1288 lines
33 KiB
C
1288 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright (C) 2017 Intel Deutschland GmbH
|
|
* Copyright (C) 2019-2023 Intel Corporation
|
|
*/
|
|
#include <linux/uuid.h>
|
|
#include <linux/dmi.h>
|
|
#include "iwl-drv.h"
|
|
#include "iwl-debug.h"
|
|
#include "acpi.h"
|
|
#include "fw/runtime.h"
|
|
|
|
const guid_t iwl_guid = GUID_INIT(0xF21202BF, 0x8F78, 0x4DC6,
|
|
0xA5, 0xB3, 0x1F, 0x73,
|
|
0x8E, 0x28, 0x5A, 0xDE);
|
|
IWL_EXPORT_SYMBOL(iwl_guid);
|
|
|
|
const guid_t iwl_rfi_guid = GUID_INIT(0x7266172C, 0x220B, 0x4B29,
|
|
0x81, 0x4F, 0x75, 0xE4,
|
|
0xDD, 0x26, 0xB5, 0xFD);
|
|
IWL_EXPORT_SYMBOL(iwl_rfi_guid);
|
|
|
|
static const struct dmi_system_id dmi_ppag_approved_list[] = {
|
|
{ .ident = "HP",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
|
|
},
|
|
},
|
|
{ .ident = "SAMSUNG",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD"),
|
|
},
|
|
},
|
|
{ .ident = "MSFT",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Microsoft Corporation"),
|
|
},
|
|
},
|
|
{ .ident = "ASUS",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
|
|
},
|
|
},
|
|
{ .ident = "GOOGLE-HP",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Google"),
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "HP"),
|
|
},
|
|
},
|
|
{ .ident = "GOOGLE-ASUS",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Google"),
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek COMPUTER INC."),
|
|
},
|
|
},
|
|
{ .ident = "GOOGLE-SAMSUNG",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Google"),
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "SAMSUNG ELECTRONICS CO., LTD"),
|
|
},
|
|
},
|
|
{ .ident = "DELL",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."),
|
|
},
|
|
},
|
|
{ .ident = "DELL",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Alienware"),
|
|
},
|
|
},
|
|
{}
|
|
};
|
|
|
|
static int iwl_acpi_get_handle(struct device *dev, acpi_string method,
|
|
acpi_handle *ret_handle)
|
|
{
|
|
acpi_handle root_handle;
|
|
acpi_status status;
|
|
|
|
root_handle = ACPI_HANDLE(dev);
|
|
if (!root_handle) {
|
|
IWL_DEBUG_DEV_RADIO(dev,
|
|
"ACPI: Could not retrieve root port handle\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
status = acpi_get_handle(root_handle, method, ret_handle);
|
|
if (ACPI_FAILURE(status)) {
|
|
IWL_DEBUG_DEV_RADIO(dev,
|
|
"ACPI: %s method not found\n", method);
|
|
return -ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void *iwl_acpi_get_object(struct device *dev, acpi_string method)
|
|
{
|
|
struct acpi_buffer buf = {ACPI_ALLOCATE_BUFFER, NULL};
|
|
acpi_handle handle;
|
|
acpi_status status;
|
|
int ret;
|
|
|
|
ret = iwl_acpi_get_handle(dev, method, &handle);
|
|
if (ret)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
/* Call the method with no arguments */
|
|
status = acpi_evaluate_object(handle, NULL, NULL, &buf);
|
|
if (ACPI_FAILURE(status)) {
|
|
IWL_DEBUG_DEV_RADIO(dev,
|
|
"ACPI: %s method invocation failed (status: 0x%x)\n",
|
|
method, status);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
return buf.pointer;
|
|
}
|
|
|
|
/*
|
|
* Generic function for evaluating a method defined in the device specific
|
|
* method (DSM) interface. The returned acpi object must be freed by calling
|
|
* function.
|
|
*/
|
|
static void *iwl_acpi_get_dsm_object(struct device *dev, int rev, int func,
|
|
union acpi_object *args,
|
|
const guid_t *guid)
|
|
{
|
|
union acpi_object *obj;
|
|
|
|
obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), guid, rev, func,
|
|
args);
|
|
if (!obj) {
|
|
IWL_DEBUG_DEV_RADIO(dev,
|
|
"ACPI: DSM method invocation failed (rev: %d, func:%d)\n",
|
|
rev, func);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* Generic function to evaluate a DSM with no arguments
|
|
* and an integer return value,
|
|
* (as an integer object or inside a buffer object),
|
|
* verify and assign the value in the "value" parameter.
|
|
* return 0 in success and the appropriate errno otherwise.
