2729 lines
72 KiB
C
2729 lines
72 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
|
|
|
|
#include <linux/etherdevice.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <net/page_pool.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/pci.h>
|
|
#include <net/tcp.h>
|
|
#include <net/ip.h>
|
|
|
|
#include "wx_type.h"
|
|
#include "wx_lib.h"
|
|
#include "wx_hw.h"
|
|
|
|
/* Lookup table mapping the HW PTYPE to the bit field for decoding */
|
|
static struct wx_dec_ptype wx_ptype_lookup[256] = {
|
|
/* L2: mac */
|
|
[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
|
|
[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2),
|
|
[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
|
|
[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
|
|
[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
|
|
[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
|
|
[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
|
|
|
|
/* L2: ethertype filter */
|
|
[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
|
|
|
|
/* L3: ip non-tunnel */
|
|
[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
|
|
[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
|
|
[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4),
|
|
[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4),
|
|
[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
|
|
[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
|
|
[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
|
|
[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3),
|
|
[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4),
|
|
[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
|
|
|
|
/* L2: fcoe */
|
|
[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
|
|
[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
|
|
|
|
/* IPv4 --> IPv4/IPv6 */
|
|
[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
|
|
[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
|
|
[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4),
|
|
[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4),
|
|
[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
|
|
[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
|
|
[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
|
|
[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4),
|
|
[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4),
|
|
[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
|
|
|
|
/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
|
|
[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
|
|
[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
|
|
[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
|
|
[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4),
|
|
[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4),
|
|
[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
|
|
[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
|
|
[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
|
|
[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4),
|
|
[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4),
|
|
[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
|
|
|
|
/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
|
|
[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
|
|
[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
|
|
[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
|
|
[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4),
|
|
[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4),
|
|
[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
|
|
[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
|
|
[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
|
|
[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4),
|
|
[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4),
|
|
[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
|
|
|
|
/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
|
|
[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
|
|
[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
|
|
[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
|
|
[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4),
|
|
[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4),
|
|
[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
|
|
[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
|
|
[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
|
|
[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4),
|
|
[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4),
|
|
[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
|
|
|
|
/* IPv6 --> IPv4/IPv6 */
|
|
[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
|
|
[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
|
|
[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4),
|
|
[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4),
|
|
[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
|
|
[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
|
|
[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
|
|
[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4),
|
|
[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4),
|
|
[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
|
|
[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
|
|
[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
|
|
[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
|
|
[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4),
|
|
[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4),
|
|
[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
|
|
[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
|
|
[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
|
|
[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4),
|
|
[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4),
|
|
[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
|
|
[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
|
|
[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
|
|
[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
|
|
[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4),
|
|
[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4),
|
|
[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
|
|
[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
|
|
[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
|
|
[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4),
|
|
[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4),
|
|
[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
|
|
|
|
/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
|
|
[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
|
|
[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
|
|
[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
|
|
[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4),
|
|
[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4),
|
|
[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
|
|
[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
|
|
[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
|
|
[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4),
|
|
[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4),
|
|
[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
|
|
};
|
|
|
|
static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
|
|
{
|
|
return wx_ptype_lookup[ptype];
|
|
}
|
|
|
|
/* wx_test_staterr - tests bits in Rx descriptor status and error fields */
|
|
static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
|
|
const u32 stat_err_bits)
|
|
{
|
|
return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
|
|
}
|
|
|
|
static bool wx_can_reuse_rx_page(struct wx_rx_buffer *rx_buffer,
|
|
int rx_buffer_pgcnt)
|
|
{
|
|
unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
|
|
struct page *page = rx_buffer->page;
|
|
|
|
/* avoid re-using remote and pfmemalloc pages */
|
|
if (!dev_page_is_reusable(page))
|
|
return false;
|
|
|
|
#if (PAGE_SIZE < 8192)
|
|
/* if we are only owner of page we can reuse it */
|
|
if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
|
|
return false;
|
|
#endif
|
|
|
|
/* If we have drained the page fragment pool we need to update
|
|
* the pagecnt_bias and page count so that we fully restock the
|
|
* number of references the driver holds.
|
|
*/
|
|
if (unlikely(pagecnt_bias == 1)) {
|
|
page_ref_add(page, USHRT_MAX - 1);
|
|
rx_buffer->pagecnt_bias = USHRT_MAX;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* wx_reuse_rx_page - page flip buffer and store it back on the ring
|
|
* @rx_ring: rx descriptor ring to store buffers on
|
|
* @old_buff: donor buffer to have page reused
|
|
*
|
|
* Synchronizes page for reuse by the adapter
|
|
**/
|
|
static void wx_reuse_rx_page(struct wx_ring *rx_ring,
|
|
struct wx_rx_buffer *old_buff)
|
|
{
|
|
u16 nta = rx_ring->next_to_alloc;
|
|
struct wx_rx_buffer *new_buff;
|
|
|
|
new_buff = &rx_ring->rx_buffer_info[nta];
|
|
|
|
/* update, and store next to alloc */
|
|
nta++;
|
|
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
|
|
|
|
/* transfer page from old buffer to new buffer */
|
|
new_buff->page = old_buff->page;
|
|
new_buff->page_dma = old_buff->page_dma;
|
|
new_buff->page_offset = old_buff->page_offset;
|
|
new_buff->pagecnt_bias = old_buff->pagecnt_bias;
|
|
}
|
|
|
|
static void wx_dma_sync_frag(struct wx_ring *rx_ring,
|
|
struct wx_rx_buffer *rx_buffer)
|
|
{
|
|
struct sk_buff *skb = rx_buffer->skb;
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
|
|
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
WX_CB(skb)->dma,
|
|
skb_frag_off(frag),
|
|
skb_frag_size(frag),
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* If the page was released, just unmap it. */
|
|
if (unlikely(WX_CB(skb)->page_released))
|
|
page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
|
|
}
|
|
|
|
static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
|
|
union wx_rx_desc *rx_desc,
|
|
struct sk_buff **skb,
|
|
int *rx_buffer_pgcnt)
|
|
{
|
|
struct wx_rx_buffer *rx_buffer;
|
|
unsigned int size;
|
|
|
|
rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
|
|
size = le16_to_cpu(rx_desc->wb.upper.length);
|
|
|
|
#if (PAGE_SIZE < 8192)
|
|
*rx_buffer_pgcnt = page_count(rx_buffer->page);
|
|
#else
|
|
*rx_buffer_pgcnt = 0;
|
|
#endif
|
|
|
|
prefetchw(rx_buffer->page);
|
|
*skb = rx_buffer->skb;
|
|
|
|
/* Delay unmapping of the first packet. It carries the header
|
|
* information, HW may still access the header after the writeback.
|
|
* Only unmap it when EOP is reached
|
|
*/
|
|
if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
|
|
if (!*skb)
|
|
goto skip_sync;
|
|
} else {
|
|
if (*skb)
|
|
wx_dma_sync_frag(rx_ring, rx_buffer);
|
|
}
|
|
|
|
/* we are reusing so sync this buffer for CPU use */
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
rx_buffer->dma,
|
|
rx_buffer->page_offset,
|
|
size,
|
|
DMA_FROM_DEVICE);
|
|
skip_sync:
|
|
rx_buffer->pagecnt_bias--;
|
|
|
|
return rx_buffer;
|
|
}
|
|
|
|
static void wx_put_rx_buffer(struct wx_ring *rx_ring,
|
|
struct wx_rx_buffer *rx_buffer,
|
|
struct sk_buff *skb,
|
|
int rx_buffer_pgcnt)
|
|
{
|
|
if (wx_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
|
|
/* hand second half of page back to the ring */
|
|
wx_reuse_rx_page(rx_ring, rx_buffer);
|
|
} else {
|
|
if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
|
|
/* the page has been released from the ring */
|
|
WX_CB(skb)->page_released = true;
|
|
else
|
|
page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
|
|
|
|
__page_frag_cache_drain(rx_buffer->page,
|
|
rx_buffer->pagecnt_bias);
|
|
}
|
|
|
|
/* clear contents of rx_buffer */
|
|
rx_buffer->page = NULL;
|
|
rx_buffer->skb = NULL;
|
|
}
|
|
|
|
static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
|
|
struct wx_rx_buffer *rx_buffer,
|
|
union wx_rx_desc *rx_desc)
|
|
{
|
|
unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
|
|
#if (PAGE_SIZE < 8192)
|
|
unsigned int truesize = WX_RX_BUFSZ;
|
|
#else
|
|
unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
|
|
#endif
|
|
struct sk_buff *skb = rx_buffer->skb;
|
|
|
|
if (!skb) {
|
|
void *page_addr = page_address(rx_buffer->page) +
|
|
rx_buffer->page_offset;
|
|
|
|
/* prefetch first cache line of first page */
|
|
prefetch(page_addr);
|
|
#if L1_CACHE_BYTES < 128
|
|
prefetch(page_addr + L1_CACHE_BYTES);
|
|
#endif
|
|
|
|
/* allocate a skb to store the frags */
|
|
skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
/* we will be copying header into skb->data in
|
|
* pskb_may_pull so it is in our interest to prefetch
|
|
* it now to avoid a possible cache miss
|
|
*/
|
|
prefetchw(skb->data);
|
|
|
|
if (size <= WX_RXBUFFER_256) {
|
|
memcpy(__skb_put(skb, size), page_addr,
|
|
ALIGN(size, sizeof(long)));
|
|
rx_buffer->pagecnt_bias++;
|
|
|
|
return skb;
|
|
}
|
|
|
|
if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
|
|
WX_CB(skb)->dma = rx_buffer->dma;
|
|
|
|
skb_add_rx_frag(skb, 0, rx_buffer->page,
|
|
rx_buffer->page_offset,
|
|
size, truesize);
|
|
goto out;
|
|
|
|
} else {
|
|
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
|
|
rx_buffer->page_offset, size, truesize);
|
|
}
|
|
|
|
out:
|
|
#if (PAGE_SIZE < 8192)
|
|
/* flip page offset to other buffer */
|
|
rx_buffer->page_offset ^= truesize;
|
|
#else
|
|
/* move offset up to the next cache line */
|
|
rx_buffer->page_offset += truesize;
|
|
#endif
|
|
|
|
return skb;
|
|
}
|
|
|
|
static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
|
|
struct wx_rx_buffer *bi)
|
|
{
|
|
struct page *page = bi->page;
|
|
dma_addr_t dma;
|
|
|
|
/* since we are recycling buffers we should seldom need to alloc */
|
|
if (likely(page))
|
|
return true;
|
|
|
|
page = page_pool_dev_alloc_pages(rx_ring->page_pool);
|
|
WARN_ON(!page);
|
|
dma = page_pool_get_dma_addr(page);
|
|
|
|
bi->page_dma = dma;
|
|
bi->page = page;
|
|
bi->page_offset = 0;
|
|
page_ref_add(page, USHRT_MAX - 1);
|
|
bi->pagecnt_bias = USHRT_MAX;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* wx_alloc_rx_buffers - Replace used receive buffers
|
|
* @rx_ring: ring to place buffers on
|
|
* @cleaned_count: number of buffers to replace
|
|
**/
|
|
void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
|
|
{
|
|
u16 i = rx_ring->next_to_use;
|
|
union wx_rx_desc *rx_desc;
|
|
struct wx_rx_buffer *bi;
|
|
|
|
/* nothing to do */
|
|
if (!cleaned_count)
|
|
return;
|
|
|
|
rx_desc = WX_RX_DESC(rx_ring, i);
|
|
bi = &rx_ring->rx_buffer_info[i];
|
|
i -= rx_ring->count;
|
|
|
|
do {
|
|
if (!wx_alloc_mapped_page(rx_ring, bi))
|
|
break;
|
|
|
|
/* sync the buffer for use by the device */
|
|
dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
|
|
bi->page_offset,
|
|
WX_RX_BUFSZ,
|
|
DMA_FROM_DEVICE);
|
|
|
|
rx_desc->read.pkt_addr =
|
|
cpu_to_le64(bi->page_dma + bi->page_offset);
|
|
|
|
rx_desc++;
|
|
bi++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
rx_desc = WX_RX_DESC(rx_ring, 0);
|
|
bi = rx_ring->rx_buffer_info;
|
|
i -= rx_ring->count;
|
|
}
|
|
|
|
/* clear the status bits for the next_to_use descriptor */
|
|
rx_desc->wb.upper.status_error = 0;
|
|
|
|
cleaned_count--;
|
|
} while (cleaned_count);
|
|
|
|
i += rx_ring->count;
|
|
|
|
if (rx_ring->next_to_use != i) {
|
|
rx_ring->next_to_use = i;
|
|
/* update next to alloc since we have filled the ring */
|
|
rx_ring->next_to_alloc = i;
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
writel(i, rx_ring->tail);
|
|
}
|
|
}
|
|
|
|
u16 wx_desc_unused(struct wx_ring *ring)
|
|
{
|
|
u16 ntc = ring->next_to_clean;
|
|
u16 ntu = ring->next_to_use;
|
|
|
|
return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
|
|
}
|
|
|
|
/**
|
|
* wx_is_non_eop - process handling of non-EOP buffers
|
|
* @rx_ring: Rx ring being processed
|
|
* @rx_desc: Rx descriptor for current buffer
|
|
* @skb: Current socket buffer containing buffer in progress
|
|
*
|
|
* This function updates next to clean. If the buffer is an EOP buffer
|
|
* this function exits returning false, otherwise it will place the
|
|
* sk_buff in the next buffer to be chained and return true indicating
|
|
* that this is in fact a non-EOP buffer.
