linux-zen-desktop/drivers/net/ethernet/8390/xsurf100.c

378 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/zorro.h>
#include <net/ax88796.h>
#include <asm/amigaints.h>
#define ZORRO_PROD_INDIVIDUAL_COMPUTERS_X_SURF100 \
ZORRO_ID(INDIVIDUAL_COMPUTERS, 0x64, 0)
#define XS100_IRQSTATUS_BASE 0x40
#define XS100_8390_BASE 0x800
/* Longword-access area. Translated to 2 16-bit access cycles by the
* X-Surf 100 FPGA
*/
#define XS100_8390_DATA32_BASE 0x8000
#define XS100_8390_DATA32_SIZE 0x2000
/* Sub-Areas for fast data register access; addresses relative to area begin */
#define XS100_8390_DATA_READ32_BASE 0x0880
#define XS100_8390_DATA_WRITE32_BASE 0x0C80
#define XS100_8390_DATA_AREA_SIZE 0x80
/* force unsigned long back to 'void __iomem *' */
#define ax_convert_addr(_a) ((void __force __iomem *)(_a))
#define ei_inb(_a) z_readb(ax_convert_addr(_a))
#define ei_outb(_v, _a) z_writeb(_v, ax_convert_addr(_a))
#define ei_inw(_a) z_readw(ax_convert_addr(_a))
#define ei_outw(_v, _a) z_writew(_v, ax_convert_addr(_a))
#define ei_inb_p(_a) ei_inb(_a)
#define ei_outb_p(_v, _a) ei_outb(_v, _a)
/* define EI_SHIFT() to take into account our register offsets */
#define EI_SHIFT(x) (ei_local->reg_offset[(x)])
/* Ensure we have our RCR base value */
#define AX88796_PLATFORM
#include "8390.h"
/* from ne.c */
#define NE_CMD EI_SHIFT(0x00)
#define NE_RESET EI_SHIFT(0x1f)
#define NE_DATAPORT EI_SHIFT(0x10)
struct xsurf100_ax_plat_data {
struct ax_plat_data ax;
void __iomem *base_regs;
void __iomem *data_area;
};
static int is_xsurf100_network_irq(struct platform_device *pdev)
{
struct xsurf100_ax_plat_data *xs100 = dev_get_platdata(&pdev->dev);
return (readw(xs100->base_regs + XS100_IRQSTATUS_BASE) & 0xaaaa) != 0;
}
/* These functions guarantee that the iomem is accessed with 32 bit
* cycles only. z_memcpy_fromio / z_memcpy_toio don't
*/
static void z_memcpy_fromio32(void *dst, const void __iomem *src, size_t bytes)
{
while (bytes > 32) {
asm __volatile__
("movem.l (%0)+,%%d0-%%d7\n"
"movem.l %%d0-%%d7,(%1)\n"
"adda.l #32,%1" : "=a"(src), "=a"(dst)
: "0"(src), "1"(dst) : "d0", "d1", "d2", "d3", "d4",
"d5", "d6", "d7", "memory");
bytes -= 32;
}
while (bytes) {
*(uint32_t *)dst = z_readl(src);
src += 4;
dst += 4;
bytes -= 4;
}
}
static void z_memcpy_toio32(void __iomem *dst, const void *src, size_t bytes)
{
while (bytes) {
z_writel(*(const uint32_t *)src, dst);
src += 4;
dst += 4;
bytes -= 4;
}
}
static void xs100_write(struct net_device *dev, const void *src,
unsigned int count)
{
struct ei_device *ei_local = netdev_priv(dev);
struct platform_device *pdev = to_platform_device(dev->dev.parent);
struct xsurf100_ax_plat_data *xs100 = dev_get_platdata(&pdev->dev);
/* copy whole blocks */
while (count > XS100_8390_DATA_AREA_SIZE) {
z_memcpy_toio32(xs100->data_area +
XS100_8390_DATA_WRITE32_BASE, src,
XS100_8390_DATA_AREA_SIZE);
src += XS100_8390_DATA_AREA_SIZE;
count -= XS100_8390_DATA_AREA_SIZE;
}
/* copy whole dwords */
z_memcpy_toio32(xs100->data_area + XS100_8390_DATA_WRITE32_BASE,
src, count & ~3);
src += count & ~3;
if (count & 2) {
ei_outw(*(uint16_t *)src, ei_local->mem + NE_DATAPORT);
src += 2;
}
if (count & 1)
ei_outb(*(uint8_t *)src, ei_local->mem + NE_DATAPORT);
}
static void xs100_read(struct net_device *dev, void *dst, unsigned int count)
{
struct ei_device *ei_local = netdev_priv(dev);
struct platform_device *pdev = to_platform_device(dev->dev.parent);
struct xsurf100_ax_plat_data *xs100 = dev_get_platdata(&pdev->dev);
/* copy whole blocks */
while (count > XS100_8390_DATA_AREA_SIZE) {
z_memcpy_fromio32(dst, xs100->data_area +
XS100_8390_DATA_READ32_BASE,
XS100_8390_DATA_AREA_SIZE);
dst += XS100_8390_DATA_AREA_SIZE;
count -= XS100_8390_DATA_AREA_SIZE;
}
/* copy whole dwords */
z_memcpy_fromio32(dst, xs100->data_area + XS100_8390_DATA_READ32_BASE,
count & ~3);
dst += count & ~3;
if (count & 2) {
*(uint16_t *)dst = ei_inw(ei_local->mem + NE_DATAPORT);
dst += 2;
}
if (count & 1)
*(uint8_t *)dst = ei_inb(ei_local->mem + NE_DATAPORT);
}
/* Block input and output, similar to the Crynwr packet driver. If
* you are porting to a new ethercard, look at the packet driver
* source for hints. The NEx000 doesn't share the on-board packet
* memory -- you have to put the packet out through the "remote DMA"
* dataport using ei_outb.
