linux-zen-desktop/drivers/mtd/nand/raw/gpio.c

407 lines
9.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Updated, and converted to generic GPIO based driver by Russell King.
*
* Written by Ben Dooks <ben@simtec.co.uk>
* Based on 2.4 version by Mark Whittaker
*
* © 2004 Simtec Electronics
*
* Device driver for NAND flash that uses a memory mapped interface to
* read/write the NAND commands and data, and GPIO pins for control signals
* (the DT binding refers to this as "GPIO assisted NAND flash")
*/
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/gpio/consumer.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand-gpio.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/delay.h>
struct gpiomtd {
struct nand_controller base;
void __iomem *io;
void __iomem *io_sync;
struct nand_chip nand_chip;
struct gpio_nand_platdata plat;
struct gpio_desc *nce; /* Optional chip enable */
struct gpio_desc *cle;
struct gpio_desc *ale;
struct gpio_desc *rdy;
struct gpio_desc *nwp; /* Optional write protection */
};
static inline struct gpiomtd *gpio_nand_getpriv(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct gpiomtd, nand_chip);
}
#ifdef CONFIG_ARM
/* gpio_nand_dosync()
*
* Make sure the GPIO state changes occur in-order with writes to NAND
* memory region.
* Needed on PXA due to bus-reordering within the SoC itself (see section on
* I/O ordering in PXA manual (section 2.3, p35)
*/
static void gpio_nand_dosync(struct gpiomtd *gpiomtd)
{
unsigned long tmp;
if (gpiomtd->io_sync) {
/*
* Linux memory barriers don't cater for what's required here.
* What's required is what's here - a read from a separate
* region with a dependency on that read.
*/
tmp = readl(gpiomtd->io_sync);
asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp));
}
}
#else
static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {}
#endif
static int gpio_nand_exec_instr(struct nand_chip *chip,
const struct nand_op_instr *instr)
{
struct gpiomtd *gpiomtd = gpio_nand_getpriv(nand_to_mtd(chip));
unsigned int i;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->cle, 1);
gpio_nand_dosync(gpiomtd);
writeb(instr->ctx.cmd.opcode, gpiomtd->io);
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->cle, 0);
return 0;
case NAND_OP_ADDR_INSTR:
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->ale, 1);
gpio_nand_dosync(gpiomtd);
for (i = 0; i < instr->ctx.addr.naddrs; i++)
writeb(instr->ctx.addr.addrs[i], gpiomtd->io);
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->ale, 0);
return 0;
case NAND_OP_DATA_IN_INSTR:
gpio_nand_dosync(gpiomtd);
if ((chip->options & NAND_BUSWIDTH_16) &&
!instr->ctx.data.force_8bit)
ioread16_rep(gpiomtd->io, instr->ctx.data.buf.in,
instr->ctx.data.len / 2);
else
ioread8_rep(gpiomtd->io, instr->ctx.data.buf.in,
instr->ctx.data.len);
return 0;
case NAND_OP_DATA_OUT_INSTR:
gpio_nand_dosync(gpiomtd);
if ((chip->options & NAND_BUSWIDTH_16) &&
!instr->ctx.data.force_8bit)
iowrite16_rep(gpiomtd->io, instr->ctx.data.buf.out,
instr->ctx.data.len / 2);
else
iowrite8_rep(gpiomtd->io, instr->ctx.data.buf.out,
instr->ctx.data.len);
return 0;
case NAND_OP_WAITRDY_INSTR:
if (!gpiomtd->rdy)
return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
return nand_gpio_waitrdy(chip, gpiomtd->rdy,
instr->ctx.waitrdy.timeout_ms);
default:
return -EINVAL;
}
return 0;
}
static int gpio_nand_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
struct gpiomtd *gpiomtd = gpio_nand_getpriv(nand_to_mtd(chip));
unsigned int i;
int ret = 0;
if (check_only)
return 0;
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->nce, 0);
for (i = 0; i < op->ninstrs; i++) {
ret = gpio_nand_exec_instr(chip, &op->instrs[i]);
if (ret)
break;
if (op->instrs[i].delay_ns)
ndelay(op->instrs[i].delay_ns);
}
gpio_nand_dosync(gpiomtd);
gpiod_set_value(gpiomtd->nce, 1);
return ret;
}
static int gpio_nand_attach_chip(struct nand_chip *chip)
{
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
return 0;
}
static const struct nand_controller_ops gpio_nand_ops = {
.exec_op = gpio_nand_exec_op,
.attach_chip = gpio_nand_attach_chip,
};
#ifdef CONFIG_OF
static const struct of_device_id gpio_nand_id_table[] = {
{ .compatible = "gpio-control-nand" },
{}
};
MODULE_DEVICE_TABLE(of, gpio_nand_id_table);
static int gpio_nand_get_config_of(const struct device *dev,
struct gpio_nand_platdata *plat)
{
u32 val;
if (!dev->of_node)
return -ENODEV;
if (!of_property_read_u32(dev->of_node, "bank-width", &val)) {
if (val == 2) {
plat->options |= NAND_BUSWIDTH_16;
} else if (val != 1) {
dev_err(dev, "invalid bank-width %u\n", val);