|
|
**/
|
|
static bool wx_is_non_eop(struct wx_ring *rx_ring,
|
|
union wx_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
u32 ntc = rx_ring->next_to_clean + 1;
|
|
|
|
/* fetch, update, and store next to clean */
|
|
ntc = (ntc < rx_ring->count) ? ntc : 0;
|
|
rx_ring->next_to_clean = ntc;
|
|
|
|
prefetch(WX_RX_DESC(rx_ring, ntc));
|
|
|
|
/* if we are the last buffer then there is nothing else to do */
|
|
if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
|
|
return false;
|
|
|
|
rx_ring->rx_buffer_info[ntc].skb = skb;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void wx_pull_tail(struct sk_buff *skb)
|
|
{
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
|
|
unsigned int pull_len;
|
|
unsigned char *va;
|
|
|
|
/* it is valid to use page_address instead of kmap since we are
|
|
* working with pages allocated out of the lomem pool per
|
|
* alloc_page(GFP_ATOMIC)
|
|
*/
|
|
va = skb_frag_address(frag);
|
|
|
|
/* we need the header to contain the greater of either ETH_HLEN or
|
|
* 60 bytes if the skb->len is less than 60 for skb_pad.
|
|
*/
|
|
pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
|
|
|
|
/* align pull length to size of long to optimize memcpy performance */
|
|
skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
|
|
|
|
/* update all of the pointers */
|
|
skb_frag_size_sub(frag, pull_len);
|
|
skb_frag_off_add(frag, pull_len);
|
|
skb->data_len -= pull_len;
|
|
skb->tail += pull_len;
|
|
}
|
|
|
|
/**
|
|
* wx_cleanup_headers - Correct corrupted or empty headers
|
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
|
* @rx_desc: pointer to the EOP Rx descriptor
|
|
* @skb: pointer to current skb being fixed
|
|
*
|
|
* Check for corrupted packet headers caused by senders on the local L2
|
|
* embedded NIC switch not setting up their Tx Descriptors right. These
|
|
* should be very rare.
|
|
*
|
|
* Also address the case where we are pulling data in on pages only
|
|
* and as such no data is present in the skb header.
|
|
*
|
|
* In addition if skb is not at least 60 bytes we need to pad it so that
|
|
* it is large enough to qualify as a valid Ethernet frame.
|
|
*
|
|
* Returns true if an error was encountered and skb was freed.
|
|
**/
|
|
static bool wx_cleanup_headers(struct wx_ring *rx_ring,
|
|
union wx_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct net_device *netdev = rx_ring->netdev;
|
|
|
|
/* verify that the packet does not have any known errors */
|
|
if (!netdev ||
|
|
unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
|
|
!(netdev->features & NETIF_F_RXALL))) {
|
|
dev_kfree_skb_any(skb);
|
|
return true;
|
|
}
|
|
|
|
/* place header in linear portion of buffer */
|
|
if (!skb_headlen(skb))
|
|
wx_pull_tail(skb);
|
|
|
|
/* if eth_skb_pad returns an error the skb was freed */
|
|
if (eth_skb_pad(skb))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void wx_rx_hash(struct wx_ring *ring,
|
|
union wx_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
u16 rss_type;
|
|
|
|
if (!(ring->netdev->features & NETIF_F_RXHASH))
|
|
return;
|
|
|
|
rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
|
|
WX_RXD_RSSTYPE_MASK;
|
|
|
|
if (!rss_type)
|
|
return;
|
|
|
|
skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
|
|
(WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
|
|
PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
|
|
}
|
|
|
|
/**
|
|
* wx_rx_checksum - indicate in skb if hw indicated a good cksum
|
|
* @ring: structure containing ring specific data
|
|
* @rx_desc: current Rx descriptor being processed
|
|
* @skb: skb currently being received and modified
|
|
**/
|
|
static void wx_rx_checksum(struct wx_ring *ring,
|
|
union wx_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
|
|
|
|
skb_checksum_none_assert(skb);
|
|
/* Rx csum disabled */
|
|
if (!(ring->netdev->features & NETIF_F_RXCSUM))
|
|
return;
|
|
|
|
/* if IPv4 header checksum error */
|
|
if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
|
|
wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
|
|
(wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
|
|
wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
|
|
ring->rx_stats.csum_err++;
|
|
return;
|
|
}
|
|
|
|
/* L4 checksum offload flag must set for the below code to work */
|
|
if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
|
|
return;
|
|
|
|
/* Hardware can't guarantee csum if IPv6 Dest Header found */
|
|
if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
|
|
return;
|
|
|
|
/* if L4 checksum error */
|
|
if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
|
|
ring->rx_stats.csum_err++;
|
|
return;
|
|
}
|
|
|
|
/* It must be a TCP or UDP or SCTP packet with a valid checksum */
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
/* If there is an outer header present that might contain a checksum
|
|
* we need to bump the checksum level by 1 to reflect the fact that
|
|
* we are indicating we validated the inner checksum.
|
|
*/
|
|
if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
|
|
__skb_incr_checksum_unnecessary(skb);
|
|
ring->rx_stats.csum_good_cnt++;
|
|
}
|
|
|
|
static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
u16 ethertype;
|
|
u8 idx = 0;
|
|
|
|
if ((ring->netdev->features &
|
|
(NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
|
|
wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
|
|
idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
|
|
0x1c0) >> 6;
|
|
ethertype = ring->q_vector->wx->tpid[idx];
|
|
__vlan_hwaccel_put_tag(skb, htons(ethertype),
|
|
le16_to_cpu(rx_desc->wb.upper.vlan));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* wx_process_skb_fields - Populate skb header fields from Rx descriptor
|
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
|
* @rx_desc: pointer to the EOP Rx descriptor
|
|
* @skb: pointer to current skb being populated
|
|
*
|
|
* This function checks the ring, descriptor, and packet information in
|
|
* order to populate the hash, checksum, protocol, and
|
|
* other fields within the skb.
|
|
**/
|
|
static void wx_process_skb_fields(struct wx_ring *rx_ring,
|
|
union wx_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
wx_rx_hash(rx_ring, rx_desc, skb);
|
|
wx_rx_checksum(rx_ring, rx_desc, skb);
|
|
wx_rx_vlan(rx_ring, rx_desc, skb);
|
|
skb_record_rx_queue(skb, rx_ring->queue_index);
|
|
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
|
|
}
|
|
|
|
/**
|
|
* wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
|
|
* @q_vector: structure containing interrupt and ring information
|
|
* @rx_ring: rx descriptor ring to transact packets on
|
|
* @budget: Total limit on number of packets to process
|
|
*
|
|
* This function provides a "bounce buffer" approach to Rx interrupt
|
|
* processing. The advantage to this is that on systems that have
|
|
* expensive overhead for IOMMU access this provides a means of avoiding
|
|
* it by maintaining the mapping of the page to the system.
|
|
*
|
|
* Returns amount of work completed.
