset = 0, sec_cnt = 1;
|
|
u32 last_sec_size = cdns_chip->sector_size;
|
|
u32 data_ctrl_size = 0;
|
|
u32 reg = 0;
|
|
|
|
if (cdns_ctrl->curr_trans_type == transfer_type)
|
|
return;
|
|
|
|
switch (transfer_type) {
|
|
case TT_MAIN_OOB_AREA_EXT:
|
|
sec_cnt = cdns_chip->sector_count;
|
|
sec_size = cdns_chip->sector_size;
|
|
data_ctrl_size = cdns_chip->avail_oob_size;
|
|
break;
|
|
case TT_MAIN_OOB_AREAS:
|
|
sec_cnt = cdns_chip->sector_count;
|
|
last_sec_size = cdns_chip->sector_size
|
|
+ cdns_chip->avail_oob_size;
|
|
sec_size = cdns_chip->sector_size;
|
|
break;
|
|
case TT_RAW_PAGE:
|
|
last_sec_size = mtd->writesize + mtd->oobsize;
|
|
break;
|
|
case TT_BBM:
|
|
offset = mtd->writesize + cdns_chip->bbm_offs;
|
|
last_sec_size = 8;
|
|
break;
|
|
}
|
|
|
|
reg = 0;
|
|
reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
|
|
reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
|
|
writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
|
|
|
|
reg = 0;
|
|
reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
|
|
reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
|
|
writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
|
|
|
|
if (cdns_ctrl->caps2.data_control_supp) {
|
|
reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
|
|
reg &= ~CONTROL_DATA_CTRL_SIZE;
|
|
reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
|
|
writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
|
|
}
|
|
|
|
cdns_ctrl->curr_trans_type = transfer_type;
|
|
}
|
|
|
|
static int
|
|
cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
|
|
int page, void *buf, void *ctrl_dat, u32 buf_size,
|
|
u32 ctrl_dat_size, enum dma_data_direction dir,
|
|
bool with_ecc)
|
|
{
|
|
dma_addr_t dma_buf, dma_ctrl_dat = 0;
|
|
u8 thread_nr = chip_nr;
|
|
int status;
|
|
u16 ctype;
|
|
|
|
if (dir == DMA_FROM_DEVICE)
|
|
ctype = CDMA_CT_RD;
|
|
else
|
|
ctype = CDMA_CT_WR;
|
|
|
|
cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
|
|
|
|
dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
|
|
if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
|
|
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (ctrl_dat && ctrl_dat_size) {
|
|
dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
|
|
ctrl_dat_size, dir);
|
|
if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
|
|
dma_unmap_single(cdns_ctrl->dev, dma_buf,
|
|
buf_size, dir);
|
|
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
|
|
dma_buf, dma_ctrl_dat, ctype);
|
|
|
|
status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
|
|
|
|
dma_unmap_single(cdns_ctrl->dev, dma_buf,
|
|
buf_size, dir);
|
|
|
|
if (ctrl_dat && ctrl_dat_size)
|
|
dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
|
|
ctrl_dat_size, dir);
|
|
if (status)
|
|
return status;
|
|
|
|
return cadence_nand_cdma_finish(cdns_ctrl);
|
|
}
|
|
|
|
static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct cadence_nand_timings *t)
|
|
{
|
|
writel_relaxed(t->async_toggle_timings,
|
|
cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
|
|
writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
|
|
writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
|
|
writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll)
|
|
writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
|
|
|
|
writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll) {
|
|
writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
|
|
writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
|
|
writel_relaxed(t->phy_dqs_timing,
|
|
cdns_ctrl->reg + PHY_DQS_TIMING);
|
|
writel_relaxed(t->phy_gate_lpbk_ctrl,
|
|
cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
|
|
writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
|
|
cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
|
|
writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
|
|
}
|
|
}
|
|
|
|
static int cadence_nand_select_target(struct nand_chip *chip)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (chip == cdns_ctrl->selected_chip)
|
|
return 0;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
|
|
|
|
cadence_nand_set_ecc_strength(cdns_ctrl,
|
|
cdns_chip->corr_str_idx);
|
|
|
|
cadence_nand_set_erase_detection(cdns_ctrl, true,
|
|
chip->ecc.strength);
|
|
|
|
cdns_ctrl->curr_trans_type = -1;
|
|
cdns_ctrl->selected_chip = chip;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_erase(struct nand_chip *chip, u32 page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
int status;
|
|
u8 thread_nr = cdns_chip->cs[chip->cur_cs];
|
|
|
|
cadence_nand_cdma_desc_prepare(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, 0, 0,
|
|
CDMA_CT_ERASE);
|
|
status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
|
|
if (status) {
|
|
dev_err(cdns_ctrl->dev, "erase operation failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
status = cadence_nand_cdma_finish(cdns_ctrl);
|
|
if (status)
|
|
return status;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
|
|
{
|
|
int status;
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_BBM);
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
|
|
|
|
/*
|
|
* Read only bad block marker from offset
|
|
* defined by a memory manufacturer.
