2000 lines
51 KiB
C
2000 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2015 - 2022 Beijing WangXun Technology Co., Ltd. */
|
|
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/pci.h>
|
|
|
|
#include "wx_type.h"
|
|
#include "wx_lib.h"
|
|
#include "wx_hw.h"
|
|
|
|
static void wx_intr_disable(struct wx *wx, u64 qmask)
|
|
{
|
|
u32 mask;
|
|
|
|
mask = (qmask & U32_MAX);
|
|
if (mask)
|
|
wr32(wx, WX_PX_IMS(0), mask);
|
|
|
|
if (wx->mac.type == wx_mac_sp) {
|
|
mask = (qmask >> 32);
|
|
if (mask)
|
|
wr32(wx, WX_PX_IMS(1), mask);
|
|
}
|
|
}
|
|
|
|
void wx_intr_enable(struct wx *wx, u64 qmask)
|
|
{
|
|
u32 mask;
|
|
|
|
mask = (qmask & U32_MAX);
|
|
if (mask)
|
|
wr32(wx, WX_PX_IMC(0), mask);
|
|
if (wx->mac.type == wx_mac_sp) {
|
|
mask = (qmask >> 32);
|
|
if (mask)
|
|
wr32(wx, WX_PX_IMC(1), mask);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(wx_intr_enable);
|
|
|
|
/**
|
|
* wx_irq_disable - Mask off interrupt generation on the NIC
|
|
* @wx: board private structure
|
|
**/
|
|
void wx_irq_disable(struct wx *wx)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
|
|
wr32(wx, WX_PX_MISC_IEN, 0);
|
|
wx_intr_disable(wx, WX_INTR_ALL);
|
|
|
|
if (pdev->msix_enabled) {
|
|
int vector;
|
|
|
|
for (vector = 0; vector < wx->num_q_vectors; vector++)
|
|
synchronize_irq(wx->msix_entries[vector].vector);
|
|
|
|
synchronize_irq(wx->msix_entries[vector].vector);
|
|
} else {
|
|
synchronize_irq(pdev->irq);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(wx_irq_disable);
|
|
|
|
/* cmd_addr is used for some special command:
|
|
* 1. to be sector address, when implemented erase sector command
|
|
* 2. to be flash address when implemented read, write flash address
|
|
*/
|
|
static int wx_fmgr_cmd_op(struct wx *wx, u32 cmd, u32 cmd_addr)
|
|
{
|
|
u32 cmd_val = 0, val = 0;
|
|
|
|
cmd_val = WX_SPI_CMD_CMD(cmd) |
|
|
WX_SPI_CMD_CLK(WX_SPI_CLK_DIV) |
|
|
cmd_addr;
|
|
wr32(wx, WX_SPI_CMD, cmd_val);
|
|
|
|
return read_poll_timeout(rd32, val, (val & 0x1), 10, 100000,
|
|
false, wx, WX_SPI_STATUS);
|
|
}
|
|
|
|
static int wx_flash_read_dword(struct wx *wx, u32 addr, u32 *data)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = wx_fmgr_cmd_op(wx, WX_SPI_CMD_READ_DWORD, addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*data = rd32(wx, WX_SPI_DATA);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int wx_check_flash_load(struct wx *hw, u32 check_bit)
|
|
{
|
|
u32 reg = 0;
|
|
int err = 0;
|
|
|
|
/* if there's flash existing */
|
|
if (!(rd32(hw, WX_SPI_STATUS) &
|
|
WX_SPI_STATUS_FLASH_BYPASS)) {
|
|
/* wait hw load flash done */
|
|
err = read_poll_timeout(rd32, reg, !(reg & check_bit), 20000, 2000000,
|
|
false, hw, WX_SPI_ILDR_STATUS);
|
|
if (err < 0)
|
|
wx_err(hw, "Check flash load timeout.\n");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(wx_check_flash_load);
|
|
|
|
void wx_control_hw(struct wx *wx, bool drv)
|
|
{
|
|
/* True : Let firmware know the driver has taken over
|
|
* False : Let firmware take over control of hw
|
|
*/
|
|
wr32m(wx, WX_CFG_PORT_CTL, WX_CFG_PORT_CTL_DRV_LOAD,
|
|
drv ? WX_CFG_PORT_CTL_DRV_LOAD : 0);
|
|
}
|
|
EXPORT_SYMBOL(wx_control_hw);
|
|
|
|
/**
|
|
* wx_mng_present - returns 0 when management capability is present
|
|
* @wx: pointer to hardware structure
|
|
*/
|
|
int wx_mng_present(struct wx *wx)
|
|
{
|
|
u32 fwsm;
|
|
|
|
fwsm = rd32(wx, WX_MIS_ST);
|
|
if (fwsm & WX_MIS_ST_MNG_INIT_DN)
|
|
return 0;
|
|
else
|
|
return -EACCES;
|
|
}
|
|
EXPORT_SYMBOL(wx_mng_present);
|
|
|
|
/* Software lock to be held while software semaphore is being accessed. */
|
|
static DEFINE_MUTEX(wx_sw_sync_lock);
|
|
|
|
/**
|
|
* wx_release_sw_sync - Release SW semaphore
|
|
* @wx: pointer to hardware structure
|
|
* @mask: Mask to specify which semaphore to release
|
|
*
|
|
* Releases the SW semaphore for the specified
|
|
* function (CSR, PHY0, PHY1, EEPROM, Flash)
|
|
**/
|
|
static void wx_release_sw_sync(struct wx *wx, u32 mask)
|
|
{
|
|
mutex_lock(&wx_sw_sync_lock);
|
|
wr32m(wx, WX_MNG_SWFW_SYNC, mask, 0);
|
|
mutex_unlock(&wx_sw_sync_lock);
|
|
}
|
|
|
|
/**
|
|
* wx_acquire_sw_sync - Acquire SW semaphore
|
|
* @wx: pointer to hardware structure
|
|
* @mask: Mask to specify which semaphore to acquire
|
|
*
|
|
* Acquires the SW semaphore for the specified
|
|
* function (CSR, PHY0, PHY1, EEPROM, Flash)
|
|
**/
|
|
static int wx_acquire_sw_sync(struct wx *wx, u32 mask)
|
|
{
|
|
u32 sem = 0;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&wx_sw_sync_lock);
|
|
ret = read_poll_timeout(rd32, sem, !(sem & mask),
|
|
5000, 2000000, false, wx, WX_MNG_SWFW_SYNC);
|
|
if (!ret) {
|
|
sem |= mask;
|
|
wr32(wx, WX_MNG_SWFW_SYNC, sem);
|
|
} else {
|
|
wx_err(wx, "SW Semaphore not granted: 0x%x.\n", sem);
|
|
}
|
|
mutex_unlock(&wx_sw_sync_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* wx_host_interface_command - Issue command to manageability block
|
|
* @wx: pointer to the HW structure
|
|
* @buffer: contains the command to write and where the return status will
|
|
* be placed
|
|
* @length: length of buffer, must be multiple of 4 bytes
|
|
* @timeout: time in ms to wait for command completion
|
|
* @return_data: read and return data from the buffer (true) or not (false)
|
|
* Needed because FW structures are big endian and decoding of
|
|
* these fields can be 8 bit or 16 bit based on command. Decoding
|
|
* is not easily understood without making a table of commands.
|
|
* So we will leave this up to the caller to read back the data
|
|
* in these cases.
|
|
**/
|
|
int wx_host_interface_command(struct wx *wx, u32 *buffer,
|
|
u32 length, u32 timeout, bool return_data)
|
|
{
|
|
u32 hdr_size = sizeof(struct wx_hic_hdr);
|
|
u32 hicr, i, bi, buf[64] = {};
|
|
int status = 0;
|
|
u32 dword_len;
|
|
u16 buf_len;
|
|
|
|
if (length == 0 || length > WX_HI_MAX_BLOCK_BYTE_LENGTH) {
|
|
wx_err(wx, "Buffer length failure buffersize=%d.\n", length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
|
|
if (status != 0)
|
|
return status;
|
|
|
|
/* Calculate length in DWORDs. We must be DWORD aligned */
|
|
if ((length % (sizeof(u32))) != 0) {
|
|
wx_err(wx, "Buffer length failure, not aligned to dword");
|
|
status = -EINVAL;
|
|
goto rel_out;
|
|
}
|
|
|
|
dword_len = length >> 2;
|
|
|
|
/* The device driver writes the relevant command block
|
|
* into the ram area.
|
|
*/
|
|
for (i = 0; i < dword_len; i++) {
|
|
wr32a(wx, WX_MNG_MBOX, i, (__force u32)cpu_to_le32(buffer[i]));
|
|
/* write flush */
|
|
buf[i] = rd32a(wx, WX_MNG_MBOX, i);
|
|
}
|
|
/* Setting this bit tells the ARC that a new command is pending. */
|
|
wr32m(wx, WX_MNG_MBOX_CTL,
|
|
WX_MNG_MBOX_CTL_SWRDY, WX_MNG_MBOX_CTL_SWRDY);
|
|
|
|
status = read_poll_timeout(rd32, hicr, hicr & WX_MNG_MBOX_CTL_FWRDY, 1000,
|
|
timeout * 1000, false, wx, WX_MNG_MBOX_CTL);
|
|
|
|
/* Check command completion */
|
|
if (status) {
|
|
wx_dbg(wx, "Command has failed with no status valid.\n");
|
|
|
|
buf[0] = rd32(wx, WX_MNG_MBOX);
|
|
if ((buffer[0] & 0xff) != (~buf[0] >> 24)) {
|
|
status = -EINVAL;
|
|
goto rel_out;
|
|
}
|
|
if ((buf[0] & 0xff0000) >> 16 == 0x80) {
|
|
wx_dbg(wx, "It's unknown cmd.\n");
|
|
status = -EINVAL;
|
|
goto rel_out;
|
|
}
|
|
|
|
wx_dbg(wx, "write value:\n");
|
|
for (i = 0; i < dword_len; i++)
|
|
wx_dbg(wx, "%x ", buffer[i]);
|
|
wx_dbg(wx, "read value:\n");
|
|
for (i = 0; i < dword_len; i++)
|
|
wx_dbg(wx, "%x ", buf[i]);
|
|
}
|
|
|
|
if (!return_data)
|
|
goto rel_out;
|
|
|
|
/* Calculate length in DWORDs */
|
|
dword_len = hdr_size >> 2;
|
|
|
|
/* first pull in the header so we know the buffer length */
|
|
for (bi = 0; bi < dword_len; bi++) {
|
|
buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
|
|
le32_to_cpus(&buffer[bi]);
|
|
}
|
|
|
|
/* If there is any thing in data position pull it in */
|
|
buf_len = ((struct wx_hic_hdr *)buffer)->buf_len;
|
|
if (buf_len == 0)
|
|
goto rel_out;
|
|
|
|
if (length < buf_len + hdr_size) {
|
|
wx_err(wx, "Buffer not large enough for reply message.\n");
|
|
status = -EFAULT;
|
|
goto rel_out;
|
|
}
|
|
|
|
/* Calculate length in DWORDs, add 3 for odd lengths */
|
|
dword_len = (buf_len + 3) >> 2;
|
|
|
|
/* Pull in the rest of the buffer (bi is where we left off) */
|
|
for (; bi <= dword_len; bi++) {
|
|
buffer[bi] = rd32a(wx, WX_MNG_MBOX, bi);
|
|
le32_to_cpus(&buffer[bi]);
|
|
}
|
|
|
|
rel_out:
|
|
wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_MB);
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(wx_host_interface_command);
|
|
|
|
/**
|
|
* wx_read_ee_hostif_data - Read EEPROM word using a host interface cmd
|
|
* assuming that the semaphore is already obtained.