|
|
**/
|
|
static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
|
|
struct wx_ring *rx_ring,
|
|
int budget)
|
|
{
|
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
|
u16 cleaned_count = wx_desc_unused(rx_ring);
|
|
|
|
do {
|
|
struct wx_rx_buffer *rx_buffer;
|
|
union wx_rx_desc *rx_desc;
|
|
struct sk_buff *skb;
|
|
int rx_buffer_pgcnt;
|
|
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (cleaned_count >= WX_RX_BUFFER_WRITE) {
|
|
wx_alloc_rx_buffers(rx_ring, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
|
if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
|
|
break;
|
|
|
|
/* This memory barrier is needed to keep us from reading
|
|
* any other fields out of the rx_desc until we know the
|
|
* descriptor has been written back
|
|
*/
|
|
dma_rmb();
|
|
|
|
rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
|
|
|
|
/* retrieve a buffer from the ring */
|
|
skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
|
|
|
|
/* exit if we failed to retrieve a buffer */
|
|
if (!skb) {
|
|
rx_buffer->pagecnt_bias++;
|
|
break;
|
|
}
|
|
|
|
wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
|
|
cleaned_count++;
|
|
|
|
/* place incomplete frames back on ring for completion */
|
|
if (wx_is_non_eop(rx_ring, rx_desc, skb))
|
|
continue;
|
|
|
|
/* verify the packet layout is correct */
|
|
if (wx_cleanup_headers(rx_ring, rx_desc, skb))
|
|
continue;
|
|
|
|
/* probably a little skewed due to removing CRC */
|
|
total_rx_bytes += skb->len;
|
|
|
|
/* populate checksum, timestamp, VLAN, and protocol */
|
|
wx_process_skb_fields(rx_ring, rx_desc, skb);
|
|
napi_gro_receive(&q_vector->napi, skb);
|
|
|
|
/* update budget accounting */
|
|
total_rx_packets++;
|
|
} while (likely(total_rx_packets < budget));
|
|
|
|
u64_stats_update_begin(&rx_ring->syncp);
|
|
rx_ring->stats.packets += total_rx_packets;
|
|
rx_ring->stats.bytes += total_rx_bytes;
|
|
u64_stats_update_end(&rx_ring->syncp);
|
|
q_vector->rx.total_packets += total_rx_packets;
|
|
q_vector->rx.total_bytes += total_rx_bytes;
|
|
|
|
return total_rx_packets;
|
|
}
|
|
|
|
static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
|
|
{
|
|
return netdev_get_tx_queue(ring->netdev, ring->queue_index);
|
|
}
|
|
|
|
/**
|
|
* wx_clean_tx_irq - Reclaim resources after transmit completes
|
|
* @q_vector: structure containing interrupt and ring information
|
|
* @tx_ring: tx ring to clean
|
|
* @napi_budget: Used to determine if we are in netpoll
|
|
**/
|
|
static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
|
|
struct wx_ring *tx_ring, int napi_budget)
|
|
{
|
|
unsigned int budget = q_vector->wx->tx_work_limit;
|
|
unsigned int total_bytes = 0, total_packets = 0;
|
|
unsigned int i = tx_ring->next_to_clean;
|
|
struct wx_tx_buffer *tx_buffer;
|
|
union wx_tx_desc *tx_desc;
|
|
|
|
if (!netif_carrier_ok(tx_ring->netdev))
|
|
return true;
|
|
|
|
tx_buffer = &tx_ring->tx_buffer_info[i];
|
|
tx_desc = WX_TX_DESC(tx_ring, i);
|
|
i -= tx_ring->count;
|
|
|
|
do {
|
|
union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
|
|
|
|
/* if next_to_watch is not set then there is no work pending */
|
|
if (!eop_desc)
|
|
break;
|
|
|
|
/* prevent any other reads prior to eop_desc */
|
|
smp_rmb();
|
|
|
|
/* if DD is not set pending work has not been completed */
|
|
if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
|
|
break;
|
|
|
|
/* clear next_to_watch to prevent false hangs */
|
|
tx_buffer->next_to_watch = NULL;
|
|
|
|
/* update the statistics for this packet */
|
|
total_bytes += tx_buffer->bytecount;
|
|
total_packets += tx_buffer->gso_segs;
|
|
|
|
/* free the skb */
|
|
napi_consume_skb(tx_buffer->skb, napi_budget);
|
|
|
|
/* unmap skb header data */
|
|
dma_unmap_single(tx_ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
|
|
/* clear tx_buffer data */
|
|
dma_unmap_len_set(tx_buffer, len, 0);
|
|
|
|
/* unmap remaining buffers */
|
|
while (tx_desc != eop_desc) {
|
|
tx_buffer++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buffer = tx_ring->tx_buffer_info;
|
|
tx_desc = WX_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* unmap any remaining paged data */
|
|
if (dma_unmap_len(tx_buffer, len)) {
|
|
dma_unmap_page(tx_ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_len_set(tx_buffer, len, 0);
|
|
}
|
|
}
|
|
|
|
/* move us one more past the eop_desc for start of next pkt */
|
|
tx_buffer++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buffer = tx_ring->tx_buffer_info;
|
|
tx_desc = WX_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* issue prefetch for next Tx descriptor */
|
|
prefetch(tx_desc);
|
|
|
|
/* update budget accounting */
|
|
budget--;
|
|
} while (likely(budget));
|
|
|
|
i += tx_ring->count;
|
|
tx_ring->next_to_clean = i;
|
|
u64_stats_update_begin(&tx_ring->syncp);
|
|
tx_ring->stats.bytes += total_bytes;
|
|
tx_ring->stats.packets += total_packets;
|
|
u64_stats_update_end(&tx_ring->syncp);
|
|
q_vector->tx.total_bytes += total_bytes;
|
|
q_vector->tx.total_packets += total_packets;
|
|
|
|
netdev_tx_completed_queue(wx_txring_txq(tx_ring),
|
|
total_packets, total_bytes);
|
|
|
|
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
|
|
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
|
|
(wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
|
|
/* Make sure that anybody stopping the queue after this
|
|
* sees the new next_to_clean.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (__netif_subqueue_stopped(tx_ring->netdev,
|
|
tx_ring->queue_index) &&
|
|
netif_running(tx_ring->netdev))
|
|
netif_wake_subqueue(tx_ring->netdev,
|
|
tx_ring->queue_index);
|
|
}
|
|
|
|
return !!budget;
|
|
}
|
|
|
|
/**
|
|
* wx_poll - NAPI polling RX/TX cleanup routine
|
|
* @napi: napi struct with our devices info in it
|
|
* @budget: amount of work driver is allowed to do this pass, in packets
|
|
*
|
|
* This function will clean all queues associated with a q_vector.
|
|
**/
|
|
static int wx_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
|
|
int per_ring_budget, work_done = 0;
|
|
struct wx *wx = q_vector->wx;
|
|
bool clean_complete = true;
|
|
struct wx_ring *ring;
|
|
|
|
wx_for_each_ring(ring, q_vector->tx) {
|
|
if (!wx_clean_tx_irq(q_vector, ring, budget))
|
|
clean_complete = false;
|
|
}
|
|
|
|
/* Exit if we are called by netpoll */
|
|
if (budget <= 0)
|
|
return budget;
|
|
|
|
/* attempt to distribute budget to each queue fairly, but don't allow
|
|
* the budget to go below 1 because we'll exit polling
|
|
*/
|
|
if (q_vector->rx.count > 1)
|
|
per_ring_budget = max(budget / q_vector->rx.count, 1);
|
|
else
|
|
per_ring_budget = budget;
|
|
|
|
wx_for_each_ring(ring, q_vector->rx) {
|
|
int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
|
|
|
|
work_done += cleaned;
|
|
if (cleaned >= per_ring_budget)
|
|
clean_complete = false;
|
|
}
|
|
|
|
/* If all work not completed, return budget and keep polling */
|
|
if (!clean_complete)
|
|
return budget;
|
|
|
|
/* all work done, exit the polling mode */
|
|
if (likely(napi_complete_done(napi, work_done))) {
|
|
if (netif_running(wx->netdev))
|
|
wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
|
|
}
|
|
|
|
return min(work_done, budget - 1);
|
|
}
|
|
|
|
static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
|
|
{
|
|
if (likely(wx_desc_unused(tx_ring) >= size))
|
|
return 0;
|
|
|
|
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
|
|
/* For the next check */
|
|
smp_mb();
|
|
|
|
/* We need to check again in a case another CPU has just
|
|
* made room available.
|
|
*/
|
|
if (likely(wx_desc_unused(tx_ring) < size))
|
|
return -EBUSY;
|
|
|
|
/* A reprieve! - use start_queue because it doesn't call schedule */
|
|
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 wx_tx_cmd_type(u32 tx_flags)
|
|
{
|
|
/* set type for advanced descriptor with frame checksum insertion */
|
|
u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
|
|
|
|
/* set HW vlan bit if vlan is present */
|
|
cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
|
|
/* set segmentation enable bits for TSO/FSO */
|
|
cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
|
|
/* set timestamp bit if present */
|
|
cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
|
|
cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
|
|
|
|
return cmd_type;
|
|
}
|
|
|
|
static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
|
|
u32 tx_flags, unsigned int paylen)
|
|
{
|
|
u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
|
|
|
|
/* enable L4 checksum for TSO and TX checksum offload */
|
|
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
|
|
/* enable IPv4 checksum for TSO */
|
|
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
|
|
/* enable outer IPv4 checksum for TSO */
|
|
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
|
|
WX_TXD_EIPCS);
|
|
/* Check Context must be set if Tx switch is enabled, which it
|
|
* always is for case where virtual functions are running
|
|
*/
|
|
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
|
|
olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
|
|
WX_TXD_IPSEC);
|
|
tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
|
|
}
|
|
|
|
static void wx_tx_map(struct wx_ring *tx_ring,
|
|
struct wx_tx_buffer *first,
|
|
const u8 hdr_len)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
struct wx_tx_buffer *tx_buffer;
|
|
u32 tx_flags = first->tx_flags;
|
|
u16 i = tx_ring->next_to_use;
|
|
unsigned int data_len, size;
|
|
union wx_tx_desc *tx_desc;
|
|
skb_frag_t *frag;
|
|
dma_addr_t dma;
|
|
u32 cmd_type;
|
|
|
|
cmd_type = wx_tx_cmd_type(tx_flags);
|
|
tx_desc = WX_TX_DESC(tx_ring, i);
|
|
wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
|
|
|
|
size = skb_headlen(skb);
|
|
data_len = skb->data_len;
|
|
dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
|
|
|
|
tx_buffer = first;
|
|
|
|
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
|
|
if (dma_mapping_error(tx_ring->dev, dma))
|
|
goto dma_error;
|
|
|
|
/* record length, and DMA address */
|
|
dma_unmap_len_set(tx_buffer, len, size);
|
|
dma_unmap_addr_set(tx_buffer, dma, dma);
|
|
|
|
tx_desc->read.buffer_addr = cpu_to_le64(dma);
|
|
|
|
while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
|
|
tx_desc->read.cmd_type_len =
|
|
cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
|
|
|
|
i++;
|
|
tx_desc++;
|
|
if (i == tx_ring->count) {
|
|
tx_desc = WX_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
tx_desc->read.olinfo_status = 0;
|
|
|
|
dma += WX_MAX_DATA_PER_TXD;
|
|
size -= WX_MAX_DATA_PER_TXD;
|
|
|
|
tx_desc->read.buffer_addr = cpu_to_le64(dma);
|
|
}
|
|
|
|
if (likely(!data_len))
|
|
break;
|
|
|
|
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
|
|
|
|
i++;
|
|
tx_desc++;
|
|
if (i == tx_ring->count) {
|
|
tx_desc = WX_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
tx_desc->read.olinfo_status = 0;
|
|
|
|
size = skb_frag_size(frag);
|
|
|
|
data_len -= size;
|
|
|
|
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
|
|
DMA_TO_DEVICE);
|
|
|
|
tx_buffer = &tx_ring->tx_buffer_info[i];
|
|
}
|
|
|
|
/* write last descriptor with RS and EOP bits */
|
|
cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
|
|
tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
|
|
|
|
netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
/* Force memory writes to complete before letting h/w know there
|
|
* are new descriptors to fetch. (Only applicable for weak-ordered
|
|
* memory model archs, such as IA-64).