|
|
*/
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf, NULL,
|
|
mtd->oobsize,
|
|
0, DMA_FROM_DEVICE, false);
|
|
if (status) {
|
|
dev_err(cdns_ctrl->dev, "read BBM failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_write_page(struct nand_chip *chip,
|
|
const u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int status;
|
|
u16 marker_val = 0xFFFF;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
|
|
mtd->writesize
|
|
+ cdns_chip->bbm_offs,
|
|
1);
|
|
|
|
if (oob_required) {
|
|
marker_val = *(u16 *)(chip->oob_poi
|
|
+ cdns_chip->bbm_offs);
|
|
} else {
|
|
/* Set oob data to 0xFF. */
|
|
memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
|
|
cdns_chip->avail_oob_size);
|
|
}
|
|
|
|
cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
|
|
|
|
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
|
|
cdns_ctrl->caps2.data_control_supp) {
|
|
u8 *oob;
|
|
|
|
if (oob_required)
|
|
oob = chip->oob_poi;
|
|
else
|
|
oob = cdns_ctrl->buf + mtd->writesize;
|
|
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, (void *)buf, oob,
|
|
mtd->writesize,
|
|
cdns_chip->avail_oob_size,
|
|
DMA_TO_DEVICE, true);
|
|
if (status) {
|
|
dev_err(cdns_ctrl->dev, "write page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (oob_required) {
|
|
/* Transfer the data to the oob area. */
|
|
memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
|
|
cdns_chip->avail_oob_size);
|
|
}
|
|
|
|
memcpy(cdns_ctrl->buf, buf, mtd->writesize);
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
|
|
|
|
return cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf, NULL,
|
|
mtd->writesize
|
|
+ cdns_chip->avail_oob_size,
|
|
0, DMA_TO_DEVICE, true);
|
|
}
|
|
|
|
static int cadence_nand_write_oob(struct nand_chip *chip, int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
|
|
|
|
return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
|
|
}
|
|
|
|
static int cadence_nand_write_page_raw(struct nand_chip *chip,
|
|
const u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int writesize = mtd->writesize;
|
|
int oobsize = mtd->oobsize;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
void *tmp_buf = cdns_ctrl->buf;
|
|
int oob_skip = cdns_chip->bbm_len;
|
|
size_t size = writesize + oobsize;
|
|
int i, pos, len;
|
|
int status = 0;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
/*
|
|
* Fill the buffer with 0xff first except the full page transfer.
|
|
* This simplifies the logic.
|
|
*/
|
|
if (!buf || !oob_required)
|
|
memset(tmp_buf, 0xff, size);
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
|
|
|
|
/* Arrange the buffer for syndrome payload/ecc layout. */
|
|
if (buf) {
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = i * (ecc_size + ecc_bytes);
|
|
len = ecc_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(tmp_buf + pos, buf, len);
|
|
buf += len;
|
|
if (len < ecc_size) {
|
|
len = ecc_size - len;
|
|
memcpy(tmp_buf + writesize + oob_skip, buf,
|
|
len);
|
|
buf += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oob_required) {
|
|
const u8 *oob = chip->oob_poi;
|
|
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
|
|
(cdns_chip->sector_size + chip->ecc.bytes)
|
|
+ cdns_chip->sector_size + oob_skip;
|
|
|
|
/* BBM at the beginning of the OOB area. */
|
|
memcpy(tmp_buf + writesize, oob, oob_skip);
|
|
|
|
/* OOB free. */
|
|
memcpy(tmp_buf + oob_data_offset, oob,
|
|
cdns_chip->avail_oob_size);
|
|
oob += cdns_chip->avail_oob_size;
|
|
|
|
/* OOB ECC. */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
if (i == (ecc_steps - 1))
|
|
pos += cdns_chip->avail_oob_size;
|
|
|
|
len = ecc_bytes;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(tmp_buf + pos, oob, len);
|
|
oob += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
memcpy(tmp_buf + writesize + oob_skip, oob,
|
|
len);
|
|
oob += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
|
|
|
|
return cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf, NULL,
|
|
mtd->writesize +
|
|
mtd->oobsize,
|
|
0, DMA_TO_DEVICE, false);
|
|
}
|
|
|
|
static int cadence_nand_write_oob_raw(struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return cadence_nand_write_page_raw(chip, NULL, true, page);
|
|
}
|
|
|
|
static int cadence_nand_read_page(struct nand_chip *chip,
|
|
u8 *buf, int oob_required, int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int status = 0;
|
|
int ecc_err_count = 0;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
|
|
mtd->writesize
|
|
+ cdns_chip->bbm_offs, 1);
|
|
|
|
/*
|
|
* If data buffer can be accessed by DMA and data_control feature
|
|
* is supported then transfer data and oob directly.
|
|
*/
|
|
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
|
|
cdns_ctrl->caps2.data_control_supp) {
|
|
u8 *oob;
|
|
|
|
if (oob_required)
|
|
oob = chip->oob_poi;
|
|
else
|
|
oob = cdns_ctrl->buf + mtd->writesize;
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, buf, oob,
|
|
mtd->writesize,
|
|
cdns_chip->avail_oob_size,
|
|
DMA_FROM_DEVICE, true);
|
|
/* Otherwise use bounce buffer. */
|
|
} else {
|
|
cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf,
|
|
NULL, mtd->writesize
|
|
+ cdns_chip->avail_oob_size,
|
|
0, DMA_FROM_DEVICE, true);
|
|
|
|
memcpy(buf, cdns_ctrl->buf, mtd->writesize);
|
|
if (oob_required)
|
|
memcpy(chip->oob_poi,
|
|
cdns_ctrl->buf + mtd->writesize,
|
|
mtd->oobsize);
|
|
}
|
|
|
|
switch (status) {
|
|
case STAT_ECC_UNCORR:
|
|
mtd->ecc_stats.failed++;
|
|
ecc_err_count++;
|
|
break;
|
|
case STAT_ECC_CORR:
|
|
ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
|
|
cdns_ctrl->cdma_desc->status);
|
|
mtd->ecc_stats.corrected += ecc_err_count;
|
|
break;
|
|
case STAT_ERASED:
|
|
case STAT_OK:
|
|
break;
|
|
default:
|
|
dev_err(cdns_ctrl->dev, "read page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (oob_required)
|
|
if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
|
|
return -EIO;
|
|
|
|
return ecc_err_count;
|
|
}
|
|
|
|
/* Reads OOB data from the device. */
|
|
static int cadence_nand_read_oob(struct nand_chip *chip, int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
|
|
return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
|
|
}
|
|
|
|
static int cadence_nand_read_page_raw(struct nand_chip *chip,
|
|
u8 *buf, int oob_required, int page)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int oob_skip = cdns_chip->bbm_len;
|
|
int writesize = mtd->writesize;
|
|
int ecc_steps = chip->ecc.steps;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