|
|
*/
|
|
static int iwl_acpi_get_dsm_integer(struct device *dev, int rev, int func,
|
|
const guid_t *guid, u64 *value,
|
|
size_t expected_size)
|
|
{
|
|
union acpi_object *obj;
|
|
int ret = 0;
|
|
|
|
obj = iwl_acpi_get_dsm_object(dev, rev, func, NULL, guid);
|
|
if (IS_ERR(obj)) {
|
|
IWL_DEBUG_DEV_RADIO(dev,
|
|
"Failed to get DSM object. func= %d\n",
|
|
func);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (obj->type == ACPI_TYPE_INTEGER) {
|
|
*value = obj->integer.value;
|
|
} else if (obj->type == ACPI_TYPE_BUFFER) {
|
|
__le64 le_value = 0;
|
|
|
|
if (WARN_ON_ONCE(expected_size > sizeof(le_value)))
|
|
return -EINVAL;
|
|
|
|
/* if the buffer size doesn't match the expected size */
|
|
if (obj->buffer.length != expected_size)
|
|
IWL_DEBUG_DEV_RADIO(dev,
|
|
"ACPI: DSM invalid buffer size, padding or truncating (%d)\n",
|
|
obj->buffer.length);
|
|
|
|
/* assuming LE from Intel BIOS spec */
|
|
memcpy(&le_value, obj->buffer.pointer,
|
|
min_t(size_t, expected_size, (size_t)obj->buffer.length));
|
|
*value = le64_to_cpu(le_value);
|
|
} else {
|
|
IWL_DEBUG_DEV_RADIO(dev,
|
|
"ACPI: DSM method did not return a valid object, type=%d\n",
|
|
obj->type);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
IWL_DEBUG_DEV_RADIO(dev,
|
|
"ACPI: DSM method evaluated: func=%d, ret=%d\n",
|
|
func, ret);
|
|
out:
|
|
ACPI_FREE(obj);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Evaluate a DSM with no arguments and a u8 return value,
|
|
*/
|
|
int iwl_acpi_get_dsm_u8(struct device *dev, int rev, int func,
|
|
const guid_t *guid, u8 *value)
|
|
{
|
|
int ret;
|
|
u64 val;
|
|
|
|
ret = iwl_acpi_get_dsm_integer(dev, rev, func,
|
|
guid, &val, sizeof(u8));
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* cast val (u64) to be u8 */
|
|
*value = (u8)val;
|
|
return 0;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_dsm_u8);
|
|
|
|
/*
|
|
* Evaluate a DSM with no arguments and a u32 return value,
|
|
*/
|
|
int iwl_acpi_get_dsm_u32(struct device *dev, int rev, int func,
|
|
const guid_t *guid, u32 *value)
|
|
{
|
|
int ret;
|
|
u64 val;
|
|
|
|
ret = iwl_acpi_get_dsm_integer(dev, rev, func,
|
|
guid, &val, sizeof(u32));
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* cast val (u64) to be u32 */
|
|
*value = (u32)val;
|
|
return 0;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_dsm_u32);
|
|
|
|
static union acpi_object *
|
|
iwl_acpi_get_wifi_pkg_range(struct device *dev,
|
|
union acpi_object *data,
|
|
int min_data_size,
|
|
int max_data_size,
|
|
int *tbl_rev)
|
|
{
|
|
int i;
|
|
union acpi_object *wifi_pkg;
|
|
|
|
/*
|
|
* We need at least one entry in the wifi package that
|
|
* describes the domain, and one more entry, otherwise there's
|
|
* no point in reading it.
|
|
*/
|
|
if (WARN_ON_ONCE(min_data_size < 2 || min_data_size > max_data_size))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* We need at least two packages, one for the revision and one
|
|
* for the data itself. Also check that the revision is valid
|
|
* (i.e. it is an integer (each caller has to check by itself
|
|
* if the returned revision is supported)).
|
|
*/
|
|
if (data->type != ACPI_TYPE_PACKAGE ||
|
|
data->package.count < 2 ||
|
|
data->package.elements[0].type != ACPI_TYPE_INTEGER) {
|
|
IWL_DEBUG_DEV_RADIO(dev, "Invalid packages structure\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
*tbl_rev = data->package.elements[0].integer.value;
|
|
|
|
/* loop through all the packages to find the one for WiFi */
|
|
for (i = 1; i < data->package.count; i++) {
|
|
union acpi_object *domain;
|
|
|
|
wifi_pkg = &data->package.elements[i];
|
|
|
|
/* skip entries that are not a package with the right size */
|
|
if (wifi_pkg->type != ACPI_TYPE_PACKAGE ||
|
|
wifi_pkg->package.count < min_data_size ||
|
|
wifi_pkg->package.count > max_data_size)
|
|
continue;
|
|
|
|
domain = &wifi_pkg->package.elements[0];
|
|
if (domain->type == ACPI_TYPE_INTEGER &&
|
|
domain->integer.value == ACPI_WIFI_DOMAIN)
|
|
goto found;
|
|
}
|
|
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
found:
|
|
return wifi_pkg;
|
|
}
|
|
|
|
static union acpi_object *
|
|
iwl_acpi_get_wifi_pkg(struct device *dev,
|
|
union acpi_object *data,
|
|
int data_size, int *tbl_rev)
|
|
{
|
|
return iwl_acpi_get_wifi_pkg_range(dev, data, data_size, data_size,
|
|
tbl_rev);
|
|
}
|
|
|
|
|
|
int iwl_acpi_get_tas(struct iwl_fw_runtime *fwrt,
|
|
union iwl_tas_config_cmd *cmd, int fw_ver)
|
|
{
|
|
union acpi_object *wifi_pkg, *data;
|
|
int ret, tbl_rev, i, block_list_size, enabled;
|
|
|
|
data = iwl_acpi_get_object(fwrt->dev, ACPI_WTAS_METHOD);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
|
|
/* try to read wtas table revision 1 or revision 0*/
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_WTAS_WIFI_DATA_SIZE,
|
|
&tbl_rev);
|
|