*/
static void xs100_block_input(struct net_device *dev, int count,
struct sk_buff *skb, int ring_offset)
{
struct ei_device *ei_local = netdev_priv(dev);
void __iomem *nic_base = ei_local->mem;
char *buf = skb->data;
if (ei_local->dmaing) {
netdev_err(dev,
"DMAing conflict in %s [DMAstat:%d][irqlock:%d]\n",
__func__,
ei_local->dmaing, ei_local->irqlock);
return;
}
ei_local->dmaing |= 0x01;
ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, nic_base + NE_CMD);
ei_outb(count & 0xff, nic_base + EN0_RCNTLO);
ei_outb(count >> 8, nic_base + EN0_RCNTHI);
ei_outb(ring_offset & 0xff, nic_base + EN0_RSARLO);
ei_outb(ring_offset >> 8, nic_base + EN0_RSARHI);
ei_outb(E8390_RREAD + E8390_START, nic_base + NE_CMD);
xs100_read(dev, buf, count);
ei_local->dmaing &= ~1;
}
static void xs100_block_output(struct net_device *dev, int count,
const unsigned char *buf, const int start_page)
{
struct ei_device *ei_local = netdev_priv(dev);
void __iomem *nic_base = ei_local->mem;
unsigned long dma_start;
/* Round the count up for word writes. Do we need to do this?
* What effect will an odd byte count have on the 8390? I
* should check someday.
*/
if (ei_local->word16 && (count & 0x01))
count++;
/* This *shouldn't* happen. If it does, it's the last thing
* you'll see
*/
if (ei_local->dmaing) {
netdev_err(dev,
"DMAing conflict in %s [DMAstat:%d][irqlock:%d]\n",
__func__,
ei_local->dmaing, ei_local->irqlock);
return;
}
ei_local->dmaing |= 0x01;
/* We should already be in page 0, but to be safe... */
ei_outb(E8390_PAGE0 + E8390_START + E8390_NODMA, nic_base + NE_CMD);
ei_outb(ENISR_RDC, nic_base + EN0_ISR);
/* Now the normal output. */
ei_outb(count & 0xff, nic_base + EN0_RCNTLO);
ei_outb(count >> 8, nic_base + EN0_RCNTHI);
ei_outb(0x00, nic_base + EN0_RSARLO);
ei_outb(start_page, nic_base + EN0_RSARHI);
ei_outb(E8390_RWRITE + E8390_START, nic_base + NE_CMD);
xs100_write(dev, buf, count);
dma_start = jiffies;
while ((ei_inb(nic_base + EN0_ISR) & ENISR_RDC) == 0) {
if (jiffies - dma_start > 2 * HZ / 100) { /* 20ms */
netdev_warn(dev, "timeout waiting for Tx RDC.\n");
ei_local->reset_8390(dev);
ax_NS8390_reinit(dev);
break;
}
}
ei_outb(ENISR_RDC, nic_base + EN0_ISR); /* Ack intr. */
ei_local->dmaing &= ~0x01;
}
static int xsurf100_probe(struct zorro_dev *zdev,
const struct zorro_device_id *ent)
{
struct platform_device *pdev;
struct xsurf100_ax_plat_data ax88796_data;
struct resource res[2] = {
DEFINE_RES_NAMED(IRQ_AMIGA_PORTS, 1, NULL,
IORESOURCE_IRQ | IORESOURCE_IRQ_SHAREABLE),
DEFINE_RES_MEM(zdev->resource.start + XS100_8390_BASE,
4 * 0x20)
};
int reg;
/* This table is referenced in the device structure, so it must
* outlive the scope of xsurf100_probe.