void *tmp_buf = cdns_ctrl->buf;
|
|
int i, pos, len;
|
|
int status = 0;
|
|
|
|
status = cadence_nand_select_target(chip);
|
|
if (status)
|
|
return status;
|
|
|
|
cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
|
|
|
|
cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
|
|
status = cadence_nand_cdma_transfer(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
page, cdns_ctrl->buf, NULL,
|
|
mtd->writesize
|
|
+ mtd->oobsize,
|
|
0, DMA_FROM_DEVICE, false);
|
|
|
|
switch (status) {
|
|
case STAT_ERASED:
|
|
case STAT_OK:
|
|
break;
|
|
default:
|
|
dev_err(cdns_ctrl->dev, "read raw page failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Arrange the buffer for syndrome payload/ecc layout. */
|
|
if (buf) {
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = i * (ecc_size + ecc_bytes);
|
|
len = ecc_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(buf, tmp_buf + pos, len);
|
|
buf += len;
|
|
if (len < ecc_size) {
|
|
len = ecc_size - len;
|
|
memcpy(buf, tmp_buf + writesize + oob_skip,
|
|
len);
|
|
buf += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oob_required) {
|
|
u8 *oob = chip->oob_poi;
|
|
u32 oob_data_offset = (cdns_chip->sector_count - 1) *
|
|
(cdns_chip->sector_size + chip->ecc.bytes)
|
|
+ cdns_chip->sector_size + oob_skip;
|
|
|
|
/* OOB free. */
|
|
memcpy(oob, tmp_buf + oob_data_offset,
|
|
cdns_chip->avail_oob_size);
|
|
|
|
/* BBM at the beginning of the OOB area. */
|
|
memcpy(oob, tmp_buf + writesize, oob_skip);
|
|
|
|
oob += cdns_chip->avail_oob_size;
|
|
|
|
/* OOB ECC */
|
|
for (i = 0; i < ecc_steps; i++) {
|
|
pos = ecc_size + i * (ecc_size + ecc_bytes);
|
|
len = ecc_bytes;
|
|
|
|
if (i == (ecc_steps - 1))
|
|
pos += cdns_chip->avail_oob_size;
|
|
|
|
if (pos >= writesize)
|
|
pos += oob_skip;
|
|
else if (pos + len > writesize)
|
|
len = writesize - pos;
|
|
|
|
memcpy(oob, tmp_buf + pos, len);
|
|
oob += len;
|
|
if (len < ecc_bytes) {
|
|
len = ecc_bytes - len;
|
|
memcpy(oob, tmp_buf + writesize + oob_skip,
|
|
len);
|
|
oob += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_read_oob_raw(struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
return cadence_nand_read_page_raw(chip, NULL, true, page);
|
|
}
|
|
|
|
static void cadence_nand_slave_dma_transfer_finished(void *data)
|
|
{
|
|
struct completion *finished = data;
|
|
|
|
complete(finished);
|
|
}
|
|
|
|
static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
|
|
void *buf,
|
|
dma_addr_t dev_dma, size_t len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(finished);
|
|
struct dma_chan *chan;
|
|
struct dma_device *dma_dev;
|
|
dma_addr_t src_dma, dst_dma, buf_dma;
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_cookie_t cookie;
|
|
|
|
chan = cdns_ctrl->dmac;
|
|
dma_dev = chan->device;
|
|
|
|
buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
|
|
if (dma_mapping_error(dma_dev->dev, buf_dma)) {
|
|
dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
|
|
goto err;
|
|
}
|
|
|
|
if (dir == DMA_FROM_DEVICE) {
|
|
src_dma = cdns_ctrl->io.dma;
|
|
dst_dma = buf_dma;
|
|
} else {
|
|
src_dma = buf_dma;
|
|
dst_dma = cdns_ctrl->io.dma;
|
|
}
|
|
|
|
tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
|
|
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
|
|
if (!tx) {
|
|
dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
|
|
goto err_unmap;
|
|
}
|
|
|
|
tx->callback = cadence_nand_slave_dma_transfer_finished;
|
|
tx->callback_param = &finished;
|
|
|
|
cookie = dmaengine_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
|
|
goto err_unmap;
|
|
}
|
|
|
|
dma_async_issue_pending(cdns_ctrl->dmac);
|
|
wait_for_completion(&finished);
|
|
|
|
dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
|
|
|
|
return 0;
|
|
|
|
err_unmap:
|
|
dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
|
|
|
|
err:
|
|
dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
|
|
u8 *buf, int len)
|
|
{
|
|
u8 thread_nr = 0;
|
|
u32 sdma_size;
|
|
int status;
|
|
|
|
/* Wait until slave DMA interface is ready to data transfer. */
|
|
status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
|
|
if (status)
|
|
return status;
|
|
|
|
if (!cdns_ctrl->caps1->has_dma) {
|
|
u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
|
|
|
|
int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
|
|
|
|
/* read alingment data */
|
|
if (data_dma_width == 4)
|
|
ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
|
|
#ifdef CONFIG_64BIT
|
|
else
|
|
readsq(cdns_ctrl->io.virt, buf, len_in_words);
|
|
#endif
|
|
|
|
if (sdma_size > len) {
|
|
int read_bytes = (data_dma_width == 4) ?
|
|
len_in_words << 2 : len_in_words << 3;
|
|
|
|
/* read rest data from slave DMA interface if any */
|
|
if (data_dma_width == 4)
|
|
ioread32_rep(cdns_ctrl->io.virt,
|
|
cdns_ctrl->buf,
|
|
sdma_size / 4 - len_in_words);
|
|
#ifdef CONFIG_64BIT
|
|
else
|
|
readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
|
|
sdma_size / 8 - len_in_words);
|
|
#endif
|
|
|
|
/* copy rest of data */
|
|
memcpy(buf + read_bytes, cdns_ctrl->buf,
|
|
len - read_bytes);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
|
|
status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
|
|
cdns_ctrl->io.dma,
|
|
len, DMA_FROM_DEVICE);
|
|
if (status == 0)
|
|
return 0;
|
|
|
|
dev_warn(cdns_ctrl->dev,
|
|
"Slave DMA transfer failed. Try again using bounce buffer.");
|
|
}
|
|
|
|
/* If DMA transfer is not possible or failed then use bounce buffer. */
|
|
status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
|
|
cdns_ctrl->io.dma,
|
|
sdma_size, DMA_FROM_DEVICE);
|
|
|
|
if (status) {
|
|
dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
|
|
return status;
|
|
}
|
|
|
|
memcpy(buf, cdns_ctrl->buf, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
|
|
const u8 *buf, int len)
|
|
{
|
|
u8 thread_nr = 0;
|
|
u32 sdma_size;
|
|
int status;
|
|
|
|
/* Wait until slave DMA interface is ready to data transfer. */
|
|
status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
|
|
if (status)
|
|
return status;
|
|
|
|
if (!cdns_ctrl->caps1->has_dma) {
|
|
u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
|
|
|
|
int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
|
|
|
|
if (data_dma_width == 4)
|
|
iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
|
|
#ifdef CONFIG_64BIT
|
|
else
|
|
writesq(cdns_ctrl->io.virt, buf, len_in_words);
|
|
#endif
|
|
|
|
if (sdma_size > len) {
|
|
int written_bytes = (data_dma_width == 4) ?