if (IS_ERR(wifi_pkg)) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
if (tbl_rev == 1 && wifi_pkg->package.elements[1].type ==
|
|
ACPI_TYPE_INTEGER) {
|
|
u32 tas_selection =
|
|
(u32)wifi_pkg->package.elements[1].integer.value;
|
|
u16 override_iec =
|
|
(tas_selection & ACPI_WTAS_OVERRIDE_IEC_MSK) >> ACPI_WTAS_OVERRIDE_IEC_POS;
|
|
u16 enabled_iec = (tas_selection & ACPI_WTAS_ENABLE_IEC_MSK) >>
|
|
ACPI_WTAS_ENABLE_IEC_POS;
|
|
u8 usa_tas_uhb = (tas_selection & ACPI_WTAS_USA_UHB_MSK) >> ACPI_WTAS_USA_UHB_POS;
|
|
|
|
|
|
enabled = tas_selection & ACPI_WTAS_ENABLED_MSK;
|
|
if (fw_ver <= 3) {
|
|
cmd->v3.override_tas_iec = cpu_to_le16(override_iec);
|
|
cmd->v3.enable_tas_iec = cpu_to_le16(enabled_iec);
|
|
} else {
|
|
cmd->v4.usa_tas_uhb_allowed = usa_tas_uhb;
|
|
cmd->v4.override_tas_iec = (u8)override_iec;
|
|
cmd->v4.enable_tas_iec = (u8)enabled_iec;
|
|
}
|
|
|
|
} else if (tbl_rev == 0 &&
|
|
wifi_pkg->package.elements[1].type == ACPI_TYPE_INTEGER) {
|
|
enabled = !!wifi_pkg->package.elements[1].integer.value;
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
if (!enabled) {
|
|
IWL_DEBUG_RADIO(fwrt, "TAS not enabled\n");
|
|
ret = 0;
|
|
goto out_free;
|
|
}
|
|
|
|
IWL_DEBUG_RADIO(fwrt, "Reading TAS table revision %d\n", tbl_rev);
|
|
if (wifi_pkg->package.elements[2].type != ACPI_TYPE_INTEGER ||
|
|
wifi_pkg->package.elements[2].integer.value >
|
|
APCI_WTAS_BLACK_LIST_MAX) {
|
|
IWL_DEBUG_RADIO(fwrt, "TAS invalid array size %llu\n",
|
|
wifi_pkg->package.elements[2].integer.value);
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
block_list_size = wifi_pkg->package.elements[2].integer.value;
|
|
cmd->v4.block_list_size = cpu_to_le32(block_list_size);
|
|
|
|
IWL_DEBUG_RADIO(fwrt, "TAS array size %u\n", block_list_size);
|
|
if (block_list_size > APCI_WTAS_BLACK_LIST_MAX) {
|
|
IWL_DEBUG_RADIO(fwrt, "TAS invalid array size value %u\n",
|
|
block_list_size);
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
for (i = 0; i < block_list_size; i++) {
|
|
u32 country;
|
|
|
|
if (wifi_pkg->package.elements[3 + i].type !=
|
|
ACPI_TYPE_INTEGER) {
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"TAS invalid array elem %d\n", 3 + i);
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
country = wifi_pkg->package.elements[3 + i].integer.value;
|
|
cmd->v4.block_list_array[i] = cpu_to_le32(country);
|
|
IWL_DEBUG_RADIO(fwrt, "TAS block list country %d\n", country);
|
|
}
|
|
|
|
ret = 1;
|
|
out_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_tas);
|
|
|
|
int iwl_acpi_get_mcc(struct device *dev, char *mcc)
|
|
{
|
|
union acpi_object *wifi_pkg, *data;
|
|
u32 mcc_val;
|
|
int ret, tbl_rev;
|
|
|
|
data = iwl_acpi_get_object(dev, ACPI_WRDD_METHOD);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data, ACPI_WRDD_WIFI_DATA_SIZE,
|
|
&tbl_rev);
|
|
if (IS_ERR(wifi_pkg)) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER ||
|
|
tbl_rev != 0) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
mcc_val = wifi_pkg->package.elements[1].integer.value;
|
|
|
|
mcc[0] = (mcc_val >> 8) & 0xff;
|
|
mcc[1] = mcc_val & 0xff;
|
|
mcc[2] = '\0';
|
|
|
|
ret = 0;
|
|
out_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_mcc);
|
|
|
|
u64 iwl_acpi_get_pwr_limit(struct device *dev)
|
|
{
|
|
union acpi_object *data, *wifi_pkg;
|
|
u64 dflt_pwr_limit;
|
|
int tbl_rev;
|
|
|
|
data = iwl_acpi_get_object(dev, ACPI_SPLC_METHOD);
|
|
if (IS_ERR(data)) {
|
|
dflt_pwr_limit = 0;
|
|
goto out;
|
|
}
|
|
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data,
|
|
ACPI_SPLC_WIFI_DATA_SIZE, &tbl_rev);
|
|
if (IS_ERR(wifi_pkg) || tbl_rev != 0 ||
|
|
wifi_pkg->package.elements[1].integer.value != ACPI_TYPE_INTEGER) {
|
|
dflt_pwr_limit = 0;
|
|
goto out_free;
|
|
}
|
|
|
|
dflt_pwr_limit = wifi_pkg->package.elements[1].integer.value;
|
|
out_free:
|
|
kfree(data);
|
|
out:
|
|
return dflt_pwr_limit;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_pwr_limit);
|
|
|
|
int iwl_acpi_get_eckv(struct device *dev, u32 *extl_clk)
|
|
{
|
|
union acpi_object *wifi_pkg, *data;
|
|
int ret, tbl_rev;
|
|
|
|
data = iwl_acpi_get_object(dev, ACPI_ECKV_METHOD);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(dev, data, ACPI_ECKV_WIFI_DATA_SIZE,
|
|
&tbl_rev);
|
|
if (IS_ERR(wifi_pkg)) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER ||
|
|
tbl_rev != 0) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
*extl_clk = wifi_pkg->package.elements[1].integer.value;
|
|
|
|
ret = 0;
|
|
|
|
out_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_eckv);
|
|
|
|
static int iwl_sar_set_profile(union acpi_object *table,
|
|
struct iwl_sar_profile *profile,
|
|
bool enabled, u8 num_chains, u8 num_sub_bands)
|
|
{
|
|
int i, j, idx = 0;
|
|
|
|
/*
|
|
* The table from ACPI is flat, but we store it in a
|
|
* structured array.
