linux-zen-desktop/drivers/net/wireless/mediatek/mt76/mt7603/mac.c

1882 lines
46 KiB
C

// SPDX-License-Identifier: ISC
#include <linux/etherdevice.h>
#include <linux/timekeeping.h>
#include "mt7603.h"
#include "mac.h"
#include "../trace.h"
#define MT_PSE_PAGE_SIZE 128
static u32
mt7603_ac_queue_mask0(u32 mask)
{
u32 ret = 0;
ret |= GENMASK(3, 0) * !!(mask & BIT(0));
ret |= GENMASK(8, 5) * !!(mask & BIT(1));
ret |= GENMASK(13, 10) * !!(mask & BIT(2));
ret |= GENMASK(19, 16) * !!(mask & BIT(3));
return ret;
}
static void
mt76_stop_tx_ac(struct mt7603_dev *dev, u32 mask)
{
mt76_set(dev, MT_WF_ARB_TX_STOP_0, mt7603_ac_queue_mask0(mask));
}
static void
mt76_start_tx_ac(struct mt7603_dev *dev, u32 mask)
{
mt76_set(dev, MT_WF_ARB_TX_START_0, mt7603_ac_queue_mask0(mask));
}
void mt7603_mac_reset_counters(struct mt7603_dev *dev)
{
int i;
for (i = 0; i < 2; i++)
mt76_rr(dev, MT_TX_AGG_CNT(i));
memset(dev->mphy.aggr_stats, 0, sizeof(dev->mphy.aggr_stats));
}
void mt7603_mac_set_timing(struct mt7603_dev *dev)
{
u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) |
FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48);
u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) |
FIELD_PREP(MT_TIMEOUT_VAL_CCA, 24);
int offset = 3 * dev->coverage_class;
u32 reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) |
FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset);
bool is_5ghz = dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ;
int sifs;
u32 val;
if (is_5ghz)
sifs = 16;
else
sifs = 10;
mt76_set(dev, MT_ARB_SCR,
MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
udelay(1);
mt76_wr(dev, MT_TIMEOUT_CCK, cck + reg_offset);
mt76_wr(dev, MT_TIMEOUT_OFDM, ofdm + reg_offset);
mt76_wr(dev, MT_IFS,
FIELD_PREP(MT_IFS_EIFS, 360) |
FIELD_PREP(MT_IFS_RIFS, 2) |
FIELD_PREP(MT_IFS_SIFS, sifs) |
FIELD_PREP(MT_IFS_SLOT, dev->slottime));
if (dev->slottime < 20 || is_5ghz)
val = MT7603_CFEND_RATE_DEFAULT;
else
val = MT7603_CFEND_RATE_11B;
mt76_rmw_field(dev, MT_AGG_CONTROL, MT_AGG_CONTROL_CFEND_RATE, val);
mt76_clear(dev, MT_ARB_SCR,
MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
}
static void
mt7603_wtbl_update(struct mt7603_dev *dev, int idx, u32 mask)
{
mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX,
FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask);
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
}
static u32
mt7603_wtbl1_addr(int idx)
{
return MT_WTBL1_BASE + idx * MT_WTBL1_SIZE;
}
static u32
mt7603_wtbl2_addr(int idx)
{
/* Mapped to WTBL2 */
return MT_PCIE_REMAP_BASE_1 + idx * MT_WTBL2_SIZE;
}
static u32
mt7603_wtbl3_addr(int idx)
{
u32 base = mt7603_wtbl2_addr(MT7603_WTBL_SIZE);
return base + idx * MT_WTBL3_SIZE;
}
static u32
mt7603_wtbl4_addr(int idx)
{
u32 base = mt7603_wtbl3_addr(MT7603_WTBL_SIZE);
return base + idx * MT_WTBL4_SIZE;
}
void mt7603_wtbl_init(struct mt7603_dev *dev, int idx, int vif,
const u8 *mac_addr)
{
const void *_mac = mac_addr;
u32 addr = mt7603_wtbl1_addr(idx);
u32 w0 = 0, w1 = 0;
int i;
if (_mac) {
w0 = FIELD_PREP(MT_WTBL1_W0_ADDR_HI,
get_unaligned_le16(_mac + 4));
w1 = FIELD_PREP(MT_WTBL1_W1_ADDR_LO,
get_unaligned_le32(_mac));
}
if (vif < 0)
vif = 0;
else
w0 |= MT_WTBL1_W0_RX_CHECK_A1;
w0 |= FIELD_PREP(MT_WTBL1_W0_MUAR_IDX, vif);
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
mt76_set(dev, addr + 0 * 4, w0);
mt76_set(dev, addr + 1 * 4, w1);
mt76_set(dev, addr + 2 * 4, MT_WTBL1_W2_ADMISSION_CONTROL);
mt76_stop_tx_ac(dev, GENMASK(3, 0));
addr = mt7603_wtbl2_addr(idx);
for (i = 0; i < MT_WTBL2_SIZE; i += 4)
mt76_wr(dev, addr + i, 0);
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2);
mt76_start_tx_ac(dev, GENMASK(3, 0));
addr = mt7603_wtbl3_addr(idx);
for (i = 0; i < MT_WTBL3_SIZE; i += 4)
mt76_wr(dev, addr + i, 0);
addr = mt7603_wtbl4_addr(idx);
for (i = 0; i < MT_WTBL4_SIZE; i += 4)