|
|
*
|
|
* We also need this memory barrier to make certain all of the
|
|
* status bits have been updated before next_to_watch is written.
|
|
*/
|
|
wmb();
|
|
|
|
/* set next_to_watch value indicating a packet is present */
|
|
first->next_to_watch = tx_desc;
|
|
|
|
i++;
|
|
if (i == tx_ring->count)
|
|
i = 0;
|
|
|
|
tx_ring->next_to_use = i;
|
|
|
|
wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
|
|
|
|
if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
|
|
writel(i, tx_ring->tail);
|
|
|
|
return;
|
|
dma_error:
|
|
dev_err(tx_ring->dev, "TX DMA map failed\n");
|
|
|
|
/* clear dma mappings for failed tx_buffer_info map */
|
|
for (;;) {
|
|
tx_buffer = &tx_ring->tx_buffer_info[i];
|
|
if (dma_unmap_len(tx_buffer, len))
|
|
dma_unmap_page(tx_ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_len_set(tx_buffer, len, 0);
|
|
if (tx_buffer == first)
|
|
break;
|
|
if (i == 0)
|
|
i += tx_ring->count;
|
|
i--;
|
|
}
|
|
|
|
dev_kfree_skb_any(first->skb);
|
|
first->skb = NULL;
|
|
|
|
tx_ring->next_to_use = i;
|
|
}
|
|
|
|
static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
|
|
u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
|
|
{
|
|
struct wx_tx_context_desc *context_desc;
|
|
u16 i = tx_ring->next_to_use;
|
|
|
|
context_desc = WX_TX_CTXTDESC(tx_ring, i);
|
|
i++;
|
|
tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
|
|
|
|
/* set bits to identify this as an advanced context descriptor */
|
|
type_tucmd |= WX_TXD_DTYP_CTXT;
|
|
context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
|
|
context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof);
|
|
context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
|
|
context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
|
|
}
|
|
|
|
static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
|
|
{
|
|
struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
|
|
|
|
*nexthdr = hdr->nexthdr;
|
|
offset += sizeof(struct ipv6hdr);
|
|
while (ipv6_ext_hdr(*nexthdr)) {
|
|
struct ipv6_opt_hdr _hdr, *hp;
|
|
|
|
if (*nexthdr == NEXTHDR_NONE)
|
|
return;
|
|
hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
|
|
if (!hp)
|
|
return;
|
|
if (*nexthdr == NEXTHDR_FRAGMENT)
|
|
break;
|
|
*nexthdr = hp->nexthdr;
|
|
}
|
|
}
|
|
|
|
union network_header {
|
|
struct iphdr *ipv4;
|
|
struct ipv6hdr *ipv6;
|
|
void *raw;
|
|
};
|
|
|
|
static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
|
|
{
|
|
u8 tun_prot = 0, l4_prot = 0, ptype = 0;
|
|
struct sk_buff *skb = first->skb;
|
|
|
|
if (skb->encapsulation) {
|
|
union network_header hdr;
|
|
|
|
switch (first->protocol) {
|
|
case htons(ETH_P_IP):
|
|
tun_prot = ip_hdr(skb)->protocol;
|
|
ptype = WX_PTYPE_TUN_IPV4;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
|
|
ptype = WX_PTYPE_TUN_IPV6;
|
|
break;
|
|
default:
|
|
return ptype;
|
|
}
|
|
|
|
if (tun_prot == IPPROTO_IPIP) {
|
|
hdr.raw = (void *)inner_ip_hdr(skb);
|
|
ptype |= WX_PTYPE_PKT_IPIP;
|
|
} else if (tun_prot == IPPROTO_UDP) {
|
|
hdr.raw = (void *)inner_ip_hdr(skb);
|
|
if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
|
|
skb->inner_protocol != htons(ETH_P_TEB)) {
|
|
ptype |= WX_PTYPE_PKT_IG;
|
|
} else {
|
|
if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
|
|
== htons(ETH_P_8021Q))
|
|
ptype |= WX_PTYPE_PKT_IGMV;
|
|
else
|
|
ptype |= WX_PTYPE_PKT_IGM;
|
|
}
|
|
|
|
} else if (tun_prot == IPPROTO_GRE) {
|
|
hdr.raw = (void *)inner_ip_hdr(skb);
|
|
if (skb->inner_protocol == htons(ETH_P_IP) ||
|
|
skb->inner_protocol == htons(ETH_P_IPV6)) {
|
|
ptype |= WX_PTYPE_PKT_IG;
|
|
} else {
|
|
if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
|
|
== htons(ETH_P_8021Q))
|
|
ptype |= WX_PTYPE_PKT_IGMV;
|
|
else
|
|
ptype |= WX_PTYPE_PKT_IGM;
|
|
}
|
|
} else {
|
|
return ptype;
|
|
}
|
|
|
|
switch (hdr.ipv4->version) {
|
|
case IPVERSION:
|
|
l4_prot = hdr.ipv4->protocol;
|
|
break;
|
|
case 6:
|
|
wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
|
|
ptype |= WX_PTYPE_PKT_IPV6;
|
|
break;
|
|
default:
|
|
return ptype;
|
|
}
|
|
} else {
|
|
switch (first->protocol) {
|
|
case htons(ETH_P_IP):
|
|
l4_prot = ip_hdr(skb)->protocol;
|
|
ptype = WX_PTYPE_PKT_IP;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
|
|
ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
|
|
break;
|
|
default:
|
|
return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
|
|
}
|
|
}
|
|
switch (l4_prot) {
|
|
case IPPROTO_TCP:
|
|
ptype |= WX_PTYPE_TYP_TCP;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
ptype |= WX_PTYPE_TYP_UDP;
|
|
break;
|
|
case IPPROTO_SCTP:
|
|
ptype |= WX_PTYPE_TYP_SCTP;
|
|
break;
|
|
default:
|
|
ptype |= WX_PTYPE_TYP_IP;
|
|
break;
|
|
}
|
|
|
|
return ptype;
|
|
}
|
|
|
|
static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
|
|
u8 *hdr_len, u8 ptype)
|
|
{
|
|
u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
|
|
struct net_device *netdev = tx_ring->netdev;
|
|
u32 l4len, tunhdr_eiplen_tunlen = 0;
|
|
struct sk_buff *skb = first->skb;
|
|
bool enc = skb->encapsulation;
|
|
struct ipv6hdr *ipv6h;
|
|
struct tcphdr *tcph;
|
|
struct iphdr *iph;
|
|
u8 tun_prot = 0;
|
|
int err;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
if (!skb_is_gso(skb))
|
|
return 0;
|
|
|
|
err = skb_cow_head(skb, 0);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* indicates the inner headers in the skbuff are valid. */
|
|
iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
|
|
if (iph->version == 4) {
|
|
tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
|
|
iph->tot_len = 0;
|
|
iph->check = 0;
|
|
tcph->check = ~csum_tcpudp_magic(iph->saddr,
|
|
iph->daddr, 0,
|
|
IPPROTO_TCP, 0);
|
|
first->tx_flags |= WX_TX_FLAGS_TSO |
|
|
WX_TX_FLAGS_CSUM |
|
|
WX_TX_FLAGS_IPV4 |
|
|
WX_TX_FLAGS_CC;
|
|
} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
|
|
ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
|
|
tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
|
|
ipv6h->payload_len = 0;
|
|
tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
|
|
&ipv6h->daddr, 0,
|
|
IPPROTO_TCP, 0);
|
|
first->tx_flags |= WX_TX_FLAGS_TSO |
|
|
WX_TX_FLAGS_CSUM |
|
|
WX_TX_FLAGS_CC;
|
|
}
|
|
|
|
/* compute header lengths */
|
|
l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
|
|
*hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) :
|
|
skb_transport_offset(skb);
|
|
*hdr_len += l4len;
|
|
|
|
/* update gso size and bytecount with header size */
|
|
first->gso_segs = skb_shinfo(skb)->gso_segs;
|
|
first->bytecount += (first->gso_segs - 1) * *hdr_len;
|
|
|
|
/* mss_l4len_id: use 0 as index for TSO */
|
|
mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
|
|
mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
|
|
|
|
/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
|
|
if (enc) {
|
|
switch (first->protocol) {
|
|
case htons(ETH_P_IP):
|
|
tun_prot = ip_hdr(skb)->protocol;
|
|
first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
tun_prot = ipv6_hdr(skb)->nexthdr;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
switch (tun_prot) {
|
|
case IPPROTO_UDP:
|
|
tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
|
|
tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
|
|
WX_TXD_OUTER_IPLEN_SHIFT) |
|
|
(((skb_inner_mac_header(skb) -
|
|
skb_transport_header(skb)) >> 1) <<
|
|
WX_TXD_TUNNEL_LEN_SHIFT);
|
|
break;
|
|
case IPPROTO_GRE:
|
|
tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
|
|
tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
|
|
WX_TXD_OUTER_IPLEN_SHIFT) |
|
|
(((skb_inner_mac_header(skb) -
|
|
skb_transport_header(skb)) >> 1) <<
|
|
WX_TXD_TUNNEL_LEN_SHIFT);
|
|
break;
|
|
case IPPROTO_IPIP:
|
|
tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
|
|
(char *)ip_hdr(skb)) >> 2) <<
|
|
WX_TXD_OUTER_IPLEN_SHIFT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
|
|
} else {
|
|
vlan_macip_lens = skb_network_header_len(skb) >> 1;
|
|
}
|
|
|
|
vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
|
|
vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
|
|
|
|
type_tucmd = ptype << 24;
|
|
if (skb->vlan_proto == htons(ETH_P_8021AD) &&
|
|
netdev->features & NETIF_F_HW_VLAN_STAG_TX)
|
|
type_tucmd |= WX_SET_FLAG(first->tx_flags,
|
|
WX_TX_FLAGS_HW_VLAN,
|
|
0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
|
|
wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
|
|
type_tucmd, mss_l4len_idx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
|
|