|
|
*/
|
|
for (i = 0; i < ACPI_SAR_NUM_CHAINS_REV2; i++) {
|
|
for (j = 0; j < ACPI_SAR_NUM_SUB_BANDS_REV2; j++) {
|
|
/* if we don't have the values, use the default */
|
|
if (i >= num_chains || j >= num_sub_bands) {
|
|
profile->chains[i].subbands[j] = 0;
|
|
} else {
|
|
if (table[idx].type != ACPI_TYPE_INTEGER ||
|
|
table[idx].integer.value > U8_MAX)
|
|
return -EINVAL;
|
|
|
|
profile->chains[i].subbands[j] =
|
|
table[idx].integer.value;
|
|
|
|
idx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Only if all values were valid can the profile be enabled */
|
|
profile->enabled = enabled;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iwl_sar_fill_table(struct iwl_fw_runtime *fwrt,
|
|
__le16 *per_chain, u32 n_subbands,
|
|
int prof_a, int prof_b)
|
|
{
|
|
int profs[ACPI_SAR_NUM_CHAINS_REV0] = { prof_a, prof_b };
|
|
int i, j;
|
|
|
|
for (i = 0; i < ACPI_SAR_NUM_CHAINS_REV0; i++) {
|
|
struct iwl_sar_profile *prof;
|
|
|
|
/* don't allow SAR to be disabled (profile 0 means disable) */
|
|
if (profs[i] == 0)
|
|
return -EPERM;
|
|
|
|
/* we are off by one, so allow up to ACPI_SAR_PROFILE_NUM */
|
|
if (profs[i] > ACPI_SAR_PROFILE_NUM)
|
|
return -EINVAL;
|
|
|
|
/* profiles go from 1 to 4, so decrement to access the array */
|
|
prof = &fwrt->sar_profiles[profs[i] - 1];
|
|
|
|
/* if the profile is disabled, do nothing */
|
|
if (!prof->enabled) {
|
|
IWL_DEBUG_RADIO(fwrt, "SAR profile %d is disabled.\n",
|
|
profs[i]);
|
|
/*
|
|
* if one of the profiles is disabled, we
|
|
* ignore all of them and return 1 to
|
|
* differentiate disabled from other failures.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
IWL_DEBUG_INFO(fwrt,
|
|
"SAR EWRD: chain %d profile index %d\n",
|
|
i, profs[i]);
|
|
IWL_DEBUG_RADIO(fwrt, " Chain[%d]:\n", i);
|
|
for (j = 0; j < n_subbands; j++) {
|
|
per_chain[i * n_subbands + j] =
|
|
cpu_to_le16(prof->chains[i].subbands[j]);
|
|
IWL_DEBUG_RADIO(fwrt, " Band[%d] = %d * .125dBm\n",
|
|
j, prof->chains[i].subbands[j]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwl_sar_select_profile(struct iwl_fw_runtime *fwrt,
|
|
__le16 *per_chain, u32 n_tables, u32 n_subbands,
|
|
int prof_a, int prof_b)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
for (i = 0; i < n_tables; i++) {
|
|
ret = iwl_sar_fill_table(fwrt,
|
|
&per_chain[i * n_subbands * ACPI_SAR_NUM_CHAINS_REV0],
|
|
n_subbands, prof_a, prof_b);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_sar_select_profile);
|
|
|
|
int iwl_sar_get_wrds_table(struct iwl_fw_runtime *fwrt)
|
|
{
|
|
union acpi_object *wifi_pkg, *table, *data;
|
|
int ret, tbl_rev;
|
|
u32 flags;
|
|
u8 num_chains, num_sub_bands;
|
|
|
|
data = iwl_acpi_get_object(fwrt->dev, ACPI_WRDS_METHOD);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
|
|
/* start by trying to read revision 2 */
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_WRDS_WIFI_DATA_SIZE_REV2,
|
|
&tbl_rev);
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (tbl_rev != 2) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
num_chains = ACPI_SAR_NUM_CHAINS_REV2;
|
|
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV2;
|
|
|
|
goto read_table;
|
|
}
|
|
|
|
/* then try revision 1 */
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_WRDS_WIFI_DATA_SIZE_REV1,
|
|
&tbl_rev);
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (tbl_rev != 1) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
num_chains = ACPI_SAR_NUM_CHAINS_REV1;
|
|
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV1;
|
|
|
|
goto read_table;
|
|
}
|
|
|
|
/* then finally revision 0 */
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_WRDS_WIFI_DATA_SIZE_REV0,
|
|
&tbl_rev);
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (tbl_rev != 0) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
num_chains = ACPI_SAR_NUM_CHAINS_REV0;
|
|
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV0;
|
|
|
|
goto read_table;
|
|
}
|
|
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
|
|
read_table:
|
|
if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
IWL_DEBUG_RADIO(fwrt, "Reading WRDS tbl_rev=%d\n", tbl_rev);
|
|
|
|
flags = wifi_pkg->package.elements[1].integer.value;
|
|
fwrt->reduced_power_flags = flags >> IWL_REDUCE_POWER_FLAGS_POS;
|
|
|
|
/* position of the actual table */
|
|
table = &wifi_pkg->package.elements[2];
|
|
|
|
/* The profile from WRDS is officially profile 1, but goes
|
|
* into sar_profiles[0] (because we don't have a profile 0).