|
|
* @wx: pointer to hardware structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM using the hostif.
|
|
**/
|
|
static int wx_read_ee_hostif_data(struct wx *wx, u16 offset, u16 *data)
|
|
{
|
|
struct wx_hic_read_shadow_ram buffer;
|
|
int status;
|
|
|
|
buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
|
|
buffer.hdr.req.buf_lenh = 0;
|
|
buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
|
|
buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
|
|
|
|
/* convert offset from words to bytes */
|
|
buffer.address = (__force u32)cpu_to_be32(offset * 2);
|
|
/* one word */
|
|
buffer.length = (__force u16)cpu_to_be16(sizeof(u16));
|
|
|
|
status = wx_host_interface_command(wx, (u32 *)&buffer, sizeof(buffer),
|
|
WX_HI_COMMAND_TIMEOUT, false);
|
|
|
|
if (status != 0)
|
|
return status;
|
|
|
|
*data = (u16)rd32a(wx, WX_MNG_MBOX, FW_NVM_DATA_OFFSET);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* wx_read_ee_hostif - Read EEPROM word using a host interface cmd
|
|
* @wx: pointer to hardware structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM using the hostif.
|
|
**/
|
|
int wx_read_ee_hostif(struct wx *wx, u16 offset, u16 *data)
|
|
{
|
|
int status = 0;
|
|
|
|
status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
|
|
if (status == 0) {
|
|
status = wx_read_ee_hostif_data(wx, offset, data);
|
|
wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(wx_read_ee_hostif);
|
|
|
|
/**
|
|
* wx_read_ee_hostif_buffer- Read EEPROM word(s) using hostif
|
|
* @wx: pointer to hardware structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @words: number of words
|
|
* @data: word(s) read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word(s) from the EEPROM using the hostif.
|
|
**/
|
|
int wx_read_ee_hostif_buffer(struct wx *wx,
|
|
u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct wx_hic_read_shadow_ram buffer;
|
|
u32 current_word = 0;
|
|
u16 words_to_read;
|
|
u32 value = 0;
|
|
int status;
|
|
u32 i;
|
|
|
|
/* Take semaphore for the entire operation. */
|
|
status = wx_acquire_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
|
|
if (status != 0)
|
|
return status;
|
|
|
|
while (words) {
|
|
if (words > FW_MAX_READ_BUFFER_SIZE / 2)
|
|
words_to_read = FW_MAX_READ_BUFFER_SIZE / 2;
|
|
else
|
|
words_to_read = words;
|
|
|
|
buffer.hdr.req.cmd = FW_READ_SHADOW_RAM_CMD;
|
|
buffer.hdr.req.buf_lenh = 0;
|
|
buffer.hdr.req.buf_lenl = FW_READ_SHADOW_RAM_LEN;
|
|
buffer.hdr.req.checksum = FW_DEFAULT_CHECKSUM;
|
|
|
|
/* convert offset from words to bytes */
|
|
buffer.address = (__force u32)cpu_to_be32((offset + current_word) * 2);
|
|
buffer.length = (__force u16)cpu_to_be16(words_to_read * 2);
|
|
|
|
status = wx_host_interface_command(wx, (u32 *)&buffer,
|
|
sizeof(buffer),
|
|
WX_HI_COMMAND_TIMEOUT,
|
|
false);
|
|
|
|
if (status != 0) {
|
|
wx_err(wx, "Host interface command failed\n");
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < words_to_read; i++) {
|
|
u32 reg = WX_MNG_MBOX + (FW_NVM_DATA_OFFSET << 2) + 2 * i;
|
|
|
|
value = rd32(wx, reg);
|
|
data[current_word] = (u16)(value & 0xffff);
|
|
current_word++;
|
|
i++;
|
|
if (i < words_to_read) {
|
|
value >>= 16;
|
|
data[current_word] = (u16)(value & 0xffff);
|
|
current_word++;
|
|
}
|
|
}
|
|
words -= words_to_read;
|
|
}
|
|
|
|
out:
|
|
wx_release_sw_sync(wx, WX_MNG_SWFW_SYNC_SW_FLASH);
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(wx_read_ee_hostif_buffer);
|
|
|
|
/**
|
|
* wx_calculate_checksum - Calculate checksum for buffer
|
|
* @buffer: pointer to EEPROM
|
|
* @length: size of EEPROM to calculate a checksum for
|
|
* Calculates the checksum for some buffer on a specified length. The
|
|
* checksum calculated is returned.
|
|
**/
|
|
static u8 wx_calculate_checksum(u8 *buffer, u32 length)
|
|
{
|
|
u8 sum = 0;
|
|
u32 i;
|
|
|
|
if (!buffer)
|
|
return 0;
|
|
|
|
for (i = 0; i < length; i++)
|
|
sum += buffer[i];
|
|
|
|
return (u8)(0 - sum);
|
|
}
|
|
|
|
/**
|
|
* wx_reset_hostif - send reset cmd to fw
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Sends reset cmd to firmware through the manageability
|
|
* block.
|
|
**/
|
|
int wx_reset_hostif(struct wx *wx)
|
|
{
|
|
struct wx_hic_reset reset_cmd;
|
|
int ret_val = 0;
|
|
int i;
|
|
|
|
reset_cmd.hdr.cmd = FW_RESET_CMD;
|
|
reset_cmd.hdr.buf_len = FW_RESET_LEN;
|
|
reset_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
|
|
reset_cmd.lan_id = wx->bus.func;
|
|
reset_cmd.reset_type = (u16)wx->reset_type;
|
|
reset_cmd.hdr.checksum = 0;
|
|
reset_cmd.hdr.checksum = wx_calculate_checksum((u8 *)&reset_cmd,
|
|
(FW_CEM_HDR_LEN +
|
|
reset_cmd.hdr.buf_len));
|
|
|
|
for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
|
|
ret_val = wx_host_interface_command(wx, (u32 *)&reset_cmd,
|
|
sizeof(reset_cmd),
|
|
WX_HI_COMMAND_TIMEOUT,
|
|
true);
|
|
if (ret_val != 0)
|
|
continue;
|
|
|
|
if (reset_cmd.hdr.cmd_or_resp.ret_status ==
|
|
FW_CEM_RESP_STATUS_SUCCESS)
|
|
ret_val = 0;
|
|
else
|
|
ret_val = -EFAULT;
|
|
|
|
break;
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
EXPORT_SYMBOL(wx_reset_hostif);
|
|
|
|
/**
|
|
* wx_init_eeprom_params - Initialize EEPROM params
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Initializes the EEPROM parameters wx_eeprom_info within the
|
|
* wx_hw struct in order to set up EEPROM access.
|
|
**/
|
|
void wx_init_eeprom_params(struct wx *wx)
|
|
{
|
|
struct wx_eeprom_info *eeprom = &wx->eeprom;
|
|
u16 eeprom_size;
|
|
u16 data = 0x80;
|
|
|
|
if (eeprom->type == wx_eeprom_uninitialized) {
|
|
eeprom->semaphore_delay = 10;
|
|
eeprom->type = wx_eeprom_none;
|
|
|
|
if (!(rd32(wx, WX_SPI_STATUS) &
|
|
WX_SPI_STATUS_FLASH_BYPASS)) {
|
|
eeprom->type = wx_flash;
|
|
|
|
eeprom_size = 4096;
|
|
eeprom->word_size = eeprom_size >> 1;
|
|
|
|
wx_dbg(wx, "Eeprom params: type = %d, size = %d\n",
|
|
eeprom->type, eeprom->word_size);
|
|
}
|
|
}
|
|
|
|
if (wx->mac.type == wx_mac_sp) {
|
|
if (wx_read_ee_hostif(wx, WX_SW_REGION_PTR, &data)) {
|
|
wx_err(wx, "NVM Read Error\n");
|
|
return;
|
|
}
|
|
data = data >> 1;
|
|
}
|
|
|
|
eeprom->sw_region_offset = data;
|
|
}
|
|
EXPORT_SYMBOL(wx_init_eeprom_params);
|
|
|
|
/**
|
|
* wx_get_mac_addr - Generic get MAC address
|
|
* @wx: pointer to hardware structure
|
|
* @mac_addr: Adapter MAC address
|
|
*
|
|
* Reads the adapter's MAC address from first Receive Address Register (RAR0)
|
|
* A reset of the adapter must be performed prior to calling this function
|
|
* in order for the MAC address to have been loaded from the EEPROM into RAR0
|
|
**/
|
|
void wx_get_mac_addr(struct wx *wx, u8 *mac_addr)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_low;
|
|
u16 i;
|
|
|
|
wr32(wx, WX_PSR_MAC_SWC_IDX, 0);
|
|
rar_high = rd32(wx, WX_PSR_MAC_SWC_AD_H);
|
|
rar_low = rd32(wx, WX_PSR_MAC_SWC_AD_L);
|
|
|
|
for (i = 0; i < 2; i++)
|
|
mac_addr[i] = (u8)(rar_high >> (1 - i) * 8);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
mac_addr[i + 2] = (u8)(rar_low >> (3 - i) * 8);
|
|
}
|
|
EXPORT_SYMBOL(wx_get_mac_addr);
|
|
|
|
/**
|
|
* wx_set_rar - Set Rx address register
|
|
* @wx: pointer to hardware structure
|
|
* @index: Receive address register to write
|
|
* @addr: Address to put into receive address register
|
|
* @pools: VMDq "set" or "pool" index
|
|
* @enable_addr: set flag that address is active
|
|
*
|
|
* Puts an ethernet address into a receive address register.