u8 ptype)
|
|
{
|
|
u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
|
|
struct net_device *netdev = tx_ring->netdev;
|
|
u32 mss_l4len_idx = 0, type_tucmd;
|
|
struct sk_buff *skb = first->skb;
|
|
u8 tun_prot = 0;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL) {
|
|
if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
|
|
!(first->tx_flags & WX_TX_FLAGS_CC))
|
|
return;
|
|
vlan_macip_lens = skb_network_offset(skb) <<
|
|
WX_TXD_MACLEN_SHIFT;
|
|
} else {
|
|
u8 l4_prot = 0;
|
|
union {
|
|
struct iphdr *ipv4;
|
|
struct ipv6hdr *ipv6;
|
|
u8 *raw;
|
|
} network_hdr;
|
|
union {
|
|
struct tcphdr *tcphdr;
|
|
u8 *raw;
|
|
} transport_hdr;
|
|
|
|
if (skb->encapsulation) {
|
|
network_hdr.raw = skb_inner_network_header(skb);
|
|
transport_hdr.raw = skb_inner_transport_header(skb);
|
|
vlan_macip_lens = skb_network_offset(skb) <<
|
|
WX_TXD_MACLEN_SHIFT;
|
|
switch (first->protocol) {
|
|
case htons(ETH_P_IP):
|
|
tun_prot = ip_hdr(skb)->protocol;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
tun_prot = ipv6_hdr(skb)->nexthdr;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
switch (tun_prot) {
|
|
case IPPROTO_UDP:
|
|
tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
|
|
tunhdr_eiplen_tunlen |=
|
|
((skb_network_header_len(skb) >> 2) <<
|
|
WX_TXD_OUTER_IPLEN_SHIFT) |
|
|
(((skb_inner_mac_header(skb) -
|
|
skb_transport_header(skb)) >> 1) <<
|
|
WX_TXD_TUNNEL_LEN_SHIFT);
|
|
break;
|
|
case IPPROTO_GRE:
|
|
tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
|
|
tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
|
|
WX_TXD_OUTER_IPLEN_SHIFT) |
|
|
(((skb_inner_mac_header(skb) -
|
|
skb_transport_header(skb)) >> 1) <<
|
|
WX_TXD_TUNNEL_LEN_SHIFT);
|
|
break;
|
|
case IPPROTO_IPIP:
|
|
tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
|
|
(char *)ip_hdr(skb)) >> 2) <<
|
|
WX_TXD_OUTER_IPLEN_SHIFT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
network_hdr.raw = skb_network_header(skb);
|
|
transport_hdr.raw = skb_transport_header(skb);
|
|
vlan_macip_lens = skb_network_offset(skb) <<
|
|
WX_TXD_MACLEN_SHIFT;
|
|
}
|
|
|
|
switch (network_hdr.ipv4->version) {
|
|
case IPVERSION:
|
|
vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
|
|
l4_prot = network_hdr.ipv4->protocol;
|
|
break;
|
|
case 6:
|
|
vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
|
|
l4_prot = network_hdr.ipv6->nexthdr;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (l4_prot) {
|
|
case IPPROTO_TCP:
|
|
mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
|
|
WX_TXD_L4LEN_SHIFT;
|
|
break;
|
|
case IPPROTO_SCTP:
|
|
mss_l4len_idx = sizeof(struct sctphdr) <<
|
|
WX_TXD_L4LEN_SHIFT;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
mss_l4len_idx = sizeof(struct udphdr) <<
|
|
WX_TXD_L4LEN_SHIFT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* update TX checksum flag */
|
|
first->tx_flags |= WX_TX_FLAGS_CSUM;
|
|
}
|
|
first->tx_flags |= WX_TX_FLAGS_CC;
|
|
/* vlan_macip_lens: MACLEN, VLAN tag */
|
|
vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
|
|
|
|
type_tucmd = ptype << 24;
|
|
if (skb->vlan_proto == htons(ETH_P_8021AD) &&
|
|
netdev->features & NETIF_F_HW_VLAN_STAG_TX)
|
|
type_tucmd |= WX_SET_FLAG(first->tx_flags,
|
|
WX_TX_FLAGS_HW_VLAN,
|
|
0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
|
|
wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
|
|
type_tucmd, mss_l4len_idx);
|
|
}
|
|
|
|
static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
|
|
struct wx_ring *tx_ring)
|
|
{
|
|
u16 count = TXD_USE_COUNT(skb_headlen(skb));
|
|
struct wx_tx_buffer *first;
|
|
u8 hdr_len = 0, ptype;
|
|
unsigned short f;
|
|
u32 tx_flags = 0;
|
|
int tso;
|
|
|
|
/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
|
|
* + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
|
|
* + 2 desc gap to keep tail from touching head,
|
|
* + 1 desc for context descriptor,
|
|
* otherwise try next time
|
|
*/
|
|
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
|
|
count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
|
|
frags[f]));
|
|
|
|
if (wx_maybe_stop_tx(tx_ring, count + 3))
|
|
return NETDEV_TX_BUSY;
|
|
|
|
/* record the location of the first descriptor for this packet */
|
|
first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
|
|
first->skb = skb;
|
|
first->bytecount = skb->len;
|
|
first->gso_segs = 1;
|
|
|
|
/* if we have a HW VLAN tag being added default to the HW one */
|
|
if (skb_vlan_tag_present(skb)) {
|
|
tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
|
|
tx_flags |= WX_TX_FLAGS_HW_VLAN;
|
|
}
|
|
|
|
/* record initial flags and protocol */
|
|
first->tx_flags = tx_flags;
|
|
first->protocol = vlan_get_protocol(skb);
|
|
|
|
ptype = wx_encode_tx_desc_ptype(first);
|
|
|
|
tso = wx_tso(tx_ring, first, &hdr_len, ptype);
|
|
if (tso < 0)
|
|
goto out_drop;
|
|
else if (!tso)
|
|
wx_tx_csum(tx_ring, first, ptype);
|
|
wx_tx_map(tx_ring, first, hdr_len);
|
|
|
|
return NETDEV_TX_OK;
|
|
out_drop:
|
|
dev_kfree_skb_any(first->skb);
|
|
first->skb = NULL;
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
|
|
struct net_device *netdev)
|
|
{
|
|
unsigned int r_idx = skb->queue_mapping;
|
|
struct wx *wx = netdev_priv(netdev);
|
|
struct wx_ring *tx_ring;
|
|
|
|
if (!netif_carrier_ok(netdev)) {
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* The minimum packet size for olinfo paylen is 17 so pad the skb
|
|
* in order to meet this minimum size requirement.
|
|
*/
|
|
if (skb_put_padto(skb, 17))
|
|
return NETDEV_TX_OK;
|
|
|
|
if (r_idx >= wx->num_tx_queues)
|
|
r_idx = r_idx % wx->num_tx_queues;
|
|
tx_ring = wx->tx_ring[r_idx];
|
|
|
|
return wx_xmit_frame_ring(skb, tx_ring);
|
|
}
|
|
EXPORT_SYMBOL(wx_xmit_frame);
|
|
|
|
void wx_napi_enable_all(struct wx *wx)
|
|
{
|
|
struct wx_q_vector *q_vector;
|
|
int q_idx;
|
|
|
|
for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
|
|
q_vector = wx->q_vector[q_idx];
|
|
napi_enable(&q_vector->napi);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(wx_napi_enable_all);
|
|
|
|
void wx_napi_disable_all(struct wx *wx)
|
|
{
|
|
struct wx_q_vector *q_vector;
|
|
int q_idx;
|
|
|
|
for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
|
|
q_vector = wx->q_vector[q_idx];
|
|
napi_disable(&q_vector->napi);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(wx_napi_disable_all);
|
|
|
|
/**
|
|
* wx_set_rss_queues: Allocate queues for RSS
|
|
* @wx: board private structure to initialize
|
|
*
|
|
* This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
|
|
* to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
|
|
*
|
|
**/
|
|
static void wx_set_rss_queues(struct wx *wx)
|
|
{
|
|
wx->num_rx_queues = wx->mac.max_rx_queues;
|
|
wx->num_tx_queues = wx->mac.max_tx_queues;
|
|
}
|
|
|
|
static void wx_set_num_queues(struct wx *wx)
|
|
{
|
|
/* Start with base case */
|
|
wx->num_rx_queues = 1;
|
|
wx->num_tx_queues = 1;
|
|
wx->queues_per_pool = 1;
|
|
|
|
wx_set_rss_queues(wx);
|
|
}
|
|
|
|
/**
|
|
* wx_acquire_msix_vectors - acquire MSI-X vectors
|
|
* @wx: board private structure
|
|
*
|
|
* Attempts to acquire a suitable range of MSI-X vector interrupts. Will
|
|
* return a negative error code if unable to acquire MSI-X vectors for any
|
|
* reason.
|
|
*/
|
|
static int wx_acquire_msix_vectors(struct wx *wx)
|
|
{
|
|
struct irq_affinity affd = {0, };
|
|
int nvecs, i;
|
|
|
|
nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors);
|
|
|
|
wx->msix_entries = kcalloc(nvecs,
|
|
sizeof(struct msix_entry),
|
|
GFP_KERNEL);
|
|
if (!wx->msix_entries)
|
|
return -ENOMEM;
|
|
|
|
nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
|
|
nvecs,
|
|
PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
|
|
&affd);
|
|
if (nvecs < 0) {
|
|
wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
|
|
kfree(wx->msix_entries);
|
|
wx->msix_entries = NULL;
|
|
return nvecs;
|
|
}
|
|
|
|
for (i = 0; i < nvecs; i++) {
|
|
wx->msix_entries[i].entry = i;
|
|
wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i);
|
|
}
|
|
|
|
/* one for msix_other */
|
|
nvecs -= 1;
|
|
wx->num_q_vectors = nvecs;
|
|
wx->num_rx_queues = nvecs;
|
|
wx->num_tx_queues = nvecs;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wx_set_interrupt_capability - set MSI-X or MSI if supported
|
|
* @wx: board private structure to initialize
|
|
*
|
|
* Attempt to configure the interrupts using the best available
|
|
* capabilities of the hardware and the kernel.