|
|
*/
|
|
ret = iwl_sar_set_profile(table, &fwrt->sar_profiles[0],
|
|
flags & IWL_SAR_ENABLE_MSK,
|
|
num_chains, num_sub_bands);
|
|
out_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_sar_get_wrds_table);
|
|
|
|
int iwl_sar_get_ewrd_table(struct iwl_fw_runtime *fwrt)
|
|
{
|
|
union acpi_object *wifi_pkg, *data;
|
|
bool enabled;
|
|
int i, n_profiles, tbl_rev, pos;
|
|
int ret = 0;
|
|
u8 num_chains, num_sub_bands;
|
|
|
|
data = iwl_acpi_get_object(fwrt->dev, ACPI_EWRD_METHOD);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
|
|
/* start by trying to read revision 2 */
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_EWRD_WIFI_DATA_SIZE_REV2,
|
|
&tbl_rev);
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (tbl_rev != 2) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
num_chains = ACPI_SAR_NUM_CHAINS_REV2;
|
|
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV2;
|
|
|
|
goto read_table;
|
|
}
|
|
|
|
/* then try revision 1 */
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_EWRD_WIFI_DATA_SIZE_REV1,
|
|
&tbl_rev);
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (tbl_rev != 1) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
num_chains = ACPI_SAR_NUM_CHAINS_REV1;
|
|
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV1;
|
|
|
|
goto read_table;
|
|
}
|
|
|
|
/* then finally revision 0 */
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_EWRD_WIFI_DATA_SIZE_REV0,
|
|
&tbl_rev);
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (tbl_rev != 0) {
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
}
|
|
|
|
num_chains = ACPI_SAR_NUM_CHAINS_REV0;
|
|
num_sub_bands = ACPI_SAR_NUM_SUB_BANDS_REV0;
|
|
|
|
goto read_table;
|
|
}
|
|
|
|
ret = PTR_ERR(wifi_pkg);
|
|
goto out_free;
|
|
|
|
read_table:
|
|
if (wifi_pkg->package.elements[1].type != ACPI_TYPE_INTEGER ||
|
|
wifi_pkg->package.elements[2].type != ACPI_TYPE_INTEGER) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
enabled = !!(wifi_pkg->package.elements[1].integer.value);
|
|
n_profiles = wifi_pkg->package.elements[2].integer.value;
|
|
|
|
/*
|
|
* Check the validity of n_profiles. The EWRD profiles start
|
|
* from index 1, so the maximum value allowed here is
|
|
* ACPI_SAR_PROFILES_NUM - 1.
|
|
*/
|
|
if (n_profiles <= 0 || n_profiles >= ACPI_SAR_PROFILE_NUM) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
/* the tables start at element 3 */
|
|
pos = 3;
|
|
|
|
for (i = 0; i < n_profiles; i++) {
|
|
/* The EWRD profiles officially go from 2 to 4, but we
|
|
* save them in sar_profiles[1-3] (because we don't
|
|
* have profile 0). So in the array we start from 1.
|
|
*/
|
|
ret = iwl_sar_set_profile(&wifi_pkg->package.elements[pos],
|
|
&fwrt->sar_profiles[i + 1], enabled,
|
|
num_chains, num_sub_bands);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
/* go to the next table */
|
|
pos += num_chains * num_sub_bands;
|
|
}
|
|
|
|
out_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_sar_get_ewrd_table);
|
|
|
|
int iwl_sar_get_wgds_table(struct iwl_fw_runtime *fwrt)
|
|
{
|
|
union acpi_object *wifi_pkg, *data;
|
|
int i, j, k, ret, tbl_rev;
|
|
u8 num_bands, num_profiles;
|
|
static const struct {
|
|
u8 revisions;
|
|
u8 bands;
|
|
u8 profiles;
|
|
u8 min_profiles;
|
|
} rev_data[] = {
|
|
{
|
|
.revisions = BIT(3),
|
|
.bands = ACPI_GEO_NUM_BANDS_REV2,
|
|
.profiles = ACPI_NUM_GEO_PROFILES_REV3,
|
|
.min_profiles = 3,
|
|
},
|
|
{
|
|
.revisions = BIT(2),
|
|
.bands = ACPI_GEO_NUM_BANDS_REV2,
|
|
.profiles = ACPI_NUM_GEO_PROFILES,
|
|
},
|
|
{
|
|
.revisions = BIT(0) | BIT(1),
|
|
.bands = ACPI_GEO_NUM_BANDS_REV0,
|
|
.profiles = ACPI_NUM_GEO_PROFILES,
|
|
},
|
|
};
|
|
int idx;
|
|
/* start from one to skip the domain */
|
|
int entry_idx = 1;
|
|
|
|
BUILD_BUG_ON(ACPI_NUM_GEO_PROFILES_REV3 != IWL_NUM_GEO_PROFILES_V3);
|
|
BUILD_BUG_ON(ACPI_NUM_GEO_PROFILES != IWL_NUM_GEO_PROFILES);
|
|
|
|
data = iwl_acpi_get_object(fwrt->dev, ACPI_WGDS_METHOD);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
|
|
/* read the highest revision we understand first */
|
|
for (idx = 0; idx < ARRAY_SIZE(rev_data); idx++) {
|
|
/* min_profiles != 0 requires num_profiles header */
|
|
u32 hdr_size = 1 + !!rev_data[idx].min_profiles;
|
|
u32 profile_size = ACPI_GEO_PER_CHAIN_SIZE *
|
|
rev_data[idx].bands;
|
|
u32 max_size = hdr_size + profile_size * rev_data[idx].profiles;
|
|
u32 min_size;
|
|
|
|
if (!rev_data[idx].min_profiles)
|
|
min_size = max_size;
|
|
else
|
|
min_size = hdr_size +
|
|
profile_size * rev_data[idx].min_profiles;
|
|
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg_range(fwrt->dev, data,
|
|
min_size, max_size,
|
|
&tbl_rev);