|
|
**/
|
|
static int wx_set_rar(struct wx *wx, u32 index, u8 *addr, u64 pools,
|
|
u32 enable_addr)
|
|
{
|
|
u32 rar_entries = wx->mac.num_rar_entries;
|
|
u32 rar_low, rar_high;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (index >= rar_entries) {
|
|
wx_err(wx, "RAR index %d is out of range.\n", index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* select the MAC address */
|
|
wr32(wx, WX_PSR_MAC_SWC_IDX, index);
|
|
|
|
/* setup VMDq pool mapping */
|
|
wr32(wx, WX_PSR_MAC_SWC_VM_L, pools & 0xFFFFFFFF);
|
|
if (wx->mac.type == wx_mac_sp)
|
|
wr32(wx, WX_PSR_MAC_SWC_VM_H, pools >> 32);
|
|
|
|
/* HW expects these in little endian so we reverse the byte
|
|
* order from network order (big endian) to little endian
|
|
*
|
|
* Some parts put the VMDq setting in the extra RAH bits,
|
|
* so save everything except the lower 16 bits that hold part
|
|
* of the address and the address valid bit.
|
|
*/
|
|
rar_low = ((u32)addr[5] |
|
|
((u32)addr[4] << 8) |
|
|
((u32)addr[3] << 16) |
|
|
((u32)addr[2] << 24));
|
|
rar_high = ((u32)addr[1] |
|
|
((u32)addr[0] << 8));
|
|
if (enable_addr != 0)
|
|
rar_high |= WX_PSR_MAC_SWC_AD_H_AV;
|
|
|
|
wr32(wx, WX_PSR_MAC_SWC_AD_L, rar_low);
|
|
wr32m(wx, WX_PSR_MAC_SWC_AD_H,
|
|
(WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
|
|
WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
|
|
WX_PSR_MAC_SWC_AD_H_AV),
|
|
rar_high);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wx_clear_rar - Remove Rx address register
|
|
* @wx: pointer to hardware structure
|
|
* @index: Receive address register to write
|
|
*
|
|
* Clears an ethernet address from a receive address register.
|
|
**/
|
|
static int wx_clear_rar(struct wx *wx, u32 index)
|
|
{
|
|
u32 rar_entries = wx->mac.num_rar_entries;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (index >= rar_entries) {
|
|
wx_err(wx, "RAR index %d is out of range.\n", index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Some parts put the VMDq setting in the extra RAH bits,
|
|
* so save everything except the lower 16 bits that hold part
|
|
* of the address and the address valid bit.
|
|
*/
|
|
wr32(wx, WX_PSR_MAC_SWC_IDX, index);
|
|
|
|
wr32(wx, WX_PSR_MAC_SWC_VM_L, 0);
|
|
wr32(wx, WX_PSR_MAC_SWC_VM_H, 0);
|
|
|
|
wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
|
|
wr32m(wx, WX_PSR_MAC_SWC_AD_H,
|
|
(WX_PSR_MAC_SWC_AD_H_AD(U16_MAX) |
|
|
WX_PSR_MAC_SWC_AD_H_ADTYPE(1) |
|
|
WX_PSR_MAC_SWC_AD_H_AV),
|
|
0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wx_clear_vmdq - Disassociate a VMDq pool index from a rx address
|
|
* @wx: pointer to hardware struct
|
|
* @rar: receive address register index to disassociate
|
|
* @vmdq: VMDq pool index to remove from the rar
|
|
**/
|
|
static int wx_clear_vmdq(struct wx *wx, u32 rar, u32 __maybe_unused vmdq)
|
|
{
|
|
u32 rar_entries = wx->mac.num_rar_entries;
|
|
u32 mpsar_lo, mpsar_hi;
|
|
|
|
/* Make sure we are using a valid rar index range */
|
|
if (rar >= rar_entries) {
|
|
wx_err(wx, "RAR index %d is out of range.\n", rar);
|
|
return -EINVAL;
|
|
}
|
|
|
|
wr32(wx, WX_PSR_MAC_SWC_IDX, rar);
|
|
mpsar_lo = rd32(wx, WX_PSR_MAC_SWC_VM_L);
|
|
mpsar_hi = rd32(wx, WX_PSR_MAC_SWC_VM_H);
|
|
|
|
if (!mpsar_lo && !mpsar_hi)
|
|
return 0;
|
|
|
|
/* was that the last pool using this rar? */
|
|
if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
|
|
wx_clear_rar(wx, rar);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wx_init_uta_tables - Initialize the Unicast Table Array
|
|
* @wx: pointer to hardware structure
|
|
**/
|
|
static void wx_init_uta_tables(struct wx *wx)
|
|
{
|
|
int i;
|
|
|
|
wx_dbg(wx, " Clearing UTA\n");
|
|
|
|
for (i = 0; i < 128; i++)
|
|
wr32(wx, WX_PSR_UC_TBL(i), 0);
|
|
}
|
|
|
|
/**
|
|
* wx_init_rx_addrs - Initializes receive address filters.
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Places the MAC address in receive address register 0 and clears the rest
|
|
* of the receive address registers. Clears the multicast table. Assumes
|
|
* the receiver is in reset when the routine is called.
|
|
**/
|
|
void wx_init_rx_addrs(struct wx *wx)
|
|
{
|
|
u32 rar_entries = wx->mac.num_rar_entries;
|
|
u32 psrctl;
|
|
int i;
|
|
|
|
/* If the current mac address is valid, assume it is a software override
|
|
* to the permanent address.
|
|
* Otherwise, use the permanent address from the eeprom.
|
|
*/
|
|
if (!is_valid_ether_addr(wx->mac.addr)) {
|
|
/* Get the MAC address from the RAR0 for later reference */
|
|
wx_get_mac_addr(wx, wx->mac.addr);
|
|
wx_dbg(wx, "Keeping Current RAR0 Addr = %pM\n", wx->mac.addr);
|
|
} else {
|
|
/* Setup the receive address. */
|
|
wx_dbg(wx, "Overriding MAC Address in RAR[0]\n");
|
|
wx_dbg(wx, "New MAC Addr = %pM\n", wx->mac.addr);
|
|
|
|
wx_set_rar(wx, 0, wx->mac.addr, 0, WX_PSR_MAC_SWC_AD_H_AV);
|
|
|
|
if (wx->mac.type == wx_mac_sp) {
|
|
/* clear VMDq pool/queue selection for RAR 0 */
|
|
wx_clear_vmdq(wx, 0, WX_CLEAR_VMDQ_ALL);
|
|
}
|
|
}
|
|
|
|
/* Zero out the other receive addresses. */
|
|
wx_dbg(wx, "Clearing RAR[1-%d]\n", rar_entries - 1);
|
|
for (i = 1; i < rar_entries; i++) {
|
|
wr32(wx, WX_PSR_MAC_SWC_IDX, i);
|
|
wr32(wx, WX_PSR_MAC_SWC_AD_L, 0);
|
|
wr32(wx, WX_PSR_MAC_SWC_AD_H, 0);
|
|
}
|
|
|
|
/* Clear the MTA */
|
|
wx->addr_ctrl.mta_in_use = 0;
|
|
psrctl = rd32(wx, WX_PSR_CTL);
|
|
psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
|
|
psrctl |= wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT;
|
|
wr32(wx, WX_PSR_CTL, psrctl);
|
|
wx_dbg(wx, " Clearing MTA\n");
|
|
for (i = 0; i < wx->mac.mcft_size; i++)
|
|
wr32(wx, WX_PSR_MC_TBL(i), 0);
|
|
|
|
wx_init_uta_tables(wx);
|
|
}
|
|
EXPORT_SYMBOL(wx_init_rx_addrs);
|
|
|
|
static void wx_sync_mac_table(struct wx *wx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < wx->mac.num_rar_entries; i++) {
|
|
if (wx->mac_table[i].state & WX_MAC_STATE_MODIFIED) {
|
|
if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
|
|
wx_set_rar(wx, i,
|
|
wx->mac_table[i].addr,
|
|
wx->mac_table[i].pools,
|
|
WX_PSR_MAC_SWC_AD_H_AV);
|
|
} else {
|
|
wx_clear_rar(wx, i);
|
|
}
|
|
wx->mac_table[i].state &= ~(WX_MAC_STATE_MODIFIED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* this function destroys the first RAR entry */
|
|
void wx_mac_set_default_filter(struct wx *wx, u8 *addr)
|
|
{
|
|
memcpy(&wx->mac_table[0].addr, addr, ETH_ALEN);
|
|
wx->mac_table[0].pools = 1ULL;
|
|
wx->mac_table[0].state = (WX_MAC_STATE_DEFAULT | WX_MAC_STATE_IN_USE);
|
|
wx_set_rar(wx, 0, wx->mac_table[0].addr,
|
|
wx->mac_table[0].pools,
|
|
WX_PSR_MAC_SWC_AD_H_AV);
|
|
}
|
|
EXPORT_SYMBOL(wx_mac_set_default_filter);
|
|
|
|
void wx_flush_sw_mac_table(struct wx *wx)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < wx->mac.num_rar_entries; i++) {
|
|
if (!(wx->mac_table[i].state & WX_MAC_STATE_IN_USE))
|
|
continue;
|
|
|
|
wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
|
|
wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
|
|
memset(wx->mac_table[i].addr, 0, ETH_ALEN);
|
|
wx->mac_table[i].pools = 0;
|
|
}
|
|
wx_sync_mac_table(wx);
|
|
}
|
|
EXPORT_SYMBOL(wx_flush_sw_mac_table);
|
|
|
|
static int wx_add_mac_filter(struct wx *wx, u8 *addr, u16 pool)
|
|
{
|
|
u32 i;
|
|
|
|
if (is_zero_ether_addr(addr))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < wx->mac.num_rar_entries; i++) {
|
|
if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE) {
|
|
if (ether_addr_equal(addr, wx->mac_table[i].addr)) {
|
|
if (wx->mac_table[i].pools != (1ULL << pool)) {
|
|
memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
|
|
wx->mac_table[i].pools |= (1ULL << pool);
|
|
wx_sync_mac_table(wx);
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (wx->mac_table[i].state & WX_MAC_STATE_IN_USE)
|
|
continue;
|
|
wx->mac_table[i].state |= (WX_MAC_STATE_MODIFIED |
|
|
WX_MAC_STATE_IN_USE);
|
|
memcpy(wx->mac_table[i].addr, addr, ETH_ALEN);
|
|
wx->mac_table[i].pools |= (1ULL << pool);
|
|
wx_sync_mac_table(wx);
|
|
return i;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int wx_del_mac_filter(struct wx *wx, u8 *addr, u16 pool)
|
|
{
|
|
u32 i;
|
|
|
|
if (is_zero_ether_addr(addr))
|
|
return -EINVAL;
|
|
|
|
/* search table for addr, if found, set to 0 and sync */
|
|
for (i = 0; i < wx->mac.num_rar_entries; i++) {
|
|
if (!ether_addr_equal(addr, wx->mac_table[i].addr))
|
|
continue;
|
|
|
|
wx->mac_table[i].state |= WX_MAC_STATE_MODIFIED;
|
|
wx->mac_table[i].pools &= ~(1ULL << pool);
|
|
if (!wx->mac_table[i].pools) {
|
|
wx->mac_table[i].state &= ~WX_MAC_STATE_IN_USE;
|
|
memset(wx->mac_table[i].addr, 0, ETH_ALEN);
|
|
}
|
|
wx_sync_mac_table(wx);
|
|
return 0;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int wx_available_rars(struct wx *wx)
|
|
{
|
|
u32 i, count = 0;
|
|
|
|
for (i = 0; i < wx->mac.num_rar_entries; i++) {
|
|
if (wx->mac_table[i].state == 0)
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* wx_write_uc_addr_list - write unicast addresses to RAR table
|
|
* @netdev: network interface device structure
|
|
* @pool: index for mac table
|
|
*
|
|
* Writes unicast address list to the RAR table.