return -EINVAL;
}
}
if (!of_property_read_u32(dev->of_node, "chip-delay", &val))
plat->chip_delay = val;
return 0;
}
static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev)
{
struct resource *r;
u64 addr;
if (of_property_read_u64(pdev->dev.of_node,
"gpio-control-nand,io-sync-reg", &addr))
return NULL;
r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL);
if (!r)
return NULL;
r->start = addr;
r->end = r->start + 0x3;
r->flags = IORESOURCE_MEM;
return r;
}
#else /* CONFIG_OF */
static inline int gpio_nand_get_config_of(const struct device *dev,
struct gpio_nand_platdata *plat)
{
return -ENOSYS;
}
static inline struct resource *
gpio_nand_get_io_sync_of(struct platform_device *pdev)
{
return NULL;
}
#endif /* CONFIG_OF */
static inline int gpio_nand_get_config(const struct device *dev,
struct gpio_nand_platdata *plat)
{
int ret = gpio_nand_get_config_of(dev, plat);
if (!ret)
return ret;
if (dev_get_platdata(dev)) {
memcpy(plat, dev_get_platdata(dev), sizeof(*plat));
return 0;
}
return -EINVAL;
}
static inline struct resource *
gpio_nand_get_io_sync(struct platform_device *pdev)
{
struct resource *r = gpio_nand_get_io_sync_of(pdev);
if (r)
return r;
return platform_get_resource(pdev, IORESOURCE_MEM, 1);
}
static void gpio_nand_remove(struct platform_device *pdev)
{
struct gpiomtd *gpiomtd = platform_get_drvdata(pdev);
struct nand_chip *chip = &gpiomtd->nand_chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
/* Enable write protection and disable the chip */
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
gpiod_set_value(gpiomtd->nwp, 0);
if (gpiomtd->nce && !IS_ERR(gpiomtd->nce))
gpiod_set_value(gpiomtd->nce, 0);
}
static int gpio_nand_probe(struct platform_device *pdev)
{
struct gpiomtd *gpiomtd;
struct nand_chip *chip;
struct mtd_info *mtd;
struct resource *res;
struct device *dev = &pdev->dev;
int ret = 0;
if (!dev->of_node && !dev_get_platdata(dev))
return -EINVAL;
gpiomtd = devm_kzalloc(dev, sizeof(*gpiomtd), GFP_KERNEL);
if (!gpiomtd)
return -ENOMEM;
chip = &gpiomtd->nand_chip;
gpiomtd->io = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(gpiomtd->io))
return PTR_ERR(gpiomtd->io);
res = gpio_nand_get_io_sync(pdev);
if (res) {
gpiomtd->io_sync = devm_ioremap_resource(dev, res);
if (IS_ERR(gpiomtd->io_sync))
return PTR_ERR(gpiomtd->io_sync);
}
ret = gpio_nand_get_config(dev, &gpiomtd->plat);
if (ret)
return ret;
/* Just enable the chip */
gpiomtd->nce = devm_gpiod_get_optional(dev, "nce", GPIOD_OUT_HIGH);
if (IS_ERR(gpiomtd->nce))
return PTR_ERR(gpiomtd->nce);
/* We disable write protection once we know probe() will succeed */
gpiomtd->nwp = devm_gpiod_get_optional(dev, "nwp", GPIOD_OUT_LOW);
if (IS_ERR(gpiomtd->nwp)) {
ret = PTR_ERR(gpiomtd->nwp);
goto out_ce;
}
gpiomtd->ale = devm_gpiod_get(dev, "ale", GPIOD_OUT_LOW);
if (IS_ERR(gpiomtd->ale)) {
ret = PTR_ERR(gpiomtd->ale);
goto out_ce;
}
gpiomtd->cle = devm_gpiod_get(dev, "cle", GPIOD_OUT_LOW);
if (IS_ERR(gpiomtd->cle)) {
ret = PTR_ERR(gpiomtd->cle);
goto out_ce;
}
gpiomtd->rdy = devm_gpiod_get_optional(dev, "rdy", GPIOD_IN);
if (IS_ERR(gpiomtd->rdy)) {
ret = PTR_ERR(gpiomtd->rdy);
goto out_ce;
}
nand_controller_init(&gpiomtd->base);
gpiomtd->base.ops = &gpio_nand_ops;
nand_set_flash_node(chip, pdev->dev.of_node);
chip->options = gpiomtd->plat.options;
chip->controller = &gpiomtd->base;
mtd = nand_to_mtd(chip);
mtd->dev.parent = dev;
platform_set_drvdata(pdev, gpiomtd);
/* Disable write protection, if wired up */
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
gpiod_direction_output(gpiomtd->nwp, 1);
/*
* This driver assumes that the default ECC engine should be TYPE_SOFT.
* Set ->engine_type before registering the NAND devices in order to
* provide a driver specific default value.
*/
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
ret = nand_scan(chip, 1);
if (ret)
goto err_wp;
if (gpiomtd->plat.adjust_parts)
gpiomtd->plat.adjust_parts(&gpiomtd->plat, mtd->size);
ret = mtd_device_register(mtd, gpiomtd->plat.parts,
gpiomtd->plat.num_parts);
if (!ret)
return 0;
err_wp:
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
gpiod_set_value(gpiomtd->nwp, 0);
out_ce:
if (gpiomtd->nce && !IS_ERR(gpiomtd->nce))
gpiod_set_value(gpiomtd->nce, 0);
return ret;
}
static struct platform_driver gpio_nand_driver = {
.probe = gpio_nand_probe,
.remove_new = gpio_nand_remove,
.driver = {
.name = "gpio-nand",
.of_match_table = of_match_ptr(gpio_nand_id_table),
},
};
module_platform_driver(gpio_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_DESCRIPTION("GPIO NAND Driver");