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (!(BIT(tbl_rev) & rev_data[idx].revisions))
|
|
continue;
|
|
|
|
num_bands = rev_data[idx].bands;
|
|
num_profiles = rev_data[idx].profiles;
|
|
|
|
if (rev_data[idx].min_profiles) {
|
|
/* read header that says # of profiles */
|
|
union acpi_object *entry;
|
|
|
|
entry = &wifi_pkg->package.elements[entry_idx];
|
|
entry_idx++;
|
|
if (entry->type != ACPI_TYPE_INTEGER ||
|
|
entry->integer.value > num_profiles) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
num_profiles = entry->integer.value;
|
|
|
|
/*
|
|
* this also validates >= min_profiles since we
|
|
* otherwise wouldn't have gotten the data when
|
|
* looking up in ACPI
|
|
*/
|
|
if (wifi_pkg->package.count !=
|
|
hdr_size + profile_size * num_profiles) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
goto read_table;
|
|
}
|
|
}
|
|
|
|
if (idx < ARRAY_SIZE(rev_data))
|
|
ret = PTR_ERR(wifi_pkg);
|
|
else
|
|
ret = -ENOENT;
|
|
goto out_free;
|
|
|
|
read_table:
|
|
fwrt->geo_rev = tbl_rev;
|
|
for (i = 0; i < num_profiles; i++) {
|
|
for (j = 0; j < ACPI_GEO_NUM_BANDS_REV2; j++) {
|
|
union acpi_object *entry;
|
|
|
|
/*
|
|
* num_bands is either 2 or 3, if it's only 2 then
|
|
* fill the third band (6 GHz) with the values from
|
|
* 5 GHz (second band)
|
|
*/
|
|
if (j >= num_bands) {
|
|
fwrt->geo_profiles[i].bands[j].max =
|
|
fwrt->geo_profiles[i].bands[1].max;
|
|
} else {
|
|
entry = &wifi_pkg->package.elements[entry_idx];
|
|
entry_idx++;
|
|
if (entry->type != ACPI_TYPE_INTEGER ||
|
|
entry->integer.value > U8_MAX) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
fwrt->geo_profiles[i].bands[j].max =
|
|
entry->integer.value;
|
|
}
|
|
|
|
for (k = 0; k < ACPI_GEO_NUM_CHAINS; k++) {
|
|
/* same here as above */
|
|
if (j >= num_bands) {
|
|
fwrt->geo_profiles[i].bands[j].chains[k] =
|
|
fwrt->geo_profiles[i].bands[1].chains[k];
|
|
} else {
|
|
entry = &wifi_pkg->package.elements[entry_idx];
|
|
entry_idx++;
|
|
if (entry->type != ACPI_TYPE_INTEGER ||
|
|
entry->integer.value > U8_MAX) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
fwrt->geo_profiles[i].bands[j].chains[k] =
|
|
entry->integer.value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fwrt->geo_num_profiles = num_profiles;
|
|
fwrt->geo_enabled = true;
|
|
ret = 0;
|
|
out_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_sar_get_wgds_table);
|
|
|
|
bool iwl_sar_geo_support(struct iwl_fw_runtime *fwrt)
|
|
{
|
|
/*
|
|
* The PER_CHAIN_LIMIT_OFFSET_CMD command is not supported on
|
|
* earlier firmware versions. Unfortunately, we don't have a
|
|
* TLV API flag to rely on, so rely on the major version which
|
|
* is in the first byte of ucode_ver. This was implemented
|
|
* initially on version 38 and then backported to 17. It was
|
|
* also backported to 29, but only for 7265D devices. The
|
|
* intention was to have it in 36 as well, but not all 8000
|
|
* family got this feature enabled. The 8000 family is the
|
|
* only one using version 36, so skip this version entirely.
|
|
*/
|
|
return IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) >= 38 ||
|
|
(IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) == 17 &&
|
|
fwrt->trans->hw_rev != CSR_HW_REV_TYPE_3160) ||
|
|
(IWL_UCODE_SERIAL(fwrt->fw->ucode_ver) == 29 &&
|
|
((fwrt->trans->hw_rev & CSR_HW_REV_TYPE_MSK) ==
|
|
CSR_HW_REV_TYPE_7265D));
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_sar_geo_support);
|
|
|
|
int iwl_sar_geo_init(struct iwl_fw_runtime *fwrt,
|
|
struct iwl_per_chain_offset *table,
|
|
u32 n_bands, u32 n_profiles)
|
|
{
|
|
int i, j;
|
|
|
|
if (!fwrt->geo_enabled)
|
|
return -ENODATA;
|
|
|
|
if (!iwl_sar_geo_support(fwrt))
|
|
return -EOPNOTSUPP;
|
|
|
|
for (i = 0; i < n_profiles; i++) {
|
|
for (j = 0; j < n_bands; j++) {
|
|
struct iwl_per_chain_offset *chain =
|
|
&table[i * n_bands + j];
|
|
|
|
chain->max_tx_power =
|
|
cpu_to_le16(fwrt->geo_profiles[i].bands[j].max);
|
|
chain->chain_a = fwrt->geo_profiles[i].bands[j].chains[0];
|
|
chain->chain_b = fwrt->geo_profiles[i].bands[j].chains[1];
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"SAR geographic profile[%d] Band[%d]: chain A = %d chain B = %d max_tx_power = %d\n",
|
|
i, j,
|
|
fwrt->geo_profiles[i].bands[j].chains[0],
|
|
fwrt->geo_profiles[i].bands[j].chains[1],
|
|
fwrt->geo_profiles[i].bands[j].max);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_sar_geo_init);
|
|
|
|
__le32 iwl_acpi_get_lari_config_bitmap(struct iwl_fw_runtime *fwrt)
|
|
{
|
|
int ret;
|
|
u8 value;
|
|
__le32 config_bitmap = 0;
|
|
|
|
/*
|
|
** Evaluate func 'DSM_FUNC_ENABLE_INDONESIA_5G2'
|
|
*/
|
|