|
|
* Returns: -ENOMEM on failure/insufficient address space
|
|
* 0 on no addresses written
|
|
* X on writing X addresses to the RAR table
|
|
**/
|
|
static int wx_write_uc_addr_list(struct net_device *netdev, int pool)
|
|
{
|
|
struct wx *wx = netdev_priv(netdev);
|
|
int count = 0;
|
|
|
|
/* return ENOMEM indicating insufficient memory for addresses */
|
|
if (netdev_uc_count(netdev) > wx_available_rars(wx))
|
|
return -ENOMEM;
|
|
|
|
if (!netdev_uc_empty(netdev)) {
|
|
struct netdev_hw_addr *ha;
|
|
|
|
netdev_for_each_uc_addr(ha, netdev) {
|
|
wx_del_mac_filter(wx, ha->addr, pool);
|
|
wx_add_mac_filter(wx, ha->addr, pool);
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/**
|
|
* wx_mta_vector - Determines bit-vector in multicast table to set
|
|
* @wx: pointer to private structure
|
|
* @mc_addr: the multicast address
|
|
*
|
|
* Extracts the 12 bits, from a multicast address, to determine which
|
|
* bit-vector to set in the multicast table. The hardware uses 12 bits, from
|
|
* incoming rx multicast addresses, to determine the bit-vector to check in
|
|
* the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
|
|
* by the MO field of the MCSTCTRL. The MO field is set during initialization
|
|
* to mc_filter_type.
|
|
**/
|
|
static u32 wx_mta_vector(struct wx *wx, u8 *mc_addr)
|
|
{
|
|
u32 vector = 0;
|
|
|
|
switch (wx->mac.mc_filter_type) {
|
|
case 0: /* use bits [47:36] of the address */
|
|
vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
|
|
break;
|
|
case 1: /* use bits [46:35] of the address */
|
|
vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
|
|
break;
|
|
case 2: /* use bits [45:34] of the address */
|
|
vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
|
|
break;
|
|
case 3: /* use bits [43:32] of the address */
|
|
vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
|
|
break;
|
|
default: /* Invalid mc_filter_type */
|
|
wx_err(wx, "MC filter type param set incorrectly\n");
|
|
break;
|
|
}
|
|
|
|
/* vector can only be 12-bits or boundary will be exceeded */
|
|
vector &= 0xFFF;
|
|
return vector;
|
|
}
|
|
|
|
/**
|
|
* wx_set_mta - Set bit-vector in multicast table
|
|
* @wx: pointer to private structure
|
|
* @mc_addr: Multicast address
|
|
*
|
|
* Sets the bit-vector in the multicast table.
|
|
**/
|
|
static void wx_set_mta(struct wx *wx, u8 *mc_addr)
|
|
{
|
|
u32 vector, vector_bit, vector_reg;
|
|
|
|
wx->addr_ctrl.mta_in_use++;
|
|
|
|
vector = wx_mta_vector(wx, mc_addr);
|
|
wx_dbg(wx, " bit-vector = 0x%03X\n", vector);
|
|
|
|
/* The MTA is a register array of 128 32-bit registers. It is treated
|
|
* like an array of 4096 bits. We want to set bit
|
|
* BitArray[vector_value]. So we figure out what register the bit is
|
|
* in, read it, OR in the new bit, then write back the new value. The
|
|
* register is determined by the upper 7 bits of the vector value and
|
|
* the bit within that register are determined by the lower 5 bits of
|
|
* the value.
|
|
*/
|
|
vector_reg = (vector >> 5) & 0x7F;
|
|
vector_bit = vector & 0x1F;
|
|
wx->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
|
|
}
|
|
|
|
/**
|
|
* wx_update_mc_addr_list - Updates MAC list of multicast addresses
|
|
* @wx: pointer to private structure
|
|
* @netdev: pointer to net device structure
|
|
*
|
|
* The given list replaces any existing list. Clears the MC addrs from receive
|
|
* address registers and the multicast table. Uses unused receive address
|
|
* registers for the first multicast addresses, and hashes the rest into the
|
|
* multicast table.
|
|
**/
|
|
static void wx_update_mc_addr_list(struct wx *wx, struct net_device *netdev)
|
|
{
|
|
struct netdev_hw_addr *ha;
|
|
u32 i, psrctl;
|
|
|
|
/* Set the new number of MC addresses that we are being requested to
|
|
* use.
|
|
*/
|
|
wx->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
|
|
wx->addr_ctrl.mta_in_use = 0;
|
|
|
|
/* Clear mta_shadow */
|
|
wx_dbg(wx, " Clearing MTA\n");
|
|
memset(&wx->mac.mta_shadow, 0, sizeof(wx->mac.mta_shadow));
|
|
|
|
/* Update mta_shadow */
|
|
netdev_for_each_mc_addr(ha, netdev) {
|
|
wx_dbg(wx, " Adding the multicast addresses:\n");
|
|
wx_set_mta(wx, ha->addr);
|
|
}
|
|
|
|
/* Enable mta */
|
|
for (i = 0; i < wx->mac.mcft_size; i++)
|
|
wr32a(wx, WX_PSR_MC_TBL(0), i,
|
|
wx->mac.mta_shadow[i]);
|
|
|
|
if (wx->addr_ctrl.mta_in_use > 0) {
|
|
psrctl = rd32(wx, WX_PSR_CTL);
|
|
psrctl &= ~(WX_PSR_CTL_MO | WX_PSR_CTL_MFE);
|
|
psrctl |= WX_PSR_CTL_MFE |
|
|
(wx->mac.mc_filter_type << WX_PSR_CTL_MO_SHIFT);
|
|
wr32(wx, WX_PSR_CTL, psrctl);
|
|
}
|
|
|
|
wx_dbg(wx, "Update mc addr list Complete\n");
|
|
}
|
|
|
|
/**
|
|
* wx_write_mc_addr_list - write multicast addresses to MTA
|
|
* @netdev: network interface device structure
|
|
*
|
|
* Writes multicast address list to the MTA hash table.