|
|
**/
|
|
static int wx_set_interrupt_capability(struct wx *wx)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
int nvecs, ret;
|
|
|
|
/* We will try to get MSI-X interrupts first */
|
|
ret = wx_acquire_msix_vectors(wx);
|
|
if (ret == 0 || (ret == -ENOMEM))
|
|
return ret;
|
|
|
|
wx->num_rx_queues = 1;
|
|
wx->num_tx_queues = 1;
|
|
wx->num_q_vectors = 1;
|
|
|
|
/* minmum one for queue, one for misc*/
|
|
nvecs = 1;
|
|
nvecs = pci_alloc_irq_vectors(pdev, nvecs,
|
|
nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
|
|
if (nvecs == 1) {
|
|
if (pdev->msi_enabled)
|
|
wx_err(wx, "Fallback to MSI.\n");
|
|
else
|
|
wx_err(wx, "Fallback to LEGACY.\n");
|
|
} else {
|
|
wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
|
|
return nvecs;
|
|
}
|
|
|
|
pdev->irq = pci_irq_vector(pdev, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wx_cache_ring_rss - Descriptor ring to register mapping for RSS
|
|
* @wx: board private structure to initialize
|
|
*
|
|
* Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
|
|
*
|
|
**/
|
|
static void wx_cache_ring_rss(struct wx *wx)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 0; i < wx->num_rx_queues; i++)
|
|
wx->rx_ring[i]->reg_idx = i;
|
|
|
|
for (i = 0; i < wx->num_tx_queues; i++)
|
|
wx->tx_ring[i]->reg_idx = i;
|
|
}
|
|
|
|
static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
|
|
{
|
|
ring->next = head->ring;
|
|
head->ring = ring;
|
|
head->count++;
|
|
}
|
|
|
|
/**
|
|
* wx_alloc_q_vector - Allocate memory for a single interrupt vector
|
|
* @wx: board private structure to initialize
|
|
* @v_count: q_vectors allocated on wx, used for ring interleaving
|
|
* @v_idx: index of vector in wx struct
|
|
* @txr_count: total number of Tx rings to allocate
|
|
* @txr_idx: index of first Tx ring to allocate
|
|
* @rxr_count: total number of Rx rings to allocate
|
|
* @rxr_idx: index of first Rx ring to allocate
|
|
*
|
|
* We allocate one q_vector. If allocation fails we return -ENOMEM.
|
|
**/
|
|
static int wx_alloc_q_vector(struct wx *wx,
|
|
unsigned int v_count, unsigned int v_idx,
|
|
unsigned int txr_count, unsigned int txr_idx,
|
|
unsigned int rxr_count, unsigned int rxr_idx)
|
|
{
|
|
struct wx_q_vector *q_vector;
|
|
int ring_count, default_itr;
|
|
struct wx_ring *ring;
|
|
|
|
/* note this will allocate space for the ring structure as well! */
|
|
ring_count = txr_count + rxr_count;
|
|
|
|
q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
|
|
GFP_KERNEL);
|
|
if (!q_vector)
|
|
return -ENOMEM;
|
|
|
|
/* initialize NAPI */
|
|
netif_napi_add(wx->netdev, &q_vector->napi,
|
|
wx_poll);
|
|
|
|
/* tie q_vector and wx together */
|
|
wx->q_vector[v_idx] = q_vector;
|
|
q_vector->wx = wx;
|
|
q_vector->v_idx = v_idx;
|
|
if (cpu_online(v_idx))
|
|
q_vector->numa_node = cpu_to_node(v_idx);
|
|
|
|
/* initialize pointer to rings */
|
|
ring = q_vector->ring;
|
|
|
|
if (wx->mac.type == wx_mac_sp)
|
|
default_itr = WX_12K_ITR;
|
|
else
|
|
default_itr = WX_7K_ITR;
|
|
/* initialize ITR */
|
|
if (txr_count && !rxr_count)
|
|
/* tx only vector */
|
|
q_vector->itr = wx->tx_itr_setting ?
|
|
default_itr : wx->tx_itr_setting;
|
|
else
|
|
/* rx or rx/tx vector */
|
|
q_vector->itr = wx->rx_itr_setting ?
|
|
default_itr : wx->rx_itr_setting;
|
|
|
|
while (txr_count) {
|
|
/* assign generic ring traits */
|
|
ring->dev = &wx->pdev->dev;
|
|
ring->netdev = wx->netdev;
|
|
|
|
/* configure backlink on ring */
|
|
ring->q_vector = q_vector;
|
|
|
|
/* update q_vector Tx values */
|
|
wx_add_ring(ring, &q_vector->tx);
|
|
|
|
/* apply Tx specific ring traits */
|
|
ring->count = wx->tx_ring_count;
|
|
|
|
ring->queue_index = txr_idx;
|
|
|
|
/* assign ring to wx */
|
|
wx->tx_ring[txr_idx] = ring;
|
|
|
|
/* update count and index */
|
|
txr_count--;
|
|
txr_idx += v_count;
|
|
|
|
/* push pointer to next ring */
|
|
ring++;
|
|
}
|
|
|
|
while (rxr_count) {
|
|
/* assign generic ring traits */
|
|
ring->dev = &wx->pdev->dev;
|
|
ring->netdev = wx->netdev;
|
|
|
|
/* configure backlink on ring */
|
|
ring->q_vector = q_vector;
|
|
|
|
/* update q_vector Rx values */
|
|
wx_add_ring(ring, &q_vector->rx);
|
|
|
|
/* apply Rx specific ring traits */
|
|
ring->count = wx->rx_ring_count;
|
|
ring->queue_index = rxr_idx;
|
|
|
|
/* assign ring to wx */
|
|
wx->rx_ring[rxr_idx] = ring;
|
|
|
|
/* update count and index */
|
|
rxr_count--;
|
|
rxr_idx += v_count;
|
|
|
|
/* push pointer to next ring */
|
|
ring++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wx_free_q_vector - Free memory allocated for specific interrupt vector
|
|
* @wx: board private structure to initialize
|
|
* @v_idx: Index of vector to be freed
|
|
*
|
|
* This function frees the memory allocated to the q_vector. In addition if
|
|
* NAPI is enabled it will delete any references to the NAPI struct prior
|
|
* to freeing the q_vector.
|
|
**/
|
|
static void wx_free_q_vector(struct wx *wx, int v_idx)
|
|
{
|
|
struct wx_q_vector *q_vector = wx->q_vector[v_idx];
|
|
struct wx_ring *ring;
|
|
|
|
wx_for_each_ring(ring, q_vector->tx)
|
|
wx->tx_ring[ring->queue_index] = NULL;
|
|
|
|
wx_for_each_ring(ring, q_vector->rx)
|
|
wx->rx_ring[ring->queue_index] = NULL;
|
|
|
|
wx->q_vector[v_idx] = NULL;
|
|
netif_napi_del(&q_vector->napi);
|
|
kfree_rcu(q_vector, rcu);
|
|
}
|
|
|
|
/**
|
|
* wx_alloc_q_vectors - Allocate memory for interrupt vectors
|
|
* @wx: board private structure to initialize
|
|
*
|
|
* We allocate one q_vector per queue interrupt. If allocation fails we
|
|
* return -ENOMEM.
|
|
**/
|
|
static int wx_alloc_q_vectors(struct wx *wx)
|
|
{
|
|
unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
|
|
unsigned int rxr_remaining = wx->num_rx_queues;
|
|
unsigned int txr_remaining = wx->num_tx_queues;
|
|
unsigned int q_vectors = wx->num_q_vectors;
|
|
int rqpv, tqpv;
|
|
int err;
|
|
|
|
for (; v_idx < q_vectors; v_idx++) {
|
|
rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
|
|
tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
|
|
err = wx_alloc_q_vector(wx, q_vectors, v_idx,
|
|
tqpv, txr_idx,
|
|
rqpv, rxr_idx);
|
|
|
|
if (err)
|
|
goto err_out;
|
|
|
|
/* update counts and index */
|
|
rxr_remaining -= rqpv;
|
|
txr_remaining -= tqpv;
|
|
rxr_idx++;
|
|
txr_idx++;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
wx->num_tx_queues = 0;
|
|
wx->num_rx_queues = 0;
|
|
wx->num_q_vectors = 0;
|
|
|
|
while (v_idx--)
|
|
wx_free_q_vector(wx, v_idx);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* wx_free_q_vectors - Free memory allocated for interrupt vectors
|
|
* @wx: board private structure to initialize
|
|
*
|
|
* This function frees the memory allocated to the q_vectors. In addition if
|
|
* NAPI is enabled it will delete any references to the NAPI struct prior
|
|
* to freeing the q_vector.