ret = iwl_acpi_get_dsm_u8(fwrt->dev, 0,
|
|
DSM_FUNC_ENABLE_INDONESIA_5G2,
|
|
&iwl_guid, &value);
|
|
|
|
if (!ret && value == DSM_VALUE_INDONESIA_ENABLE)
|
|
config_bitmap |=
|
|
cpu_to_le32(LARI_CONFIG_ENABLE_5G2_IN_INDONESIA_MSK);
|
|
|
|
/*
|
|
** Evaluate func 'DSM_FUNC_DISABLE_SRD'
|
|
*/
|
|
ret = iwl_acpi_get_dsm_u8(fwrt->dev, 0,
|
|
DSM_FUNC_DISABLE_SRD,
|
|
&iwl_guid, &value);
|
|
if (!ret) {
|
|
if (value == DSM_VALUE_SRD_PASSIVE)
|
|
config_bitmap |=
|
|
cpu_to_le32(LARI_CONFIG_CHANGE_ETSI_TO_PASSIVE_MSK);
|
|
else if (value == DSM_VALUE_SRD_DISABLE)
|
|
config_bitmap |=
|
|
cpu_to_le32(LARI_CONFIG_CHANGE_ETSI_TO_DISABLED_MSK);
|
|
}
|
|
|
|
return config_bitmap;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_lari_config_bitmap);
|
|
|
|
int iwl_acpi_get_ppag_table(struct iwl_fw_runtime *fwrt)
|
|
{
|
|
union acpi_object *wifi_pkg, *data, *flags;
|
|
int i, j, ret, tbl_rev, num_sub_bands = 0;
|
|
int idx = 2;
|
|
u8 cmd_ver;
|
|
|
|
fwrt->ppag_flags = 0;
|
|
fwrt->ppag_table_valid = false;
|
|
|
|
data = iwl_acpi_get_object(fwrt->dev, ACPI_PPAG_METHOD);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
|
|
/* try to read ppag table rev 2 or 1 (both have the same data size) */
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_PPAG_WIFI_DATA_SIZE_V2, &tbl_rev);
|
|
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (tbl_rev == 1 || tbl_rev == 2) {
|
|
num_sub_bands = IWL_NUM_SUB_BANDS_V2;
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"Reading PPAG table v2 (tbl_rev=%d)\n",
|
|
tbl_rev);
|
|
goto read_table;
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
/* try to read ppag table revision 0 */
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_PPAG_WIFI_DATA_SIZE_V1, &tbl_rev);
|
|
|
|
if (!IS_ERR(wifi_pkg)) {
|
|
if (tbl_rev != 0) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
num_sub_bands = IWL_NUM_SUB_BANDS_V1;
|
|
IWL_DEBUG_RADIO(fwrt, "Reading PPAG table v1 (tbl_rev=0)\n");
|
|
goto read_table;
|
|
}
|
|
|
|
read_table:
|
|
fwrt->ppag_ver = tbl_rev;
|
|
flags = &wifi_pkg->package.elements[1];
|
|
|
|
if (flags->type != ACPI_TYPE_INTEGER) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
fwrt->ppag_flags = flags->integer.value & ACPI_PPAG_MASK;
|
|
cmd_ver = iwl_fw_lookup_cmd_ver(fwrt->fw,
|
|
WIDE_ID(PHY_OPS_GROUP,
|
|
PER_PLATFORM_ANT_GAIN_CMD),
|
|
IWL_FW_CMD_VER_UNKNOWN);
|
|
if (cmd_ver == IWL_FW_CMD_VER_UNKNOWN) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
if (!fwrt->ppag_flags && cmd_ver <= 3) {
|
|
ret = 0;
|
|
goto out_free;
|
|
}
|
|
|
|
/*
|
|
* read, verify gain values and save them into the PPAG table.
|
|
* first sub-band (j=0) corresponds to Low-Band (2.4GHz), and the
|
|
* following sub-bands to High-Band (5GHz).
|
|
*/
|
|
for (i = 0; i < IWL_NUM_CHAIN_LIMITS; i++) {
|
|
for (j = 0; j < num_sub_bands; j++) {
|
|
union acpi_object *ent;
|
|
|
|
ent = &wifi_pkg->package.elements[idx++];
|
|
if (ent->type != ACPI_TYPE_INTEGER) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
fwrt->ppag_chains[i].subbands[j] = ent->integer.value;
|
|
/* from ver 4 the fw deals with out of range values */
|
|
if (cmd_ver >= 4)
|
|
continue;
|
|
if ((j == 0 &&
|
|
(fwrt->ppag_chains[i].subbands[j] > ACPI_PPAG_MAX_LB ||
|
|
fwrt->ppag_chains[i].subbands[j] < ACPI_PPAG_MIN_LB)) ||
|
|
(j != 0 &&
|
|
(fwrt->ppag_chains[i].subbands[j] > ACPI_PPAG_MAX_HB ||
|
|
fwrt->ppag_chains[i].subbands[j] < ACPI_PPAG_MIN_HB))) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
}
|
|
|
|
fwrt->ppag_table_valid = true;
|
|
ret = 0;
|
|
|
|
out_free:
|
|
kfree(data);
|
|
return ret;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_ppag_table);
|
|
|
|
int iwl_read_ppag_table(struct iwl_fw_runtime *fwrt, union iwl_ppag_table_cmd *cmd,
|
|
int *cmd_size)
|
|
{
|
|
u8 cmd_ver;
|
|
int i, j, num_sub_bands;
|
|
s8 *gain;
|
|
|
|
/* many firmware images for JF lie about this */
|
|
if (CSR_HW_RFID_TYPE(fwrt->trans->hw_rf_id) ==
|
|
CSR_HW_RFID_TYPE(CSR_HW_RF_ID_TYPE_JF))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!fw_has_capa(&fwrt->fw->ucode_capa, IWL_UCODE_TLV_CAPA_SET_PPAG)) {
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"PPAG capability not supported by FW, command not sent.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cmd_ver = iwl_fw_lookup_cmd_ver(fwrt->fw,
|
|
WIDE_ID(PHY_OPS_GROUP,
|
|
PER_PLATFORM_ANT_GAIN_CMD),
|
|
IWL_FW_CMD_VER_UNKNOWN);
|
|
if (!fwrt->ppag_table_valid || (cmd_ver <= 3 && !fwrt->ppag_flags)) {
|
|
IWL_DEBUG_RADIO(fwrt, "PPAG not enabled, command not sent.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* The 'flags' field is the same in v1 and in v2 so we can just
|
|
* use v1 to access it.