|
|
* Returns: 0 on no addresses written
|
|
* X on writing X addresses to MTA
|
|
**/
|
|
static int wx_write_mc_addr_list(struct net_device *netdev)
|
|
{
|
|
struct wx *wx = netdev_priv(netdev);
|
|
|
|
if (!netif_running(netdev))
|
|
return 0;
|
|
|
|
wx_update_mc_addr_list(wx, netdev);
|
|
|
|
return netdev_mc_count(netdev);
|
|
}
|
|
|
|
/**
|
|
* wx_set_mac - Change the Ethernet Address of the NIC
|
|
* @netdev: network interface device structure
|
|
* @p: pointer to an address structure
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
int wx_set_mac(struct net_device *netdev, void *p)
|
|
{
|
|
struct wx *wx = netdev_priv(netdev);
|
|
struct sockaddr *addr = p;
|
|
int retval;
|
|
|
|
retval = eth_prepare_mac_addr_change(netdev, addr);
|
|
if (retval)
|
|
return retval;
|
|
|
|
wx_del_mac_filter(wx, wx->mac.addr, 0);
|
|
eth_hw_addr_set(netdev, addr->sa_data);
|
|
memcpy(wx->mac.addr, addr->sa_data, netdev->addr_len);
|
|
|
|
wx_mac_set_default_filter(wx, wx->mac.addr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wx_set_mac);
|
|
|
|
void wx_disable_rx(struct wx *wx)
|
|
{
|
|
u32 pfdtxgswc;
|
|
u32 rxctrl;
|
|
|
|
rxctrl = rd32(wx, WX_RDB_PB_CTL);
|
|
if (rxctrl & WX_RDB_PB_CTL_RXEN) {
|
|
pfdtxgswc = rd32(wx, WX_PSR_CTL);
|
|
if (pfdtxgswc & WX_PSR_CTL_SW_EN) {
|
|
pfdtxgswc &= ~WX_PSR_CTL_SW_EN;
|
|
wr32(wx, WX_PSR_CTL, pfdtxgswc);
|
|
wx->mac.set_lben = true;
|
|
} else {
|
|
wx->mac.set_lben = false;
|
|
}
|
|
rxctrl &= ~WX_RDB_PB_CTL_RXEN;
|
|
wr32(wx, WX_RDB_PB_CTL, rxctrl);
|
|
|
|
if (!(((wx->subsystem_device_id & WX_NCSI_MASK) == WX_NCSI_SUP) ||
|
|
((wx->subsystem_device_id & WX_WOL_MASK) == WX_WOL_SUP))) {
|
|
/* disable mac receiver */
|
|
wr32m(wx, WX_MAC_RX_CFG,
|
|
WX_MAC_RX_CFG_RE, 0);
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(wx_disable_rx);
|
|
|
|
static void wx_enable_rx(struct wx *wx)
|
|
{
|
|
u32 psrctl;
|
|
|
|
/* enable mac receiver */
|
|
wr32m(wx, WX_MAC_RX_CFG,
|
|
WX_MAC_RX_CFG_RE, WX_MAC_RX_CFG_RE);
|
|
|
|
wr32m(wx, WX_RDB_PB_CTL,
|
|
WX_RDB_PB_CTL_RXEN, WX_RDB_PB_CTL_RXEN);
|
|
|
|
if (wx->mac.set_lben) {
|
|
psrctl = rd32(wx, WX_PSR_CTL);
|
|
psrctl |= WX_PSR_CTL_SW_EN;
|
|
wr32(wx, WX_PSR_CTL, psrctl);
|
|
wx->mac.set_lben = false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* wx_set_rxpba - Initialize Rx packet buffer
|
|
* @wx: pointer to private structure
|
|
**/
|
|
static void wx_set_rxpba(struct wx *wx)
|
|
{
|
|
u32 rxpktsize, txpktsize, txpbthresh;
|
|
|
|
rxpktsize = wx->mac.rx_pb_size << WX_RDB_PB_SZ_SHIFT;
|
|
wr32(wx, WX_RDB_PB_SZ(0), rxpktsize);
|
|
|
|
/* Only support an equally distributed Tx packet buffer strategy. */
|
|
txpktsize = wx->mac.tx_pb_size;
|
|
txpbthresh = (txpktsize / 1024) - WX_TXPKT_SIZE_MAX;
|
|
wr32(wx, WX_TDB_PB_SZ(0), txpktsize);
|
|
wr32(wx, WX_TDM_PB_THRE(0), txpbthresh);
|
|
}
|
|
|
|
static void wx_configure_port(struct wx *wx)
|
|
{
|
|
u32 value, i;
|
|
|
|
value = WX_CFG_PORT_CTL_D_VLAN | WX_CFG_PORT_CTL_QINQ;
|
|
wr32m(wx, WX_CFG_PORT_CTL,
|
|
WX_CFG_PORT_CTL_D_VLAN |
|
|
WX_CFG_PORT_CTL_QINQ,
|
|
value);
|
|
|
|
wr32(wx, WX_CFG_TAG_TPID(0),
|
|
ETH_P_8021Q | ETH_P_8021AD << 16);
|
|
wx->tpid[0] = ETH_P_8021Q;
|
|
wx->tpid[1] = ETH_P_8021AD;
|
|
for (i = 1; i < 4; i++)
|
|
wr32(wx, WX_CFG_TAG_TPID(i),
|
|
ETH_P_8021Q | ETH_P_8021Q << 16);
|
|
for (i = 2; i < 8; i++)
|
|
wx->tpid[i] = ETH_P_8021Q;
|
|
}
|
|
|
|
/**
|
|
* wx_disable_sec_rx_path - Stops the receive data path
|
|
* @wx: pointer to private structure
|
|
*
|
|
* Stops the receive data path and waits for the HW to internally empty
|
|
* the Rx security block
|
|
**/
|
|
static int wx_disable_sec_rx_path(struct wx *wx)
|
|
{
|
|
u32 secrx;
|
|
|
|
wr32m(wx, WX_RSC_CTL,
|
|
WX_RSC_CTL_RX_DIS, WX_RSC_CTL_RX_DIS);
|
|
|
|
return read_poll_timeout(rd32, secrx, secrx & WX_RSC_ST_RSEC_RDY,
|
|
1000, 40000, false, wx, WX_RSC_ST);
|
|
}
|
|
|
|
/**
|
|
* wx_enable_sec_rx_path - Enables the receive data path
|
|
* @wx: pointer to private structure
|
|
*
|
|
* Enables the receive data path.
|
|
**/
|
|
static void wx_enable_sec_rx_path(struct wx *wx)
|
|
{
|
|
wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_RX_DIS, 0);
|
|
WX_WRITE_FLUSH(wx);
|
|
}
|
|
|
|
static void wx_vlan_strip_control(struct wx *wx, bool enable)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < wx->num_rx_queues; i++) {
|
|
struct wx_ring *ring = wx->rx_ring[i];
|
|
|
|
j = ring->reg_idx;
|
|
wr32m(wx, WX_PX_RR_CFG(j), WX_PX_RR_CFG_VLAN,
|
|
enable ? WX_PX_RR_CFG_VLAN : 0);
|
|
}
|
|
}
|
|
|
|
void wx_set_rx_mode(struct net_device *netdev)
|
|
{
|
|
struct wx *wx = netdev_priv(netdev);
|
|
netdev_features_t features;
|
|
u32 fctrl, vmolr, vlnctrl;
|
|
int count;
|
|
|
|
features = netdev->features;
|
|
|
|
/* Check for Promiscuous and All Multicast modes */
|
|
fctrl = rd32(wx, WX_PSR_CTL);
|
|
fctrl &= ~(WX_PSR_CTL_UPE | WX_PSR_CTL_MPE);
|
|
vmolr = rd32(wx, WX_PSR_VM_L2CTL(0));
|
|
vmolr &= ~(WX_PSR_VM_L2CTL_UPE |
|
|
WX_PSR_VM_L2CTL_MPE |
|
|
WX_PSR_VM_L2CTL_ROPE |
|
|
WX_PSR_VM_L2CTL_ROMPE);
|
|
vlnctrl = rd32(wx, WX_PSR_VLAN_CTL);
|
|
vlnctrl &= ~(WX_PSR_VLAN_CTL_VFE | WX_PSR_VLAN_CTL_CFIEN);
|
|
|
|
/* set all bits that we expect to always be set */
|
|
fctrl |= WX_PSR_CTL_BAM | WX_PSR_CTL_MFE;
|
|
vmolr |= WX_PSR_VM_L2CTL_BAM |
|
|
WX_PSR_VM_L2CTL_AUPE |
|
|
WX_PSR_VM_L2CTL_VACC;
|
|
vlnctrl |= WX_PSR_VLAN_CTL_VFE;
|
|
|
|
wx->addr_ctrl.user_set_promisc = false;
|
|
if (netdev->flags & IFF_PROMISC) {
|
|
wx->addr_ctrl.user_set_promisc = true;
|
|
fctrl |= WX_PSR_CTL_UPE | WX_PSR_CTL_MPE;
|
|
/* pf don't want packets routing to vf, so clear UPE */
|
|
vmolr |= WX_PSR_VM_L2CTL_MPE;
|
|
vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
|
|
}
|
|
|
|
if (netdev->flags & IFF_ALLMULTI) {
|
|
fctrl |= WX_PSR_CTL_MPE;
|
|
vmolr |= WX_PSR_VM_L2CTL_MPE;
|
|
}
|
|
|
|
if (netdev->features & NETIF_F_RXALL) {
|
|
vmolr |= (WX_PSR_VM_L2CTL_UPE | WX_PSR_VM_L2CTL_MPE);
|
|
vlnctrl &= ~WX_PSR_VLAN_CTL_VFE;
|
|
/* receive bad packets */
|
|
wr32m(wx, WX_RSC_CTL,
|
|
WX_RSC_CTL_SAVE_MAC_ERR,
|
|
WX_RSC_CTL_SAVE_MAC_ERR);
|
|
} else {
|
|
vmolr |= WX_PSR_VM_L2CTL_ROPE | WX_PSR_VM_L2CTL_ROMPE;
|
|
}
|
|
|
|
/* Write addresses to available RAR registers, if there is not
|
|
* sufficient space to store all the addresses then enable
|
|
* unicast promiscuous mode
|
|
*/
|
|
count = wx_write_uc_addr_list(netdev, 0);
|
|
if (count < 0) {
|
|
vmolr &= ~WX_PSR_VM_L2CTL_ROPE;
|
|
vmolr |= WX_PSR_VM_L2CTL_UPE;
|
|
}
|
|
|
|
/* Write addresses to the MTA, if the attempt fails
|
|
* then we should just turn on promiscuous mode so
|
|
* that we can at least receive multicast traffic
|
|
*/
|
|
count = wx_write_mc_addr_list(netdev);
|
|
if (count < 0) {
|
|
vmolr &= ~WX_PSR_VM_L2CTL_ROMPE;
|
|
vmolr |= WX_PSR_VM_L2CTL_MPE;
|
|
}
|
|
|
|
wr32(wx, WX_PSR_VLAN_CTL, vlnctrl);
|
|
wr32(wx, WX_PSR_CTL, fctrl);
|
|