|
|
**/
|
|
static void wx_free_q_vectors(struct wx *wx)
|
|
{
|
|
int v_idx = wx->num_q_vectors;
|
|
|
|
wx->num_tx_queues = 0;
|
|
wx->num_rx_queues = 0;
|
|
wx->num_q_vectors = 0;
|
|
|
|
while (v_idx--)
|
|
wx_free_q_vector(wx, v_idx);
|
|
}
|
|
|
|
void wx_reset_interrupt_capability(struct wx *wx)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
|
|
if (!pdev->msi_enabled && !pdev->msix_enabled)
|
|
return;
|
|
|
|
pci_free_irq_vectors(wx->pdev);
|
|
if (pdev->msix_enabled) {
|
|
kfree(wx->msix_entries);
|
|
wx->msix_entries = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(wx_reset_interrupt_capability);
|
|
|
|
/**
|
|
* wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
|
|
* @wx: board private structure to clear interrupt scheme on
|
|
*
|
|
* We go through and clear interrupt specific resources and reset the structure
|
|
* to pre-load conditions
|
|
**/
|
|
void wx_clear_interrupt_scheme(struct wx *wx)
|
|
{
|
|
wx_free_q_vectors(wx);
|
|
wx_reset_interrupt_capability(wx);
|
|
}
|
|
EXPORT_SYMBOL(wx_clear_interrupt_scheme);
|
|
|
|
int wx_init_interrupt_scheme(struct wx *wx)
|
|
{
|
|
int ret;
|
|
|
|
/* Number of supported queues */
|
|
wx_set_num_queues(wx);
|
|
|
|
/* Set interrupt mode */
|
|
ret = wx_set_interrupt_capability(wx);
|
|
if (ret) {
|
|
wx_err(wx, "Allocate irq vectors for failed.\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Allocate memory for queues */
|
|
ret = wx_alloc_q_vectors(wx);
|
|
if (ret) {
|
|
wx_err(wx, "Unable to allocate memory for queue vectors.\n");
|
|
wx_reset_interrupt_capability(wx);
|
|
return ret;
|
|
}
|
|
|
|
wx_cache_ring_rss(wx);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wx_init_interrupt_scheme);
|
|
|
|
irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
|
|
{
|
|
struct wx_q_vector *q_vector = data;
|
|
|
|
/* EIAM disabled interrupts (on this vector) for us */
|
|
if (q_vector->rx.ring || q_vector->tx.ring)
|
|
napi_schedule_irqoff(&q_vector->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
EXPORT_SYMBOL(wx_msix_clean_rings);
|
|
|
|
void wx_free_irq(struct wx *wx)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
int vector;
|
|
|
|
if (!(pdev->msix_enabled)) {
|
|
free_irq(pdev->irq, wx);
|
|
return;
|
|
}
|
|
|
|
for (vector = 0; vector < wx->num_q_vectors; vector++) {
|
|
struct wx_q_vector *q_vector = wx->q_vector[vector];
|
|
struct msix_entry *entry = &wx->msix_entries[vector];
|
|
|
|
/* free only the irqs that were actually requested */
|
|
if (!q_vector->rx.ring && !q_vector->tx.ring)
|
|
continue;
|
|
|
|
free_irq(entry->vector, q_vector);
|
|
}
|
|
|
|
if (wx->mac.type == wx_mac_em)
|
|
free_irq(wx->msix_entries[vector].vector, wx);
|
|
}
|
|
EXPORT_SYMBOL(wx_free_irq);
|
|
|
|
/**
|
|
* wx_setup_isb_resources - allocate interrupt status resources
|
|
* @wx: board private structure
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
int wx_setup_isb_resources(struct wx *wx)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
|
|
wx->isb_mem = dma_alloc_coherent(&pdev->dev,
|
|
sizeof(u32) * 4,
|
|
&wx->isb_dma,
|
|
GFP_KERNEL);
|
|
if (!wx->isb_mem) {
|
|
wx_err(wx, "Alloc isb_mem failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(wx_setup_isb_resources);
|
|
|
|
/**
|
|
* wx_free_isb_resources - allocate all queues Rx resources
|
|
* @wx: board private structure
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
void wx_free_isb_resources(struct wx *wx)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
|
|
dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
|
|
wx->isb_mem, wx->isb_dma);
|
|
wx->isb_mem = NULL;
|
|
}
|
|
EXPORT_SYMBOL(wx_free_isb_resources);
|
|
|
|
u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
|
|
{
|
|
u32 cur_tag = 0;
|
|
|
|
cur_tag = wx->isb_mem[WX_ISB_HEADER];
|
|
wx->isb_tag[idx] = cur_tag;
|
|
|
|
return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
|
|
}
|
|
EXPORT_SYMBOL(wx_misc_isb);
|
|
|
|
/**
|
|
* wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
|
|
* @wx: pointer to wx struct
|
|
* @direction: 0 for Rx, 1 for Tx, -1 for other causes
|
|
* @queue: queue to map the corresponding interrupt to
|
|
* @msix_vector: the vector to map to the corresponding queue
|
|
*
|
|
**/
|
|
static void wx_set_ivar(struct wx *wx, s8 direction,
|
|
u16 queue, u16 msix_vector)
|
|
{
|
|
u32 ivar, index;
|
|
|
|
if (direction == -1) {
|
|
/* other causes */
|
|
msix_vector |= WX_PX_IVAR_ALLOC_VAL;
|
|
index = 0;
|
|
ivar = rd32(wx, WX_PX_MISC_IVAR);
|
|
ivar &= ~(0xFF << index);
|
|
ivar |= (msix_vector << index);
|
|
wr32(wx, WX_PX_MISC_IVAR, ivar);
|
|
} else {
|
|
/* tx or rx causes */
|
|
msix_vector |= WX_PX_IVAR_ALLOC_VAL;
|
|
index = ((16 * (queue & 1)) + (8 * direction));
|
|
ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
|
|
ivar &= ~(0xFF << index);
|
|
ivar |= (msix_vector << index);
|
|
wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* wx_write_eitr - write EITR register in hardware specific way
|
|
* @q_vector: structure containing interrupt and ring information
|
|
*
|
|
* This function is made to be called by ethtool and by the driver
|
|
* when it needs to update EITR registers at runtime. Hardware
|
|
* specific quirks/differences are taken care of here.
|
|
*/
|
|
static void wx_write_eitr(struct wx_q_vector *q_vector)
|
|
{
|
|
struct wx *wx = q_vector->wx;
|
|
int v_idx = q_vector->v_idx;
|
|
u32 itr_reg;
|
|
|
|
if (wx->mac.type == wx_mac_sp)
|
|
itr_reg = q_vector->itr & WX_SP_MAX_EITR;
|
|
else
|
|
itr_reg = q_vector->itr & WX_EM_MAX_EITR;
|
|
|
|
itr_reg |= WX_PX_ITR_CNT_WDIS;
|
|
|
|
wr32(wx, WX_PX_ITR(v_idx), itr_reg);
|
|
}
|
|
|
|
/**
|
|
* wx_configure_vectors - Configure vectors for hardware
|
|
* @wx: board private structure
|
|
*
|
|
* wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
|
|
* interrupts.
|
|
**/
|
|
void wx_configure_vectors(struct wx *wx)
|
|
{
|
|
struct pci_dev *pdev = wx->pdev;
|
|
u32 eitrsel = 0;
|
|
u16 v_idx;
|
|
|
|
if (pdev->msix_enabled) {
|
|
/* Populate MSIX to EITR Select */
|
|
wr32(wx, WX_PX_ITRSEL, eitrsel);
|
|
/* use EIAM to auto-mask when MSI-X interrupt is asserted
|
|
* this saves a register write for every interrupt
|
|
*/
|
|
wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
|
|
} else {
|
|
/* legacy interrupts, use EIAM to auto-mask when reading EICR,
|
|
* specifically only auto mask tx and rx interrupts.
|
|
*/
|
|
wr32(wx, WX_PX_GPIE, 0);
|
|
}
|
|
|
|
/* Populate the IVAR table and set the ITR values to the
|
|
* corresponding register.
|
|
*/
|
|
for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
|
|
struct wx_q_vector *q_vector = wx->q_vector[v_idx];
|
|
struct wx_ring *ring;
|
|
|
|
wx_for_each_ring(ring, q_vector->rx)
|
|
wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
|
|
|
|
wx_for_each_ring(ring, q_vector->tx)
|
|
wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
|
|
|
|
wx_write_eitr(q_vector);
|
|
}
|
|
|
|
wx_set_ivar(wx, -1, 0, v_idx);
|
|
if (pdev->msix_enabled)
|
|
wr32(wx, WX_PX_ITR(v_idx), 1950);
|
|
}
|
|
EXPORT_SYMBOL(wx_configure_vectors);
|
|
|
|
/**
|
|
* wx_clean_rx_ring - Free Rx Buffers per Queue
|
|
* @rx_ring: ring to free buffers from
|
|
**/
|
|
static void wx_clean_rx_ring(struct wx_ring *rx_ring)
|
|
{
|
|
struct wx_rx_buffer *rx_buffer;
|
|
u16 i = rx_ring->next_to_clean;
|
|
|
|
rx_buffer = &rx_ring->rx_buffer_info[i];
|
|
|
|
/* Free all the Rx ring sk_buffs */
|
|
while (i != rx_ring->next_to_alloc) {
|
|
if (rx_buffer->skb) {
|
|
struct sk_buff *skb = rx_buffer->skb;
|
|
|
|
if (WX_CB(skb)->page_released)
|
|
page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
|
|
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
/* Invalidate cache lines that may have been written to by
|
|
* device so that we avoid corrupting memory.
|
|
*/
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
rx_buffer->dma,
|
|
rx_buffer->page_offset,
|
|
WX_RX_BUFSZ,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* free resources associated with mapping */
|
|
page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
|
|
__page_frag_cache_drain(rx_buffer->page,
|
|
rx_buffer->pagecnt_bias);
|
|
|
|
i++;
|
|
rx_buffer++;
|
|
if (i == rx_ring->count) {
|
|
i = 0;
|
|
rx_buffer = rx_ring->rx_buffer_info;
|
|
}
|
|
}
|
|
|
|
rx_ring->next_to_alloc = 0;
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
}
|
|
|
|
/**
|
|
* wx_clean_all_rx_rings - Free Rx Buffers for all queues
|
|
* @wx: board private structure
|
|
**/
|
|
void wx_clean_all_rx_rings(struct wx *wx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < wx->num_rx_queues; i++)
|
|
wx_clean_rx_ring(wx->rx_ring[i]);
|
|
}
|
|
EXPORT_SYMBOL(wx_clean_all_rx_rings);
|
|
|
|
/**
|
|
* wx_free_rx_resources - Free Rx Resources
|
|
* @rx_ring: ring to clean the resources from
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
static void wx_free_rx_resources(struct wx_ring *rx_ring)
|
|
{
|
|
wx_clean_rx_ring(rx_ring);
|
|
kvfree(rx_ring->rx_buffer_info);
|
|
rx_ring->rx_buffer_info = NULL;
|
|
|
|
/* if not set, then don't free */
|
|
if (!rx_ring->desc)
|
|
return;
|
|
|
|
dma_free_coherent(rx_ring->dev, rx_ring->size,
|
|
rx_ring->desc, rx_ring->dma);
|
|
|
|
rx_ring->desc = NULL;
|
|
|
|
if (rx_ring->page_pool) {
|
|
page_pool_destroy(rx_ring->page_pool);
|
|
rx_ring->page_pool = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* wx_free_all_rx_resources - Free Rx Resources for All Queues
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Free all receive software resources
|
|
**/
|
|
static void wx_free_all_rx_resources(struct wx *wx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < wx->num_rx_queues; i++)
|
|
wx_free_rx_resources(wx->rx_ring[i]);
|
|
}
|
|
|
|
/**
|
|
* wx_clean_tx_ring - Free Tx Buffers
|
|
* @tx_ring: ring to be cleaned
|
|
**/
|
|
static void wx_clean_tx_ring(struct wx_ring *tx_ring)
|
|
{
|
|
struct wx_tx_buffer *tx_buffer;
|
|
u16 i = tx_ring->next_to_clean;
|
|
|
|
tx_buffer = &tx_ring->tx_buffer_info[i];
|
|
|
|
while (i != tx_ring->next_to_use) {
|
|
union wx_tx_desc *eop_desc, *tx_desc;
|
|
|
|
/* Free all the Tx ring sk_buffs */
|
|
dev_kfree_skb_any(tx_buffer->skb);
|
|
|
|
/* unmap skb header data */
|
|
dma_unmap_single(tx_ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