*/
static u32 reg_offsets[32];
int ret = 0;
/* X-Surf 100 control and 32 bit ring buffer data access areas.
* These resources are not used by the ax88796 driver, so must
* be requested here and passed via platform data.
*/
if (!request_mem_region(zdev->resource.start, 0x100, zdev->name)) {
dev_err(&zdev->dev, "cannot reserve X-Surf 100 control registers\n");
return -ENXIO;
}
if (!request_mem_region(zdev->resource.start +
XS100_8390_DATA32_BASE,
XS100_8390_DATA32_SIZE,
"X-Surf 100 32-bit data access")) {
dev_err(&zdev->dev, "cannot reserve 32-bit area\n");
ret = -ENXIO;
goto exit_req;
}
for (reg = 0; reg < 0x20; reg++)
reg_offsets[reg] = 4 * reg;
memset(&ax88796_data, 0, sizeof(ax88796_data));
ax88796_data.ax.flags = AXFLG_HAS_EEPROM;
ax88796_data.ax.wordlength = 2;
ax88796_data.ax.dcr_val = 0x48;
ax88796_data.ax.rcr_val = 0x40;
ax88796_data.ax.reg_offsets = reg_offsets;
ax88796_data.ax.check_irq = is_xsurf100_network_irq;
ax88796_data.base_regs = ioremap(zdev->resource.start, 0x100);
/* error handling for ioremap regs */
if (!ax88796_data.base_regs) {
dev_err(&zdev->dev, "Cannot ioremap area %pR (registers)\n",
&zdev->resource);
ret = -ENXIO;
goto exit_req2;
}
ax88796_data.data_area = ioremap(zdev->resource.start +
XS100_8390_DATA32_BASE, XS100_8390_DATA32_SIZE);
/* error handling for ioremap data */
if (!ax88796_data.data_area) {
dev_err(&zdev->dev,
"Cannot ioremap area %pR offset %x (32-bit access)\n",
&zdev->resource, XS100_8390_DATA32_BASE);
ret = -ENXIO;
goto exit_mem;
}
ax88796_data.ax.block_output = xs100_block_output;
ax88796_data.ax.block_input = xs100_block_input;
pdev = platform_device_register_resndata(&zdev->dev, "ax88796",
zdev->slotaddr, res, 2,
&ax88796_data,
sizeof(ax88796_data));
if (IS_ERR(pdev)) {
dev_err(&zdev->dev, "cannot register platform device\n");
ret = -ENXIO;
goto exit_mem2;
}
zorro_set_drvdata(zdev, pdev);
if (!ret)
return 0;
exit_mem2:
iounmap(ax88796_data.data_area);
exit_mem:
iounmap(ax88796_data.base_regs);
exit_req2:
release_mem_region(zdev->resource.start + XS100_8390_DATA32_BASE,
XS100_8390_DATA32_SIZE);
exit_req:
release_mem_region(zdev->resource.start, 0x100);
return ret;
}
static void xsurf100_remove(struct zorro_dev *zdev)
{
struct platform_device *pdev = zorro_get_drvdata(zdev);
struct xsurf100_ax_plat_data *xs100 = dev_get_platdata(&pdev->dev);
platform_device_unregister(pdev);
iounmap(xs100->base_regs);
release_mem_region(zdev->resource.start, 0x100);
iounmap(xs100->data_area);
release_mem_region(zdev->resource.start + XS100_8390_DATA32_BASE,
XS100_8390_DATA32_SIZE);
}
static const struct zorro_device_id xsurf100_zorro_tbl[] = {
{ ZORRO_PROD_INDIVIDUAL_COMPUTERS_X_SURF100, },
{ 0 }
};
MODULE_DEVICE_TABLE(zorro, xsurf100_zorro_tbl);
static struct zorro_driver xsurf100_driver = {
.name = "xsurf100",
.id_table = xsurf100_zorro_tbl,
.probe = xsurf100_probe,
.remove = xsurf100_remove,
};
module_driver(xsurf100_driver, zorro_register_driver, zorro_unregister_driver);
MODULE_DESCRIPTION("X-Surf 100 driver");
MODULE_AUTHOR("Michael Karcher <kernel@mkarcher.dialup.fu-berlin.de>");
MODULE_LICENSE("GPL v2");