wr32(wx, WX_PSR_VM_L2CTL(0), vmolr);
|
|
|
|
if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
|
|
(features & NETIF_F_HW_VLAN_STAG_RX))
|
|
wx_vlan_strip_control(wx, true);
|
|
else
|
|
wx_vlan_strip_control(wx, false);
|
|
|
|
}
|
|
EXPORT_SYMBOL(wx_set_rx_mode);
|
|
|
|
static void wx_set_rx_buffer_len(struct wx *wx)
|
|
{
|
|
struct net_device *netdev = wx->netdev;
|
|
u32 mhadd, max_frame;
|
|
|
|
max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
|
|
/* adjust max frame to be at least the size of a standard frame */
|
|
if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
|
|
max_frame = (ETH_FRAME_LEN + ETH_FCS_LEN);
|
|
|
|
mhadd = rd32(wx, WX_PSR_MAX_SZ);
|
|
if (max_frame != mhadd)
|
|
wr32(wx, WX_PSR_MAX_SZ, max_frame);
|
|
}
|
|
|
|
/**
|
|
* wx_change_mtu - Change the Maximum Transfer Unit
|
|
* @netdev: network interface device structure
|
|
* @new_mtu: new value for maximum frame size
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
int wx_change_mtu(struct net_device *netdev, int new_mtu)
|
|
{
|
|
struct wx *wx = netdev_priv(netdev);
|
|
|
|
netdev->mtu = new_mtu;
|
|
wx_set_rx_buffer_len(wx);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wx_change_mtu);
|
|
|
|
/* Disable the specified rx queue */
|
|
void wx_disable_rx_queue(struct wx *wx, struct wx_ring *ring)
|
|
{
|
|
u8 reg_idx = ring->reg_idx;
|
|
u32 rxdctl;
|
|
int ret;
|
|
|
|
/* write value back with RRCFG.EN bit cleared */
|
|
wr32m(wx, WX_PX_RR_CFG(reg_idx),
|
|
WX_PX_RR_CFG_RR_EN, 0);
|
|
|
|
/* the hardware may take up to 100us to really disable the rx queue */
|
|
ret = read_poll_timeout(rd32, rxdctl, !(rxdctl & WX_PX_RR_CFG_RR_EN),
|
|
10, 100, true, wx, WX_PX_RR_CFG(reg_idx));
|
|
|
|
if (ret == -ETIMEDOUT) {
|
|
/* Just for information */
|
|
wx_err(wx,
|
|
"RRCFG.EN on Rx queue %d not cleared within the polling period\n",
|
|
reg_idx);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(wx_disable_rx_queue);
|
|
|
|
static void wx_enable_rx_queue(struct wx *wx, struct wx_ring *ring)
|
|
{
|
|
u8 reg_idx = ring->reg_idx;
|
|
u32 rxdctl;
|
|
int ret;
|
|
|
|
ret = read_poll_timeout(rd32, rxdctl, rxdctl & WX_PX_RR_CFG_RR_EN,
|
|
1000, 10000, true, wx, WX_PX_RR_CFG(reg_idx));
|
|
|
|
if (ret == -ETIMEDOUT) {
|
|
/* Just for information */
|
|
wx_err(wx,
|
|
"RRCFG.EN on Rx queue %d not set within the polling period\n",
|
|
reg_idx);
|
|
}
|
|
}
|
|
|
|
static void wx_configure_srrctl(struct wx *wx,
|
|
struct wx_ring *rx_ring)
|
|
{
|
|
u16 reg_idx = rx_ring->reg_idx;
|
|
u32 srrctl;
|
|
|
|
srrctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
|
|
srrctl &= ~(WX_PX_RR_CFG_RR_HDR_SZ |
|
|
WX_PX_RR_CFG_RR_BUF_SZ |
|
|
WX_PX_RR_CFG_SPLIT_MODE);
|
|
/* configure header buffer length, needed for RSC */
|
|
srrctl |= WX_RXBUFFER_256 << WX_PX_RR_CFG_BHDRSIZE_SHIFT;
|
|
|
|
/* configure the packet buffer length */
|
|
srrctl |= WX_RX_BUFSZ >> WX_PX_RR_CFG_BSIZEPKT_SHIFT;
|
|
|
|
wr32(wx, WX_PX_RR_CFG(reg_idx), srrctl);
|
|
}
|
|
|
|
static void wx_configure_tx_ring(struct wx *wx,
|
|
struct wx_ring *ring)
|
|
{
|
|
u32 txdctl = WX_PX_TR_CFG_ENABLE;
|
|
u8 reg_idx = ring->reg_idx;
|
|
u64 tdba = ring->dma;
|
|
int ret;
|
|
|
|
/* disable queue to avoid issues while updating state */
|
|
wr32(wx, WX_PX_TR_CFG(reg_idx), WX_PX_TR_CFG_SWFLSH);
|
|
WX_WRITE_FLUSH(wx);
|
|
|
|
wr32(wx, WX_PX_TR_BAL(reg_idx), tdba & DMA_BIT_MASK(32));
|
|
wr32(wx, WX_PX_TR_BAH(reg_idx), upper_32_bits(tdba));
|
|
|
|
/* reset head and tail pointers */
|
|
wr32(wx, WX_PX_TR_RP(reg_idx), 0);
|
|
wr32(wx, WX_PX_TR_WP(reg_idx), 0);
|
|
ring->tail = wx->hw_addr + WX_PX_TR_WP(reg_idx);
|
|
|
|
if (ring->count < WX_MAX_TXD)
|
|
txdctl |= ring->count / 128 << WX_PX_TR_CFG_TR_SIZE_SHIFT;
|
|
txdctl |= 0x20 << WX_PX_TR_CFG_WTHRESH_SHIFT;
|
|
|
|
/* reinitialize tx_buffer_info */
|
|
memset(ring->tx_buffer_info, 0,
|
|
sizeof(struct wx_tx_buffer) * ring->count);
|
|
|
|
/* enable queue */
|
|
wr32(wx, WX_PX_TR_CFG(reg_idx), txdctl);
|
|
|
|
/* poll to verify queue is enabled */
|
|
ret = read_poll_timeout(rd32, txdctl, txdctl & WX_PX_TR_CFG_ENABLE,
|
|
1000, 10000, true, wx, WX_PX_TR_CFG(reg_idx));
|
|
if (ret == -ETIMEDOUT)
|
|
wx_err(wx, "Could not enable Tx Queue %d\n", reg_idx);
|
|
}
|
|
|
|
static void wx_configure_rx_ring(struct wx *wx,
|
|
struct wx_ring *ring)
|
|
{
|
|
u16 reg_idx = ring->reg_idx;
|
|
union wx_rx_desc *rx_desc;
|
|
u64 rdba = ring->dma;
|
|
u32 rxdctl;
|
|
|
|
/* disable queue to avoid issues while updating state */
|
|
rxdctl = rd32(wx, WX_PX_RR_CFG(reg_idx));
|
|
wx_disable_rx_queue(wx, ring);
|
|
|
|
wr32(wx, WX_PX_RR_BAL(reg_idx), rdba & DMA_BIT_MASK(32));
|
|
wr32(wx, WX_PX_RR_BAH(reg_idx), upper_32_bits(rdba));
|
|
|
|
if (ring->count == WX_MAX_RXD)
|
|
rxdctl |= 0 << WX_PX_RR_CFG_RR_SIZE_SHIFT;
|
|
else
|
|
rxdctl |= (ring->count / 128) << WX_PX_RR_CFG_RR_SIZE_SHIFT;
|
|
|
|
rxdctl |= 0x1 << WX_PX_RR_CFG_RR_THER_SHIFT;
|
|
wr32(wx, WX_PX_RR_CFG(reg_idx), rxdctl);
|
|
|
|
/* reset head and tail pointers */
|
|
wr32(wx, WX_PX_RR_RP(reg_idx), 0);
|
|
wr32(wx, WX_PX_RR_WP(reg_idx), 0);
|
|
ring->tail = wx->hw_addr + WX_PX_RR_WP(reg_idx);
|
|
|
|
wx_configure_srrctl(wx, ring);
|
|
|
|
/* initialize rx_buffer_info */
|
|
memset(ring->rx_buffer_info, 0,
|
|
sizeof(struct wx_rx_buffer) * ring->count);
|
|
|
|
/* initialize Rx descriptor 0 */
|
|
rx_desc = WX_RX_DESC(ring, 0);
|
|
rx_desc->wb.upper.length = 0;
|
|
|
|
/* enable receive descriptor ring */
|
|
wr32m(wx, WX_PX_RR_CFG(reg_idx),
|
|
WX_PX_RR_CFG_RR_EN, WX_PX_RR_CFG_RR_EN);
|
|
|
|
wx_enable_rx_queue(wx, ring);
|
|
wx_alloc_rx_buffers(ring, wx_desc_unused(ring));
|
|
}
|
|
|
|
/**
|
|
* wx_configure_tx - Configure Transmit Unit after Reset
|
|
* @wx: pointer to private structure
|
|
*
|
|
* Configure the Tx unit of the MAC after a reset.
|
|
**/
|
|
static void wx_configure_tx(struct wx *wx)
|
|
{
|
|
u32 i;
|
|
|
|
/* TDM_CTL.TE must be before Tx queues are enabled */
|
|
wr32m(wx, WX_TDM_CTL,
|
|
WX_TDM_CTL_TE, WX_TDM_CTL_TE);
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
for (i = 0; i < wx->num_tx_queues; i++)
|
|
wx_configure_tx_ring(wx, wx->tx_ring[i]);
|
|
|
|
wr32m(wx, WX_TSC_BUF_AE, WX_TSC_BUF_AE_THR, 0x10);
|
|
|
|
if (wx->mac.type == wx_mac_em)
|
|
wr32m(wx, WX_TSC_CTL, WX_TSC_CTL_TX_DIS | WX_TSC_CTL_TSEC_DIS, 0x1);
|
|
|
|
/* enable mac transmitter */
|
|
wr32m(wx, WX_MAC_TX_CFG,
|
|
WX_MAC_TX_CFG_TE, WX_MAC_TX_CFG_TE);
|
|
}
|
|
|
|
static void wx_restore_vlan(struct wx *wx)
|
|
{
|
|
u16 vid = 1;
|
|
|
|
wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), 0);
|
|
|
|
for_each_set_bit_from(vid, wx->active_vlans, VLAN_N_VID)
|
|
wx_vlan_rx_add_vid(wx->netdev, htons(ETH_P_8021Q), vid);
|
|
}
|
|
|
|
/**
|
|
* wx_configure_rx - Configure Receive Unit after Reset
|
|
* @wx: pointer to private structure
|
|
*
|
|
* Configure the Rx unit of the MAC after a reset.