|
|
len_in_words << 2 : len_in_words << 3;
|
|
|
|
/* copy rest of data */
|
|
memcpy(cdns_ctrl->buf, buf + written_bytes,
|
|
len - written_bytes);
|
|
|
|
/* write all expected by nand controller data */
|
|
if (data_dma_width == 4)
|
|
iowrite32_rep(cdns_ctrl->io.virt,
|
|
cdns_ctrl->buf,
|
|
sdma_size / 4 - len_in_words);
|
|
#ifdef CONFIG_64BIT
|
|
else
|
|
writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
|
|
sdma_size / 8 - len_in_words);
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
|
|
status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
|
|
cdns_ctrl->io.dma,
|
|
len, DMA_TO_DEVICE);
|
|
if (status == 0)
|
|
return 0;
|
|
|
|
dev_warn(cdns_ctrl->dev,
|
|
"Slave DMA transfer failed. Try again using bounce buffer.");
|
|
}
|
|
|
|
/* If DMA transfer is not possible or failed then use bounce buffer. */
|
|
memcpy(cdns_ctrl->buf, buf, len);
|
|
|
|
status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
|
|
cdns_ctrl->io.dma,
|
|
sdma_size, DMA_TO_DEVICE);
|
|
|
|
if (status)
|
|
dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
|
|
|
|
return status;
|
|
}
|
|
|
|
static int cadence_nand_force_byte_access(struct nand_chip *chip,
|
|
bool force_8bit)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
|
|
/*
|
|
* Callers of this function do not verify if the NAND is using a 16-bit
|
|
* an 8-bit bus for normal operations, so we need to take care of that
|
|
* here by leaving the configuration unchanged if the NAND does not have
|
|
* the NAND_BUSWIDTH_16 flag set.
|
|
*/
|
|
if (!(chip->options & NAND_BUSWIDTH_16))
|
|
return 0;
|
|
|
|
return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
|
|
}
|
|
|
|
static int cadence_nand_cmd_opcode(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
const struct nand_op_instr *instr;
|
|
unsigned int op_id = 0;
|
|
u64 mini_ctrl_cmd = 0;
|
|
int ret;
|
|
|
|
instr = &subop->instrs[op_id];
|
|
|
|
if (instr->delay_ns > 0)
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
|
|
GCMD_LAY_INSTR_CMD);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
|
|
instr->ctx.cmd.opcode);
|
|
|
|
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
if (ret)
|
|
dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
|
|
instr->ctx.cmd.opcode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_cmd_address(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
const struct nand_op_instr *instr;
|
|
unsigned int op_id = 0;
|
|
u64 mini_ctrl_cmd = 0;
|
|
unsigned int offset, naddrs;
|
|
u64 address = 0;
|
|
const u8 *addrs;
|
|
int ret;
|
|
int i;
|
|
|
|
instr = &subop->instrs[op_id];
|
|
|
|
if (instr->delay_ns > 0)
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
|
|
GCMD_LAY_INSTR_ADDR);
|
|
|
|
offset = nand_subop_get_addr_start_off(subop, op_id);
|
|
naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
|
|
addrs = &instr->ctx.addr.addrs[offset];
|
|
|
|
for (i = 0; i < naddrs; i++)
|
|
address |= (u64)addrs[i] << (8 * i);
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
|
|
address);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
|
|
naddrs - 1);
|
|
|
|
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
if (ret)
|
|
dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_cmd_erase(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
unsigned int op_id;
|
|
|
|
if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
|
|
int i;
|
|
const struct nand_op_instr *instr = NULL;
|
|
unsigned int offset, naddrs;
|
|
const u8 *addrs;
|
|
u32 page = 0;
|
|
|
|
instr = &subop->instrs[1];
|
|
offset = nand_subop_get_addr_start_off(subop, 1);
|
|
naddrs = nand_subop_get_num_addr_cyc(subop, 1);
|
|
addrs = &instr->ctx.addr.addrs[offset];
|
|
|
|
for (i = 0; i < naddrs; i++)
|
|
page |= (u32)addrs[i] << (8 * i);
|
|
|
|
return cadence_nand_erase(chip, page);
|
|
}
|
|
|
|
/*
|
|
* If it is not an erase operation then handle operation
|
|
* by calling exec_op function.