|
|
*/
|
|
cmd->v1.flags = cpu_to_le32(fwrt->ppag_flags);
|
|
|
|
IWL_DEBUG_RADIO(fwrt, "PPAG cmd ver is %d\n", cmd_ver);
|
|
if (cmd_ver == 1) {
|
|
num_sub_bands = IWL_NUM_SUB_BANDS_V1;
|
|
gain = cmd->v1.gain[0];
|
|
*cmd_size = sizeof(cmd->v1);
|
|
if (fwrt->ppag_ver == 1 || fwrt->ppag_ver == 2) {
|
|
/* in this case FW supports revision 0 */
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"PPAG table rev is %d, send truncated table\n",
|
|
fwrt->ppag_ver);
|
|
}
|
|
} else if (cmd_ver >= 2 && cmd_ver <= 4) {
|
|
num_sub_bands = IWL_NUM_SUB_BANDS_V2;
|
|
gain = cmd->v2.gain[0];
|
|
*cmd_size = sizeof(cmd->v2);
|
|
if (fwrt->ppag_ver == 0) {
|
|
/* in this case FW supports revisions 1 or 2 */
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"PPAG table rev is 0, send padded table\n");
|
|
}
|
|
} else {
|
|
IWL_DEBUG_RADIO(fwrt, "Unsupported PPAG command version\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* ppag mode */
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"PPAG MODE bits were read from bios: %d\n",
|
|
cmd->v1.flags & cpu_to_le32(ACPI_PPAG_MASK));
|
|
if ((cmd_ver == 1 && !fw_has_capa(&fwrt->fw->ucode_capa,
|
|
IWL_UCODE_TLV_CAPA_PPAG_CHINA_BIOS_SUPPORT)) ||
|
|
(cmd_ver == 2 && fwrt->ppag_ver == 2)) {
|
|
cmd->v1.flags &= cpu_to_le32(IWL_PPAG_ETSI_MASK);
|
|
IWL_DEBUG_RADIO(fwrt, "masking ppag China bit\n");
|
|
} else {
|
|
IWL_DEBUG_RADIO(fwrt, "isn't masking ppag China bit\n");
|
|
}
|
|
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"PPAG MODE bits going to be sent: %d\n",
|
|
cmd->v1.flags & cpu_to_le32(ACPI_PPAG_MASK));
|
|
|
|
for (i = 0; i < IWL_NUM_CHAIN_LIMITS; i++) {
|
|
for (j = 0; j < num_sub_bands; j++) {
|
|
gain[i * num_sub_bands + j] =
|
|
fwrt->ppag_chains[i].subbands[j];
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"PPAG table: chain[%d] band[%d]: gain = %d\n",
|
|
i, j, gain[i * num_sub_bands + j]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_read_ppag_table);
|
|
|
|
bool iwl_acpi_is_ppag_approved(struct iwl_fw_runtime *fwrt)
|
|
{
|
|
|
|
if (!dmi_check_system(dmi_ppag_approved_list)) {
|
|
IWL_DEBUG_RADIO(fwrt,
|
|
"System vendor '%s' is not in the approved list, disabling PPAG.\n",
|
|
dmi_get_system_info(DMI_SYS_VENDOR));
|
|
fwrt->ppag_flags = 0;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_is_ppag_approved);
|
|
|
|
void iwl_acpi_get_phy_filters(struct iwl_fw_runtime *fwrt,
|
|
struct iwl_phy_specific_cfg *filters)
|
|
{
|
|
struct iwl_phy_specific_cfg tmp = {};
|
|
union acpi_object *wifi_pkg, *data;
|
|
int tbl_rev, i;
|
|
|
|
data = iwl_acpi_get_object(fwrt->dev, ACPI_WPFC_METHOD);
|
|
if (IS_ERR(data))
|
|
return;
|
|
|
|
/* try to read wtas table revision 1 or revision 0*/
|
|
wifi_pkg = iwl_acpi_get_wifi_pkg(fwrt->dev, data,
|
|
ACPI_WPFC_WIFI_DATA_SIZE,
|
|
&tbl_rev);
|
|
if (IS_ERR(wifi_pkg))
|
|
goto out_free;
|
|
|
|
if (tbl_rev != 0)
|
|
goto out_free;
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(filters->filter_cfg_chains) != ACPI_WPFC_WIFI_DATA_SIZE);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(filters->filter_cfg_chains); i++) {
|
|
if (wifi_pkg->package.elements[i].type != ACPI_TYPE_INTEGER)
|
|
return;
|
|
tmp.filter_cfg_chains[i] =
|
|
cpu_to_le32(wifi_pkg->package.elements[i].integer.value);
|
|
}
|
|
|
|
IWL_DEBUG_RADIO(fwrt, "Loaded WPFC filter config from ACPI\n");
|
|
*filters = tmp;
|
|
out_free:
|
|
kfree(data);
|
|
}
|
|
IWL_EXPORT_SYMBOL(iwl_acpi_get_phy_filters);
|