|
|
**/
|
|
static void wx_configure_rx(struct wx *wx)
|
|
{
|
|
u32 psrtype, i;
|
|
int ret;
|
|
|
|
wx_disable_rx(wx);
|
|
|
|
psrtype = WX_RDB_PL_CFG_L4HDR |
|
|
WX_RDB_PL_CFG_L3HDR |
|
|
WX_RDB_PL_CFG_L2HDR |
|
|
WX_RDB_PL_CFG_TUN_TUNHDR;
|
|
wr32(wx, WX_RDB_PL_CFG(0), psrtype);
|
|
|
|
/* enable hw crc stripping */
|
|
wr32m(wx, WX_RSC_CTL, WX_RSC_CTL_CRC_STRIP, WX_RSC_CTL_CRC_STRIP);
|
|
|
|
if (wx->mac.type == wx_mac_sp) {
|
|
u32 psrctl;
|
|
|
|
/* RSC Setup */
|
|
psrctl = rd32(wx, WX_PSR_CTL);
|
|
psrctl |= WX_PSR_CTL_RSC_ACK; /* Disable RSC for ACK packets */
|
|
psrctl |= WX_PSR_CTL_RSC_DIS;
|
|
wr32(wx, WX_PSR_CTL, psrctl);
|
|
}
|
|
|
|
/* set_rx_buffer_len must be called before ring initialization */
|
|
wx_set_rx_buffer_len(wx);
|
|
|
|
/* Setup the HW Rx Head and Tail Descriptor Pointers and
|
|
* the Base and Length of the Rx Descriptor Ring
|
|
*/
|
|
for (i = 0; i < wx->num_rx_queues; i++)
|
|
wx_configure_rx_ring(wx, wx->rx_ring[i]);
|
|
|
|
/* Enable all receives, disable security engine prior to block traffic */
|
|
ret = wx_disable_sec_rx_path(wx);
|
|
if (ret < 0)
|
|
wx_err(wx, "The register status is abnormal, please check device.");
|
|
|
|
wx_enable_rx(wx);
|
|
wx_enable_sec_rx_path(wx);
|
|
}
|
|
|
|
static void wx_configure_isb(struct wx *wx)
|
|
{
|
|
/* set ISB Address */
|
|
wr32(wx, WX_PX_ISB_ADDR_L, wx->isb_dma & DMA_BIT_MASK(32));
|
|
if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
|
|
wr32(wx, WX_PX_ISB_ADDR_H, upper_32_bits(wx->isb_dma));
|
|
}
|
|
|
|
void wx_configure(struct wx *wx)
|
|
{
|
|
wx_set_rxpba(wx);
|
|
wx_configure_port(wx);
|
|
|
|
wx_set_rx_mode(wx->netdev);
|
|
wx_restore_vlan(wx);
|
|
wx_enable_sec_rx_path(wx);
|
|
|
|
wx_configure_tx(wx);
|
|
wx_configure_rx(wx);
|
|
wx_configure_isb(wx);
|
|
}
|
|
EXPORT_SYMBOL(wx_configure);
|
|
|
|
/**
|
|
* wx_disable_pcie_master - Disable PCI-express master access
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Disables PCI-Express master access and verifies there are no pending
|
|
* requests.
|
|
**/
|
|
int wx_disable_pcie_master(struct wx *wx)
|
|
{
|
|
int status = 0;
|
|
u32 val;
|
|
|
|
/* Always set this bit to ensure any future transactions are blocked */
|
|
pci_clear_master(wx->pdev);
|
|
|
|
/* Exit if master requests are blocked */
|
|
if (!(rd32(wx, WX_PX_TRANSACTION_PENDING)))
|
|
return 0;
|
|
|
|
/* Poll for master request bit to clear */
|
|
status = read_poll_timeout(rd32, val, !val, 100, WX_PCI_MASTER_DISABLE_TIMEOUT,
|
|
false, wx, WX_PX_TRANSACTION_PENDING);
|
|
if (status < 0)
|
|
wx_err(wx, "PCIe transaction pending bit did not clear.\n");
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL(wx_disable_pcie_master);
|
|
|
|
/**
|
|
* wx_stop_adapter - Generic stop Tx/Rx units
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Sets the adapter_stopped flag within wx_hw struct. Clears interrupts,
|
|
* disables transmit and receive units. The adapter_stopped flag is used by
|
|
* the shared code and drivers to determine if the adapter is in a stopped
|
|
* state and should not touch the hardware.
|
|
**/
|
|
int wx_stop_adapter(struct wx *wx)
|
|
{
|
|
u16 i;
|
|
|
|
/* Set the adapter_stopped flag so other driver functions stop touching
|
|
* the hardware
|
|
*/
|
|
wx->adapter_stopped = true;
|
|
|
|
/* Disable the receive unit */
|
|
wx_disable_rx(wx);
|
|
|
|
/* Set interrupt mask to stop interrupts from being generated */
|
|
wx_intr_disable(wx, WX_INTR_ALL);
|
|
|
|
/* Clear any pending interrupts, flush previous writes */
|
|
wr32(wx, WX_PX_MISC_IC, 0xffffffff);
|
|
wr32(wx, WX_BME_CTL, 0x3);
|
|
|
|
/* Disable the transmit unit. Each queue must be disabled. */
|
|
for (i = 0; i < wx->mac.max_tx_queues; i++) {
|
|
wr32m(wx, WX_PX_TR_CFG(i),
|
|
WX_PX_TR_CFG_SWFLSH | WX_PX_TR_CFG_ENABLE,
|
|
WX_PX_TR_CFG_SWFLSH);
|
|
}
|
|
|
|
/* Disable the receive unit by stopping each queue */
|
|
for (i = 0; i < wx->mac.max_rx_queues; i++) {
|
|
wr32m(wx, WX_PX_RR_CFG(i),
|
|
WX_PX_RR_CFG_RR_EN, 0);
|
|
}
|
|
|
|
/* flush all queues disables */
|
|
WX_WRITE_FLUSH(wx);
|
|
|
|
/* Prevent the PCI-E bus from hanging by disabling PCI-E master
|
|
* access and verify no pending requests
|
|
*/
|
|
return wx_disable_pcie_master(wx);
|
|
}
|
|
EXPORT_SYMBOL(wx_stop_adapter);
|
|
|
|
void wx_reset_misc(struct wx *wx)
|
|
{
|
|
int i;
|
|
|
|
/* receive packets that size > 2048 */
|
|
wr32m(wx, WX_MAC_RX_CFG, WX_MAC_RX_CFG_JE, WX_MAC_RX_CFG_JE);
|
|
|
|
/* clear counters on read */
|
|
wr32m(wx, WX_MMC_CONTROL,
|
|
WX_MMC_CONTROL_RSTONRD, WX_MMC_CONTROL_RSTONRD);
|
|
|
|
wr32m(wx, WX_MAC_RX_FLOW_CTRL,
|
|
WX_MAC_RX_FLOW_CTRL_RFE, WX_MAC_RX_FLOW_CTRL_RFE);
|
|
|
|
wr32(wx, WX_MAC_PKT_FLT, WX_MAC_PKT_FLT_PR);
|
|
|
|
wr32m(wx, WX_MIS_RST_ST,
|
|
WX_MIS_RST_ST_RST_INIT, 0x1E00);
|
|
|
|
/* errata 4: initialize mng flex tbl and wakeup flex tbl*/
|
|
wr32(wx, WX_PSR_MNG_FLEX_SEL, 0);
|
|
for (i = 0; i < 16; i++) {
|
|
wr32(wx, WX_PSR_MNG_FLEX_DW_L(i), 0);
|
|
wr32(wx, WX_PSR_MNG_FLEX_DW_H(i), 0);
|
|
wr32(wx, WX_PSR_MNG_FLEX_MSK(i), 0);
|
|
}
|
|
wr32(wx, WX_PSR_LAN_FLEX_SEL, 0);
|
|
for (i = 0; i < 16; i++) {
|
|
wr32(wx, WX_PSR_LAN_FLEX_DW_L(i), 0);
|
|
wr32(wx, WX_PSR_LAN_FLEX_DW_H(i), 0);
|
|
wr32(wx, WX_PSR_LAN_FLEX_MSK(i), 0);
|
|
}
|
|
|
|
/* set pause frame dst mac addr */
|
|
wr32(wx, WX_RDB_PFCMACDAL, 0xC2000001);
|
|
wr32(wx, WX_RDB_PFCMACDAH, 0x0180);
|
|
}
|
|
EXPORT_SYMBOL(wx_reset_misc);
|
|
|
|
/**
|
|
* wx_get_pcie_msix_counts - Gets MSI-X vector count
|
|
* @wx: pointer to hardware structure
|
|
* @msix_count: number of MSI interrupts that can be obtained
|
|
* @max_msix_count: number of MSI interrupts that mac need
|
|
*
|
|
* Read PCIe configuration space, and get the MSI-X vector count from
|
|
* the capabilities table.