|
|
*/
|
|
for (op_id = 0; op_id < subop->ninstrs; op_id++) {
|
|
int ret;
|
|
const struct nand_operation nand_op = {
|
|
.cs = chip->cur_cs,
|
|
.instrs = &subop->instrs[op_id],
|
|
.ninstrs = 1};
|
|
ret = chip->controller->ops->exec_op(chip, &nand_op, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_cmd_data(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
const struct nand_op_instr *instr;
|
|
unsigned int offset, op_id = 0;
|
|
u64 mini_ctrl_cmd = 0;
|
|
int len = 0;
|
|
int ret;
|
|
|
|
instr = &subop->instrs[op_id];
|
|
|
|
if (instr->delay_ns > 0)
|
|
mini_ctrl_cmd |= GCMD_LAY_TWB;
|
|
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
|
|
GCMD_LAY_INSTR_DATA);
|
|
|
|
if (instr->type == NAND_OP_DATA_OUT_INSTR)
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
|
|
GCMD_DIR_WRITE);
|
|
|
|
len = nand_subop_get_data_len(subop, op_id);
|
|
offset = nand_subop_get_data_start_off(subop, op_id);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
|
|
mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
|
|
if (instr->ctx.data.force_8bit) {
|
|
ret = cadence_nand_force_byte_access(chip, true);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"cannot change byte access generic data cmd failed\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = cadence_nand_generic_cmd_send(cdns_ctrl,
|
|
cdns_chip->cs[chip->cur_cs],
|
|
mini_ctrl_cmd);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
|
|
return ret;
|
|
}
|
|
|
|
if (instr->type == NAND_OP_DATA_IN_INSTR) {
|
|
void *buf = instr->ctx.data.buf.in + offset;
|
|
|
|
ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
|
|
} else {
|
|
const void *buf = instr->ctx.data.buf.out + offset;
|
|
|
|
ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
|
|
return ret;
|
|
}
|
|
|
|
if (instr->ctx.data.force_8bit) {
|
|
ret = cadence_nand_force_byte_access(chip, false);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"cannot change byte access generic data cmd failed\n");
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
int status;
|
|
unsigned int op_id = 0;
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
const struct nand_op_instr *instr = &subop->instrs[op_id];
|
|
u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
|
|
|
|
status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
|
|
timeout_us,
|
|
BIT(cdns_chip->cs[chip->cur_cs]),
|
|
false);
|
|
return status;
|
|
}
|
|
|
|
static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_erase,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_opcode,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(false)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_address,
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_data,
|
|
NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_data,
|
|
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
cadence_nand_cmd_waitrdy,
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
|
|
);
|
|
|
|
static int cadence_nand_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
if (!check_only) {
|
|
int status = cadence_nand_select_target(chip);
|
|
|
|
if (status)
|
|
return status;
|
|
}
|
|
|
|
return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
|
|
check_only);
|
|
}
|
|
|
|
static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = cdns_chip->bbm_len;
|
|
oobregion->length = cdns_chip->avail_oob_size
|
|
- cdns_chip->bbm_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = cdns_chip->avail_oob_size;
|
|
oobregion->length = chip->ecc.total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
|
|
.free = cadence_nand_ooblayout_free,
|
|
.ecc = cadence_nand_ooblayout_ecc,
|
|
};
|
|
|
|
static int calc_cycl(u32 timing, u32 clock)
|
|
{
|
|
if (timing == 0 || clock == 0)
|
|
return 0;
|
|
|
|
if ((timing % clock) > 0)
|
|
return timing / clock;
|
|
else
|
|
return timing / clock - 1;
|
|
}
|
|
|
|
/* Calculate max data valid window. */
|
|
static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
|
|
u32 board_delay_skew_min, u32 ext_mode)
|
|
{
|
|
if (ext_mode == 0)
|
|
clk_period /= 2;
|
|
|
|
return (trp_cnt + 1) * clk_period + trhoh_min +
|
|
board_delay_skew_min;
|
|
}
|
|
|
|
/* Calculate data valid window. */
|
|
static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
|
|
u32 trea_max, u32 ext_mode)
|
|
{
|
|
if (ext_mode == 0)
|
|
clk_period /= 2;
|
|
|
|
return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
|
|
}
|
|
|
|
static int
|
|
cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
|
|
const struct nand_interface_config *conf)
|
|
{
|
|
const struct nand_sdr_timings *sdr;
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
struct cadence_nand_timings *t = &cdns_chip->timings;
|
|
u32 reg;
|
|
u32 board_delay = cdns_ctrl->board_delay;
|
|
u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
|
|
cdns_ctrl->nf_clk_rate);
|
|
u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
|
|
u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
|
|
u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
|
|
u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
|
|
u32 if_skew = cdns_ctrl->caps1->if_skew;
|
|
u32 board_delay_skew_min = board_delay - if_skew;
|
|
u32 board_delay_skew_max = board_delay + if_skew;
|
|
u32 dqs_sampl_res, phony_dqs_mod;
|
|
u32 tdvw, tdvw_min, tdvw_max;
|
|
u32 ext_rd_mode, ext_wr_mode;
|
|
u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
|
|
u32 sampling_point;
|
|
|
|
sdr = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(sdr))
|
|
return PTR_ERR(sdr);
|
|
|
|
memset(t, 0, sizeof(*t));
|
|
/* Sampling point calculation. */
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll)
|
|
phony_dqs_mod = 2;
|
|
else
|
|
phony_dqs_mod = 1;
|
|
|
|
dqs_sampl_res = clk_period / phony_dqs_mod;
|
|
|
|
tdvw_min = sdr->tREA_max + board_delay_skew_max;
|
|
/*
|
|
* The idea of those calculation is to get the optimum value
|
|
* for tRP and tRH timings. If it is NOT possible to sample data
|
|
* with optimal tRP/tRH settings, the parameters will be extended.
|
|
* If clk_period is 50ns (the lowest value) this condition is met
|
|
* for SDR timing modes 1, 2, 3, 4 and 5.
|
|
* If clk_period is 20ns the condition is met only for SDR timing
|
|
* mode 5.
|
|
*/
|
|
if (sdr->tRC_min <= clk_period &&
|
|
sdr->tRP_min <= (clk_period / 2) &&
|
|
sdr->tREH_min <= (clk_period / 2)) {
|
|
/* Performance mode. */
|
|
ext_rd_mode = 0;
|
|
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
sdr->tREA_max, ext_rd_mode);
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
board_delay_skew_min,
|
|
ext_rd_mode);
|
|
/*
|
|
* Check if data valid window and sampling point can be found
|
|
* and is not on the edge (ie. we have hold margin).
|
|
* If not extend the tRP timings.
|
|
*/
|
|
if (tdvw > 0) {
|
|
if (tdvw_max <= tdvw_min ||
|
|
(tdvw_max % dqs_sampl_res) == 0) {
|
|
/*
|
|
* No valid sampling point so the RE pulse need
|
|
* to be widen widening by half clock cycle.
|
|
*/
|
|
ext_rd_mode = 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* There is no valid window
|
|
* to be able to sample data the tRP need to be widen.