|
|
/* check for eop_desc to determine the end of the packet */
|
|
eop_desc = tx_buffer->next_to_watch;
|
|
tx_desc = WX_TX_DESC(tx_ring, i);
|
|
|
|
/* unmap remaining buffers */
|
|
while (tx_desc != eop_desc) {
|
|
tx_buffer++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(i == tx_ring->count)) {
|
|
i = 0;
|
|
tx_buffer = tx_ring->tx_buffer_info;
|
|
tx_desc = WX_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* unmap any remaining paged data */
|
|
if (dma_unmap_len(tx_buffer, len))
|
|
dma_unmap_page(tx_ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
/* move us one more past the eop_desc for start of next pkt */
|
|
tx_buffer++;
|
|
i++;
|
|
if (unlikely(i == tx_ring->count)) {
|
|
i = 0;
|
|
tx_buffer = tx_ring->tx_buffer_info;
|
|
}
|
|
}
|
|
|
|
netdev_tx_reset_queue(wx_txring_txq(tx_ring));
|
|
|
|
/* reset next_to_use and next_to_clean */
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
}
|
|
|
|
/**
|
|
* wx_clean_all_tx_rings - Free Tx Buffers for all queues
|
|
* @wx: board private structure
|
|
**/
|
|
void wx_clean_all_tx_rings(struct wx *wx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < wx->num_tx_queues; i++)
|
|
wx_clean_tx_ring(wx->tx_ring[i]);
|
|
}
|
|
EXPORT_SYMBOL(wx_clean_all_tx_rings);
|
|
|
|
/**
|
|
* wx_free_tx_resources - Free Tx Resources per Queue
|
|
* @tx_ring: Tx descriptor ring for a specific queue
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
static void wx_free_tx_resources(struct wx_ring *tx_ring)
|
|
{
|
|
wx_clean_tx_ring(tx_ring);
|
|
kvfree(tx_ring->tx_buffer_info);
|
|
tx_ring->tx_buffer_info = NULL;
|
|
|
|
/* if not set, then don't free */
|
|
if (!tx_ring->desc)
|
|
return;
|
|
|
|
dma_free_coherent(tx_ring->dev, tx_ring->size,
|
|
tx_ring->desc, tx_ring->dma);
|
|
tx_ring->desc = NULL;
|
|
}
|
|
|
|
/**
|
|
* wx_free_all_tx_resources - Free Tx Resources for All Queues
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* Free all transmit software resources
|
|
**/
|
|
static void wx_free_all_tx_resources(struct wx *wx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < wx->num_tx_queues; i++)
|
|
wx_free_tx_resources(wx->tx_ring[i]);
|
|
}
|
|
|
|
void wx_free_resources(struct wx *wx)
|
|
{
|
|
wx_free_isb_resources(wx);
|
|
wx_free_all_rx_resources(wx);
|
|
wx_free_all_tx_resources(wx);
|
|
}
|
|
EXPORT_SYMBOL(wx_free_resources);
|
|
|
|
static int wx_alloc_page_pool(struct wx_ring *rx_ring)
|
|
{
|
|
int ret = 0;
|
|
|
|
struct page_pool_params pp_params = {
|
|
.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
|
|
.order = 0,
|
|
.pool_size = rx_ring->size,
|
|
.nid = dev_to_node(rx_ring->dev),
|
|
.dev = rx_ring->dev,
|
|
.dma_dir = DMA_FROM_DEVICE,
|
|
.offset = 0,
|
|
.max_len = PAGE_SIZE,
|
|
};
|
|
|
|
rx_ring->page_pool = page_pool_create(&pp_params);
|
|
if (IS_ERR(rx_ring->page_pool)) {
|
|
ret = PTR_ERR(rx_ring->page_pool);
|
|
rx_ring->page_pool = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* wx_setup_rx_resources - allocate Rx resources (Descriptors)
|
|
* @rx_ring: rx descriptor ring (for a specific queue) to setup
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
**/
|
|
static int wx_setup_rx_resources(struct wx_ring *rx_ring)
|
|
{
|
|
struct device *dev = rx_ring->dev;
|
|
int orig_node = dev_to_node(dev);
|
|
int numa_node = NUMA_NO_NODE;
|
|
int size, ret;
|
|
|
|
size = sizeof(struct wx_rx_buffer) * rx_ring->count;
|
|
|
|
if (rx_ring->q_vector)
|
|
numa_node = rx_ring->q_vector->numa_node;
|
|
|
|
rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
|
|
if (!rx_ring->rx_buffer_info)
|
|
rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
|
|
if (!rx_ring->rx_buffer_info)
|
|
goto err;
|
|
|
|
/* Round up to nearest 4K */
|
|
rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
|
|
rx_ring->size = ALIGN(rx_ring->size, 4096);
|
|
|
|
set_dev_node(dev, numa_node);
|
|
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
|
|
&rx_ring->dma, GFP_KERNEL);
|
|
if (!rx_ring->desc) {
|
|
set_dev_node(dev, orig_node);
|
|
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
|
|
&rx_ring->dma, GFP_KERNEL);
|
|
}
|
|
|
|
if (!rx_ring->desc)
|
|
goto err;
|
|
|
|
rx_ring->next_to_clean = 0;
|
|
rx_ring->next_to_use = 0;
|
|
|
|
ret = wx_alloc_page_pool(rx_ring);
|
|
if (ret < 0) {
|
|
dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
|
|
goto err_desc;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_desc:
|
|
dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
|
|
err:
|
|
kvfree(rx_ring->rx_buffer_info);
|
|
rx_ring->rx_buffer_info = NULL;
|
|
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* wx_setup_all_rx_resources - allocate all queues Rx resources
|
|
* @wx: pointer to hardware structure
|
|
*
|
|
* If this function returns with an error, then it's possible one or
|
|
* more of the rings is populated (while the rest are not). It is the
|
|
* callers duty to clean those orphaned rings.
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
static int wx_setup_all_rx_resources(struct wx *wx)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < wx->num_rx_queues; i++) {
|
|
err = wx_setup_rx_resources(wx->rx_ring[i]);
|
|
if (!err)
|
|
continue;
|
|
|
|
wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
|
|
goto err_setup_rx;
|
|
}
|
|
|
|
return 0;
|
|
err_setup_rx:
|
|
/* rewind the index freeing the rings as we go */
|
|
while (i--)
|
|
wx_free_rx_resources(wx->rx_ring[i]);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* wx_setup_tx_resources - allocate Tx resources (Descriptors)
|
|
* @tx_ring: tx descriptor ring (for a specific queue) to setup
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
static int wx_setup_tx_resources(struct wx_ring *tx_ring)
|
|
{
|
|
struct device *dev = tx_ring->dev;
|
|
int orig_node = dev_to_node(dev);
|
|
int numa_node = NUMA_NO_NODE;
|
|
int size;
|
|
|
|
size = sizeof(struct wx_tx_buffer) * tx_ring->count;
|
|
|
|
if (tx_ring->q_vector)
|
|
numa_node = tx_ring->q_vector->numa_node;
|
|
|
|
tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
|
|
if (!tx_ring->tx_buffer_info)
|
|
tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
|
|
if (!tx_ring->tx_buffer_info)
|
|
goto err;
|
|
|
|
/* round up to nearest 4K */
|
|
tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
|
|
tx_ring->size = ALIGN(tx_ring->size, 4096);
|
|
|
|
set_dev_node(dev, numa_node);
|
|
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
|
|
&tx_ring->dma, GFP_KERNEL);
|
|
if (!tx_ring->desc) {
|
|
set_dev_node(dev, orig_node);
|
|
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
|
|
&tx_ring->dma, GFP_KERNEL);
|
|
}
|
|
|
|
if (!tx_ring->desc)
|
|
goto err;
|
|
|
|
tx_ring->next_to_use = 0;
|
|
tx_ring->next_to_clean = 0;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
kvfree(tx_ring->tx_buffer_info);
|
|
tx_ring->tx_buffer_info = NULL;
|
|
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* wx_setup_all_tx_resources - allocate all queues Tx resources
|
|
* @wx: pointer to private structure
|
|
*
|
|
* If this function returns with an error, then it's possible one or
|
|
* more of the rings is populated (while the rest are not). It is the
|
|
* callers duty to clean those orphaned rings.
|
|
*
|
|
* Return 0 on success, negative on failure
|
|
**/
|
|
static int wx_setup_all_tx_resources(struct wx *wx)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < wx->num_tx_queues; i++) {
|
|
err = wx_setup_tx_resources(wx->tx_ring[i]);
|
|
if (!err)
|
|
continue;
|
|
|
|
wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
|
|
goto err_setup_tx;
|
|
}
|
|
|
|
return 0;
|
|
err_setup_tx:
|
|
/* rewind the index freeing the rings as we go */
|
|
while (i--)
|
|
wx_free_tx_resources(wx->tx_ring[i]);
|
|
return err;
|
|
}
|
|
|
|
int wx_setup_resources(struct wx *wx)
|
|
{
|
|
int err;
|
|
|
|
/* allocate transmit descriptors */
|
|
err = wx_setup_all_tx_resources(wx);
|
|
if (err)
|
|
return err;
|
|
|
|
/* allocate receive descriptors */
|
|
err = wx_setup_all_rx_resources(wx);
|
|
if (err)
|
|
goto err_free_tx;
|
|
|
|
err = wx_setup_isb_resources(wx);
|
|
if (err)
|
|
goto err_free_rx;
|
|
|
|
return 0;
|
|
|
|
err_free_rx:
|
|
wx_free_all_rx_resources(wx);
|
|
err_free_tx:
|
|
wx_free_all_tx_resources(wx);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(wx_setup_resources);
|
|
|
|
/**
|
|
* wx_get_stats64 - Get System Network Statistics
|
|
* @netdev: network interface device structure
|
|
* @stats: storage space for 64bit statistics
|
|
*/
|
|
void wx_get_stats64(struct net_device *netdev,
|
|
struct rtnl_link_stats64 *stats)
|
|
{
|
|
struct wx *wx = netdev_priv(netdev);
|
|
int i;
|
|
|
|
rcu_read_lock();
|
|
for (i = 0; i < wx->num_rx_queues; i++) {
|
|
struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
|
|
u64 bytes, packets;
|
|
unsigned int start;
|
|
|
|
if (ring) {
|
|
do {
|
|
start = u64_stats_fetch_begin(&ring->syncp);
|
|
packets = ring->stats.packets;
|
|
bytes = ring->stats.bytes;
|
|
} while (u64_stats_fetch_retry(&ring->syncp, start));
|
|
stats->rx_packets += packets;
|
|
stats->rx_bytes += bytes;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < wx->num_tx_queues; i++) {
|
|
struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
|
|
u64 bytes, packets;
|
|
unsigned int start;
|
|
|
|
if (ring) {
|
|
do {
|
|
start = u64_stats_fetch_begin(&ring->syncp);
|
|
packets = ring->stats.packets;
|
|
bytes = ring->stats.bytes;
|
|
} while (u64_stats_fetch_retry(&ring->syncp,
|
|
start));
|
|
stats->tx_packets += packets;
|
|
stats->tx_bytes += bytes;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(wx_get_stats64);
|
|
|
|
int wx_set_features(struct net_device *netdev, netdev_features_t features)
|
|
{
|
|
netdev_features_t changed = netdev->features ^ features;
|
|
struct wx *wx = netdev_priv(netdev);
|
|
|
|
if (changed & NETIF_F_RXHASH)
|
|
wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
|
|
WX_RDB_RA_CTL_RSS_EN);
|
|
else
|
|
wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
|
|
|
|
if (changed &
|
|
(NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_STAG_RX))
|
|
wx_set_rx_mode(netdev);
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(wx_set_features);
|
|
|
|
MODULE_LICENSE("GPL");
|