|
|
**/
|
|
int wx_get_pcie_msix_counts(struct wx *wx, u16 *msix_count, u16 max_msix_count)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
int pos;
|
|
|
|
*msix_count = 1;
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
|
|
if (!pos) {
|
|
dev_err(dev, "Unable to find MSI-X Capabilities\n");
|
|
return -EINVAL;
|
|
}
|
|
pci_read_config_word(pdev,
|
|
pos + PCI_MSIX_FLAGS,
|
|
msix_count);
|
|
*msix_count &= WX_PCIE_MSIX_TBL_SZ_MASK;
|
|
/* MSI-X count is zero-based in HW */
|
|
*msix_count += 1;
|
|
|
|
if (*msix_count > max_msix_count)
|
|
*msix_count = max_msix_count;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wx_get_pcie_msix_counts);
|
|
|
|
int wx_sw_init(struct wx *wx)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
u32 ssid = 0;
|
|
int err = 0;
|
|
|
|
wx->vendor_id = pdev->vendor;
|
|
wx->device_id = pdev->device;
|
|
wx->revision_id = pdev->revision;
|
|
wx->oem_svid = pdev->subsystem_vendor;
|
|
wx->oem_ssid = pdev->subsystem_device;
|
|
wx->bus.device = PCI_SLOT(pdev->devfn);
|
|
wx->bus.func = PCI_FUNC(pdev->devfn);
|
|
|
|
if (wx->oem_svid == PCI_VENDOR_ID_WANGXUN) {
|
|
wx->subsystem_vendor_id = pdev->subsystem_vendor;
|
|
wx->subsystem_device_id = pdev->subsystem_device;
|
|
} else {
|
|
err = wx_flash_read_dword(wx, 0xfffdc, &ssid);
|
|
if (!err)
|
|
wx->subsystem_device_id = swab16((u16)ssid);
|
|
|
|
return err;
|
|
}
|
|
|
|
wx->mac_table = kcalloc(wx->mac.num_rar_entries,
|
|
sizeof(struct wx_mac_addr),
|
|
GFP_KERNEL);
|
|
if (!wx->mac_table) {
|
|
wx_err(wx, "mac_table allocation failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wx_sw_init);
|
|
|
|
/**
|
|
* wx_find_vlvf_slot - find the vlanid or the first empty slot
|
|
* @wx: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
*
|
|
* return the VLVF index where this VLAN id should be placed
|
|
*
|
|
**/
|
|
static int wx_find_vlvf_slot(struct wx *wx, u32 vlan)
|
|
{
|
|
u32 bits = 0, first_empty_slot = 0;
|
|
int regindex;
|
|
|
|
/* short cut the special case */
|
|
if (vlan == 0)
|
|
return 0;
|
|
|
|
/* Search for the vlan id in the VLVF entries. Save off the first empty
|
|
* slot found along the way
|
|
*/
|
|
for (regindex = 1; regindex < WX_PSR_VLAN_SWC_ENTRIES; regindex++) {
|
|
wr32(wx, WX_PSR_VLAN_SWC_IDX, regindex);
|
|
bits = rd32(wx, WX_PSR_VLAN_SWC);
|
|
if (!bits && !(first_empty_slot))
|
|
first_empty_slot = regindex;
|
|
else if ((bits & 0x0FFF) == vlan)
|
|
break;
|
|
}
|
|
|
|
if (regindex >= WX_PSR_VLAN_SWC_ENTRIES) {
|
|
if (first_empty_slot)
|
|
regindex = first_empty_slot;
|
|
else
|
|
regindex = -ENOMEM;
|
|
}
|
|
|
|
return regindex;
|
|
}
|
|
|
|
/**
|
|
* wx_set_vlvf - Set VLAN Pool Filter
|
|
* @wx: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
* @vind: VMDq output index that maps queue to VLAN id in VFVFB
|
|
* @vlan_on: boolean flag to turn on/off VLAN in VFVF
|
|
* @vfta_changed: pointer to boolean flag which indicates whether VFTA
|
|
* should be changed
|
|
*
|
|
* Turn on/off specified bit in VLVF table.
|
|
**/
|
|
static int wx_set_vlvf(struct wx *wx, u32 vlan, u32 vind, bool vlan_on,
|
|
bool *vfta_changed)
|
|
{
|
|
int vlvf_index;
|
|
u32 vt, bits;
|
|
|
|
/* If VT Mode is set
|
|
* Either vlan_on
|
|
* make sure the vlan is in VLVF
|
|
* set the vind bit in the matching VLVFB
|
|
* Or !vlan_on
|
|
* clear the pool bit and possibly the vind
|
|
*/
|
|
vt = rd32(wx, WX_CFG_PORT_CTL);
|
|
if (!(vt & WX_CFG_PORT_CTL_NUM_VT_MASK))
|
|
return 0;
|
|
|
|
vlvf_index = wx_find_vlvf_slot(wx, vlan);
|
|
if (vlvf_index < 0)
|
|
return vlvf_index;
|
|
|
|
wr32(wx, WX_PSR_VLAN_SWC_IDX, vlvf_index);
|
|
if (vlan_on) {
|
|
/* set the pool bit */
|
|
if (vind < 32) {
|
|
bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
|
|
bits |= (1 << vind);
|
|
wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
|
|
} else {
|
|
bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
|
|
bits |= (1 << (vind - 32));
|
|
wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
|
|
}
|
|
} else {
|
|
/* clear the pool bit */
|
|
if (vind < 32) {
|
|
bits = rd32(wx, WX_PSR_VLAN_SWC_VM_L);
|
|
bits &= ~(1 << vind);
|
|
wr32(wx, WX_PSR_VLAN_SWC_VM_L, bits);
|
|
bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_H);
|
|
} else {
|
|
bits = rd32(wx, WX_PSR_VLAN_SWC_VM_H);
|
|
bits &= ~(1 << (vind - 32));
|
|
wr32(wx, WX_PSR_VLAN_SWC_VM_H, bits);
|
|
bits |= rd32(wx, WX_PSR_VLAN_SWC_VM_L);
|
|
}
|
|
}
|
|
|
|
if (bits) {
|
|
wr32(wx, WX_PSR_VLAN_SWC, (WX_PSR_VLAN_SWC_VIEN | vlan));
|
|
if (!vlan_on && vfta_changed)
|
|
*vfta_changed = false;
|
|
} else {
|
|
wr32(wx, WX_PSR_VLAN_SWC, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wx_set_vfta - Set VLAN filter table
|
|
* @wx: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
* @vind: VMDq output index that maps queue to VLAN id in VFVFB
|
|
* @vlan_on: boolean flag to turn on/off VLAN in VFVF
|
|
*
|
|
* Turn on/off specified VLAN in the VLAN filter table.
|
|
**/
|
|
static int wx_set_vfta(struct wx *wx, u32 vlan, u32 vind, bool vlan_on)
|
|
{
|
|
u32 bitindex, vfta, targetbit;
|
|
bool vfta_changed = false;
|
|
int regindex, ret;
|
|
|
|
/* this is a 2 part operation - first the VFTA, then the
|
|
* VLVF and VLVFB if VT Mode is set
|
|
* We don't write the VFTA until we know the VLVF part succeeded.
|
|
*/
|
|
|
|
/* Part 1
|
|
* The VFTA is a bitstring made up of 128 32-bit registers
|
|
* that enable the particular VLAN id, much like the MTA:
|
|
* bits[11-5]: which register
|
|
* bits[4-0]: which bit in the register
|
|
*/
|
|
regindex = (vlan >> 5) & 0x7F;
|
|
bitindex = vlan & 0x1F;
|
|
targetbit = (1 << bitindex);
|
|
/* errata 5 */
|
|
vfta = wx->mac.vft_shadow[regindex];
|
|
if (vlan_on) {
|
|
if (!(vfta & targetbit)) {
|
|
vfta |= targetbit;
|
|
vfta_changed = true;
|
|
}
|
|
} else {
|
|
if ((vfta & targetbit)) {
|
|
vfta &= ~targetbit;
|
|
vfta_changed = true;
|
|
}
|
|
}
|
|
/* Part 2
|
|
* Call wx_set_vlvf to set VLVFB and VLVF
|
|
*/
|
|
ret = wx_set_vlvf(wx, vlan, vind, vlan_on, &vfta_changed);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
if (vfta_changed)
|
|
wr32(wx, WX_PSR_VLAN_TBL(regindex), vfta);
|
|
wx->mac.vft_shadow[regindex] = vfta;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wx_clear_vfta - Clear VLAN filter table
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Clears the VLAN filer table, and the VMDq index associated with the filter
|
|
**/
|
|
static void wx_clear_vfta(struct wx *wx)
|
|
{
|
|
u32 offset;
|
|
|
|
for (offset = 0; offset < wx->mac.vft_size; offset++) {
|
|
wr32(wx, WX_PSR_VLAN_TBL(offset), 0);
|
|
wx->mac.vft_shadow[offset] = 0;
|
|
}
|
|
|
|
for (offset = 0; offset < WX_PSR_VLAN_SWC_ENTRIES; offset++) {
|
|
wr32(wx, WX_PSR_VLAN_SWC_IDX, offset);
|
|
wr32(wx, WX_PSR_VLAN_SWC, 0);
|
|
wr32(wx, WX_PSR_VLAN_SWC_VM_L, 0);
|
|
wr32(wx, WX_PSR_VLAN_SWC_VM_H, 0);
|
|
}
|
|
}
|
|
|
|
int wx_vlan_rx_add_vid(struct net_device *netdev,
|
|
__be16 proto, u16 vid)
|
|
{
|
|
struct wx *wx = netdev_priv(netdev);
|
|
|
|
/* add VID to filter table */
|
|
wx_set_vfta(wx, vid, VMDQ_P(0), true);
|
|
set_bit(vid, wx->active_vlans);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wx_vlan_rx_add_vid);
|
|
|
|
int wx_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
|
|
{
|
|
struct wx *wx = netdev_priv(netdev);
|
|
|
|
/* remove VID from filter table */
|
|
if (vid)
|
|
wx_set_vfta(wx, vid, VMDQ_P(0), false);
|
|
clear_bit(vid, wx->active_vlans);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wx_vlan_rx_kill_vid);
|
|
|
|
/**
|
|
* wx_start_hw - Prepare hardware for Tx/Rx
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Starts the hardware using the generic start_hw function
|
|
* and the generation start_hw function.
|
|
* Then performs revision-specific operations, if any.
|
|
**/
|
|
void wx_start_hw(struct wx *wx)
|
|
{
|
|
int i;
|
|
|
|
/* Clear the VLAN filter table */
|
|
wx_clear_vfta(wx);
|
|
WX_WRITE_FLUSH(wx);
|
|
/* Clear the rate limiters */
|
|
for (i = 0; i < wx->mac.max_tx_queues; i++) {
|
|
wr32(wx, WX_TDM_RP_IDX, i);
|
|
wr32(wx, WX_TDM_RP_RATE, 0);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(wx_start_hw);
|
|
|
|
MODULE_LICENSE("GPL");
|