|
|
* Very safe calculations are performed here.
|
|
*/
|
|
trp_cnt = (sdr->tREA_max + board_delay_skew_max
|
|
+ dqs_sampl_res) / clk_period;
|
|
ext_rd_mode = 1;
|
|
}
|
|
|
|
} else {
|
|
/* Extended read mode. */
|
|
u32 trh;
|
|
|
|
ext_rd_mode = 1;
|
|
trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
|
|
trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
|
|
if (sdr->tREH_min >= trh)
|
|
trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
|
|
else
|
|
trh_cnt = calc_cycl(trh, clk_period);
|
|
|
|
tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
|
|
sdr->tREA_max, ext_rd_mode);
|
|
/*
|
|
* Check if data valid window and sampling point can be found
|
|
* or if it is at the edge check if previous is valid
|
|
* - if not extend the tRP timings.
|
|
*/
|
|
if (tdvw > 0) {
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
|
|
sdr->tRHOH_min,
|
|
board_delay_skew_min,
|
|
ext_rd_mode);
|
|
|
|
if ((((tdvw_max / dqs_sampl_res)
|
|
* dqs_sampl_res) <= tdvw_min) ||
|
|
(((tdvw_max % dqs_sampl_res) == 0) &&
|
|
(((tdvw_max / dqs_sampl_res - 1)
|
|
* dqs_sampl_res) <= tdvw_min))) {
|
|
/*
|
|
* Data valid window width is lower than
|
|
* sampling resolution and do not hit any
|
|
* sampling point to be sure the sampling point
|
|
* will be found the RE low pulse width will be
|
|
* extended by one clock cycle.
|
|
*/
|
|
trp_cnt = trp_cnt + 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* There is no valid window to be able to sample data.
|
|
* The tRP need to be widen.
|
|
* Very safe calculations are performed here.
|
|
*/
|
|
trp_cnt = (sdr->tREA_max + board_delay_skew_max
|
|
+ dqs_sampl_res) / clk_period;
|
|
}
|
|
}
|
|
|
|
tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
|
|
sdr->tRHOH_min,
|
|
board_delay_skew_min, ext_rd_mode);
|
|
|
|
if (sdr->tWC_min <= clk_period &&
|
|
(sdr->tWP_min + if_skew) <= (clk_period / 2) &&
|
|
(sdr->tWH_min + if_skew) <= (clk_period / 2)) {
|
|
ext_wr_mode = 0;
|
|
} else {
|
|
u32 twh;
|
|
|
|
ext_wr_mode = 1;
|
|
twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
|
|
if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
|
|
twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
|
|
clk_period);
|
|
|
|
twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
|
|
if (sdr->tWH_min >= twh)
|
|
twh = sdr->tWH_min;
|
|
|
|
twh_cnt = calc_cycl(twh + if_skew, clk_period);
|
|
}
|
|
|
|
reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
|
|
reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
|
|
t->async_toggle_timings = reg;
|
|
dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
|
|
|
|
tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
|
|
tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
|
|
twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
|
|
trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
|
|
reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
|
|
|
|
/*
|
|
* If timing exceeds delay field in timing register
|
|
* then use maximum value.
|
|
*/
|
|
if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
|
|
reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
|
|
else
|
|
reg |= TIMINGS0_TCCS;
|
|
|
|
reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
|
|
reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
|
|
t->timings0 = reg;
|
|
dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
|
|
|
|
/* The following is related to single signal so skew is not needed. */
|
|
trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
|
|
trhz_cnt = trhz_cnt + 1;
|
|
twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
|
|
/*
|
|
* Because of the two stage syncflop the value must be increased by 3
|
|
* first value is related with sync, second value is related
|
|
* with output if delay.
|
|
*/
|
|
twb_cnt = twb_cnt + 3 + 5;
|
|
/*
|
|
* The following is related to the we edge of the random data input
|
|
* sequence so skew is not needed.
|
|
*/
|
|
tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
|
|
reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
|
|
reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
|
|
reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
|
|
t->timings1 = reg;
|
|
dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
|
|
|
|
tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
|
|
if (tfeat_cnt < twb_cnt)
|
|
tfeat_cnt = twb_cnt;
|
|
|
|
tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
|
|
tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
|
|
|
|
reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
|
|
reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
|
|
reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
|
|
t->timings2 = reg;
|
|
dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll) {
|
|
reg = DLL_PHY_CTRL_DLL_RST_N;
|
|
if (ext_wr_mode)
|
|
reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
|
|
if (ext_rd_mode)
|
|
reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
|
|
|
|
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
|
|
reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
|
|
t->dll_phy_ctrl = reg;
|
|
dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
|
|
}
|
|
|
|
/* Sampling point calculation. */
|
|
if ((tdvw_max % dqs_sampl_res) > 0)
|
|
sampling_point = tdvw_max / dqs_sampl_res;
|
|
else
|
|
sampling_point = (tdvw_max / dqs_sampl_res - 1);
|
|
|
|
if (sampling_point * dqs_sampl_res > tdvw_min) {
|
|
dll_phy_dqs_timing =
|
|
FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
|
|
dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
|
|
phony_dqs_timing = sampling_point / phony_dqs_mod;
|
|
|
|
if ((sampling_point % 2) > 0) {
|
|
dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
|
|
if ((tdvw_max % dqs_sampl_res) == 0)
|
|
/*
|
|
* Calculation for sampling point at the edge
|
|
* of data and being odd number.
|
|
*/
|
|
phony_dqs_timing = (tdvw_max / dqs_sampl_res)
|
|
/ phony_dqs_mod - 1;
|
|
|
|
if (!cdns_ctrl->caps2.is_phy_type_dll)
|
|
phony_dqs_timing--;
|
|
|
|
} else {
|
|
phony_dqs_timing--;
|
|
}
|
|
rd_del_sel = phony_dqs_timing + 3;
|
|
} else {
|
|
dev_warn(cdns_ctrl->dev,
|
|
"ERROR : cannot find valid sampling point\n");
|
|
}
|
|
|
|
reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
|
|
if (cdns_ctrl->caps2.is_phy_type_dll)
|
|
reg |= PHY_CTRL_SDR_DQS;
|
|
t->phy_ctrl = reg;
|
|
dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
|
|
|
|
if (cdns_ctrl->caps2.is_phy_type_dll) {
|
|
dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
|
|
dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
|
|
dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
|
|
dll_phy_dqs_timing);
|
|
t->phy_dqs_timing = dll_phy_dqs_timing;
|
|
|
|
reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
|
|
dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
|
|
reg);
|
|
t->phy_gate_lpbk_ctrl = reg;
|
|
|
|
dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
|
|
PHY_DLL_MASTER_CTRL_BYPASS_MODE);
|
|
dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cadence_nand_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
|
|
struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
|
|
u32 ecc_size;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
ret = cadence_nand_set_access_width16(cdns_ctrl, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
|
|
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
cdns_chip->bbm_offs = chip->badblockpos;
|
|
cdns_chip->bbm_offs &= ~0x01;
|
|
/* this value should be even number */
|
|
cdns_chip->bbm_len = 2;
|
|
|
|
ret = nand_ecc_choose_conf(chip,
|
|
&cdns_ctrl->ecc_caps,
|
|
mtd->oobsize - cdns_chip->bbm_len);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(cdns_ctrl->dev,
|
|
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
|
|
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
|
|
|
|
/* Error correction configuration. */
|
|
cdns_chip->sector_size = chip->ecc.size;
|
|
cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
|
|
ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
|
|
|
|
cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
|
|
|
|
if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
|
|
cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
|
|
|
|
if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
|
|
> mtd->oobsize)
|
|
cdns_chip->avail_oob_size -= 4;
|
|
|
|
ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
|
|
if (ret < 0)
|
|
return -EINVAL;
|
|
|
|
cdns_chip->corr_str_idx = (u8)ret;
|
|
|
|
if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
|
|
1000000,
|
|
CTRL_STATUS_CTRL_BUSY, true))
|
|
return -ETIMEDOUT;
|
|
|
|
cadence_nand_set_ecc_strength(cdns_ctrl,
|
|
cdns_chip->corr_str_idx);
|
|
|
|
cadence_nand_set_erase_detection(cdns_ctrl, true,
|
|
chip->ecc.strength);
|
|
|
|
/* Override the default read operations. */
|
|
chip->ecc.read_page = cadence_nand_read_page;
|
|
chip->ecc.read_page_raw = cadence_nand_read_page_raw;
|
|
chip->ecc.write_page = cadence_nand_write_page;
|
|
chip->ecc.write_page_raw = cadence_nand_write_page_raw;
|
|
chip->ecc.read_oob = cadence_nand_read_oob;
|
|
chip->ecc.write_oob = cadence_nand_write_oob;
|
|
chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
|
|
chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
|
|
|
|
if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
|
|
cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
|
|
|
|
/* Is 32-bit DMA supported? */
|
|
ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
|
|
return ret;
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops cadence_nand_controller_ops = {
|
|
.attach_chip = cadence_nand_attach_chip,
|
|
.exec_op = cadence_nand_exec_op,
|
|
.setup_interface = cadence_nand_setup_interface,
|
|
};
|
|
|
|
static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
|
|
struct device_node *np)
|
|
{
|
|
struct cdns_nand_chip *cdns_chip;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *chip;
|
|
int nsels, ret, i;
|
|
u32 cs;
|
|
|
|
nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
|
|
if (nsels <= 0) {
|
|
dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate the nand chip structure. */
|
|
cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
|
|
(nsels * sizeof(u8)),
|
|
GFP_KERNEL);
|
|
if (!cdns_chip) {
|
|
dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cdns_chip->nsels = nsels;
|
|
|
|
for (i = 0; i < nsels; i++) {
|
|
/* Retrieve CS id. */
|
|
ret = of_property_read_u32_index(np, "reg", i, &cs);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"could not retrieve reg property: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
if (cs >= cdns_ctrl->caps2.max_banks) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"invalid reg value: %u (max CS = %d)\n",
|
|
cs, cdns_ctrl->caps2.max_banks);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"CS %d already assigned\n", cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cdns_chip->cs[i] = cs;
|
|
}
|
|
|
|
chip = &cdns_chip->chip;
|
|
chip->controller = &cdns_ctrl->controller;
|
|
nand_set_flash_node(chip, np);
|
|
|
|
mtd = nand_to_mtd(chip);
|
|
mtd->dev.parent = cdns_ctrl->dev;
|
|
|
|
/*
|
|
* Default to HW ECC engine mode. If the nand-ecc-mode property is given
|
|
* in the DT node, this entry will be overwritten in nand_scan_ident().
|
|
*/
|
|
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
|
|
|
|
ret = nand_scan(chip, cdns_chip->nsels);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"failed to register mtd device: %d\n", ret);
|
|
nand_cleanup(chip);
|
|
return ret;
|
|
}
|
|
|
|
list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
struct cdns_nand_chip *entry, *temp;
|
|
struct nand_chip *chip;
|
|
int ret;
|
|
|
|
list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
|
|
chip = &entry->chip;
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
list_del(&entry->node);
|
|
}
|
|
}
|
|
|
|
static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
struct device_node *np = cdns_ctrl->dev->of_node;
|
|
struct device_node *nand_np;
|
|
int max_cs = cdns_ctrl->caps2.max_banks;
|
|
int nchips, ret;
|
|
|
|
nchips = of_get_child_count(np);
|
|
|
|
if (nchips > max_cs) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"too many NAND chips: %d (max = %d CS)\n",
|
|
nchips, max_cs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_child_of_node(np, nand_np) {
|
|
ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
|
|
if (ret) {
|
|
of_node_put(nand_np);
|
|
cadence_nand_chips_cleanup(cdns_ctrl);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
/* Disable interrupts. */
|
|
writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
|
|
}
|
|
|
|
static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
dma_cap_mask_t mask;
|
|
int ret;
|
|
|
|
cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
|
|
sizeof(*cdns_ctrl->cdma_desc),
|
|
&cdns_ctrl->dma_cdma_desc,
|
|
GFP_KERNEL);
|
|
if (!cdns_ctrl->dma_cdma_desc)
|
|
return -ENOMEM;
|
|
|
|
cdns_ctrl->buf_size = SZ_16K;
|
|
cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
|
|
if (!cdns_ctrl->buf) {
|
|
ret = -ENOMEM;
|
|
goto free_buf_desc;
|
|
}
|
|
|
|
if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
|
|
IRQF_SHARED, "cadence-nand-controller",
|
|
cdns_ctrl)) {
|
|
dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
|
|
ret = -ENODEV;
|
|
goto free_buf;
|
|
}
|
|
|
|
spin_lock_init(&cdns_ctrl->irq_lock);
|
|
init_completion(&cdns_ctrl->complete);
|
|
|
|
ret = cadence_nand_hw_init(cdns_ctrl);
|
|
if (ret)
|
|
goto disable_irq;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_MEMCPY, mask);
|
|
|
|
if (cdns_ctrl->caps1->has_dma) {
|
|
cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
|
|
if (!cdns_ctrl->dmac) {
|
|
dev_err(cdns_ctrl->dev,
|
|
"Unable to get a DMA channel\n");
|
|
ret = -EBUSY;
|
|
goto disable_irq;
|
|
}
|
|
}
|
|
|
|
nand_controller_init(&cdns_ctrl->controller);
|
|
INIT_LIST_HEAD(&cdns_ctrl->chips);
|
|
|
|
cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
|
|
cdns_ctrl->curr_corr_str_idx = 0xFF;
|
|
|
|
ret = cadence_nand_chips_init(cdns_ctrl);
|
|
if (ret) {
|
|
dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
|
|
ret);
|
|
goto dma_release_chnl;
|
|
}
|
|
|
|
kfree(cdns_ctrl->buf);
|
|
cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
|
|
if (!cdns_ctrl->buf) {
|
|
ret = -ENOMEM;
|
|
goto dma_release_chnl;
|
|
}
|
|
|
|
return 0;
|
|
|
|
dma_release_chnl:
|
|
if (cdns_ctrl->dmac)
|
|
dma_release_channel(cdns_ctrl->dmac);
|
|
|
|
disable_irq:
|
|
cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
|
|
|
|
free_buf:
|
|
kfree(cdns_ctrl->buf);
|
|
|
|
free_buf_desc:
|
|
dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
|
|
cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Driver exit point. */
|
|
static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
|
|
{
|
|
cadence_nand_chips_cleanup(cdns_ctrl);
|
|
cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
|
|
kfree(cdns_ctrl->buf);
|
|
dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
|
|
cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
|
|
|
|
if (cdns_ctrl->dmac)
|
|
dma_release_channel(cdns_ctrl->dmac);
|
|
}
|
|
|
|
struct cadence_nand_dt {
|
|
struct cdns_nand_ctrl cdns_ctrl;
|
|
struct clk *clk;
|
|
};
|
|
|
|
static const struct cadence_nand_dt_devdata cadence_nand_default = {
|
|
.if_skew = 0,
|
|
.has_dma = 1,
|
|
};
|
|
|
|
static const struct of_device_id cadence_nand_dt_ids[] = {
|
|
{
|
|
.compatible = "cdns,hp-nfc",
|
|
.data = &cadence_nand_default
|
|
}, {}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
|
|
|
|
static int cadence_nand_dt_probe(struct platform_device *ofdev)
|
|
{
|
|
struct resource *res;
|
|
struct cadence_nand_dt *dt;
|
|
struct cdns_nand_ctrl *cdns_ctrl;
|
|
int ret;
|
|
const struct of_device_id *of_id;
|
|
const struct cadence_nand_dt_devdata *devdata;
|
|
u32 val;
|
|
|
|
of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
|
|
if (of_id) {
|
|
ofdev->id_entry = of_id->data;
|
|
devdata = of_id->data;
|
|
} else {
|
|
pr_err("Failed to find the right device id.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
|
|
if (!dt)
|
|
return -ENOMEM;
|
|
|
|
cdns_ctrl = &dt->cdns_ctrl;
|
|
cdns_ctrl->caps1 = devdata;
|
|
|
|
cdns_ctrl->dev = &ofdev->dev;
|
|
cdns_ctrl->irq = platform_get_irq(ofdev, 0);
|
|
if (cdns_ctrl->irq < 0)
|
|
return cdns_ctrl->irq;
|
|
|
|
dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
|
|
|
|
cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
|
|
if (IS_ERR(cdns_ctrl->reg))
|
|
return PTR_ERR(cdns_ctrl->reg);
|
|
|
|
cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
|
|
if (IS_ERR(cdns_ctrl->io.virt))
|
|
return PTR_ERR(cdns_ctrl->io.virt);
|
|
cdns_ctrl->io.dma = res->start;
|
|
|
|
dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
|
|
if (IS_ERR(dt->clk))
|
|
return PTR_ERR(dt->clk);
|
|
|
|
cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
|
|
|
|
ret = of_property_read_u32(ofdev->dev.of_node,
|
|
"cdns,board-delay-ps", &val);
|
|
if (ret) {
|
|
val = 4830;
|
|
dev_info(cdns_ctrl->dev,
|
|
"missing cdns,board-delay-ps property, %d was set\n",
|
|
val);
|
|
}
|
|
cdns_ctrl->board_delay = val;
|
|
|
|
ret = cadence_nand_init(cdns_ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
platform_set_drvdata(ofdev, dt);
|
|
return 0;
|
|
}
|
|
|
|
static void cadence_nand_dt_remove(struct platform_device *ofdev)
|
|
{
|
|
struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
|
|
|
|
cadence_nand_remove(&dt->cdns_ctrl);
|
|
}
|
|
|
|
static struct platform_driver cadence_nand_dt_driver = {
|
|
.probe = cadence_nand_dt_probe,
|
|
.remove_new = cadence_nand_dt_remove,
|
|
.driver = {
|
|
.name = "cadence-nand-controller",
|
|
.of_match_table = cadence_nand_dt_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(cadence_nand_dt_driver);
|
|
|
|
MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
|
|
|