mt76_wr(dev, addr + i, 0);
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
}
static void
mt7603_wtbl_set_skip_tx(struct mt7603_dev *dev, int idx, bool enabled)
{
u32 addr = mt7603_wtbl1_addr(idx);
u32 val = mt76_rr(dev, addr + 3 * 4);
val &= ~MT_WTBL1_W3_SKIP_TX;
val |= enabled * MT_WTBL1_W3_SKIP_TX;
mt76_wr(dev, addr + 3 * 4, val);
}
void mt7603_filter_tx(struct mt7603_dev *dev, int idx, bool abort)
{
int i, port, queue;
if (abort) {
port = 3; /* PSE */
queue = 8; /* free queue */
} else {
port = 0; /* HIF */
queue = 1; /* MCU queue */
}
mt7603_wtbl_set_skip_tx(dev, idx, true);
mt76_wr(dev, MT_TX_ABORT, MT_TX_ABORT_EN |
FIELD_PREP(MT_TX_ABORT_WCID, idx));
for (i = 0; i < 4; i++) {
mt76_wr(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY |
FIELD_PREP(MT_DMA_FQCR0_TARGET_WCID, idx) |
FIELD_PREP(MT_DMA_FQCR0_TARGET_QID, i) |
FIELD_PREP(MT_DMA_FQCR0_DEST_PORT_ID, port) |
FIELD_PREP(MT_DMA_FQCR0_DEST_QUEUE_ID, queue));
mt76_poll(dev, MT_DMA_FQCR0, MT_DMA_FQCR0_BUSY, 0, 15000);
}
WARN_ON_ONCE(mt76_rr(dev, MT_DMA_FQCR0) & MT_DMA_FQCR0_BUSY);
mt76_wr(dev, MT_TX_ABORT, 0);
mt7603_wtbl_set_skip_tx(dev, idx, false);
}
void mt7603_wtbl_set_smps(struct mt7603_dev *dev, struct mt7603_sta *sta,
bool enabled)
{
u32 addr = mt7603_wtbl1_addr(sta->wcid.idx);
if (sta->smps == enabled)
return;
mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_SMPS, enabled);
sta->smps = enabled;
}
void mt7603_wtbl_set_ps(struct mt7603_dev *dev, struct mt7603_sta *sta,
bool enabled)
{
int idx = sta->wcid.idx;
u32 addr;
spin_lock_bh(&dev->ps_lock);
if (sta->ps == enabled)
goto out;
mt76_wr(dev, MT_PSE_RTA,
FIELD_PREP(MT_PSE_RTA_TAG_ID, idx) |
FIELD_PREP(MT_PSE_RTA_PORT_ID, 0) |
FIELD_PREP(MT_PSE_RTA_QUEUE_ID, 1) |
FIELD_PREP(MT_PSE_RTA_REDIRECT_EN, enabled) |
MT_PSE_RTA_WRITE | MT_PSE_RTA_BUSY);
mt76_poll(dev, MT_PSE_RTA, MT_PSE_RTA_BUSY, 0, 5000);
if (enabled)
mt7603_filter_tx(dev, idx, false);
addr = mt7603_wtbl1_addr(idx);
mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
mt76_rmw(dev, addr + 3 * 4, MT_WTBL1_W3_POWER_SAVE,
enabled * MT_WTBL1_W3_POWER_SAVE);
mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
sta->ps = enabled;
out:
spin_unlock_bh(&dev->ps_lock);
}
void mt7603_wtbl_clear(struct mt7603_dev *dev, int idx)
{
int wtbl2_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL2_SIZE;
int wtbl2_frame = idx / wtbl2_frame_size;
int wtbl2_entry = idx % wtbl2_frame_size;
int wtbl3_base_frame = MT_WTBL3_OFFSET / MT_PSE_PAGE_SIZE;
int wtbl3_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL3_SIZE;
int wtbl3_frame = wtbl3_base_frame + idx / wtbl3_frame_size;
int wtbl3_entry = (idx % wtbl3_frame_size) * 2;
int wtbl4_base_frame = MT_WTBL4_OFFSET / MT_PSE_PAGE_SIZE;
int wtbl4_frame_size = MT_PSE_PAGE_SIZE / MT_WTBL4_SIZE;
int wtbl4_frame = wtbl4_base_frame + idx / wtbl4_frame_size;
int wtbl4_entry = idx % wtbl4_frame_size;
u32 addr = MT_WTBL1_BASE + idx * MT_WTBL1_SIZE;
int i;
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
mt76_wr(dev, addr + 0 * 4,
MT_WTBL1_W0_RX_CHECK_A1 |
MT_WTBL1_W0_RX_CHECK_A2 |
MT_WTBL1_W0_RX_VALID);
mt76_wr(dev, addr + 1 * 4, 0);
mt76_wr(dev, addr + 2 * 4, 0);
mt76_set(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
mt76_wr(dev, addr + 3 * 4,
FIELD_PREP(MT_WTBL1_W3_WTBL2_FRAME_ID, wtbl2_frame) |
FIELD_PREP(MT_WTBL1_W3_WTBL2_ENTRY_ID, wtbl2_entry) |
FIELD_PREP(MT_WTBL1_W3_WTBL4_FRAME_ID, wtbl4_frame) |
MT_WTBL1_W3_I_PSM | MT_WTBL1_W3_KEEP_I_PSM);
mt76_wr(dev, addr + 4 * 4,
FIELD_PREP(MT_WTBL1_W4_WTBL3_FRAME_ID, wtbl3_frame) |
FIELD_PREP(MT_WTBL1_W4_WTBL3_ENTRY_ID, wtbl3_entry) |
FIELD_PREP(MT_WTBL1_W4_WTBL4_ENTRY_ID, wtbl4_entry));
mt76_clear(dev, MT_WTBL1_OR, MT_WTBL1_OR_PSM_WRITE);
addr = mt7603_wtbl2_addr(idx);
/* Clear BA information */
mt76_wr(dev, addr + (15 * 4), 0);
mt76_stop_tx_ac(dev, GENMASK(3, 0));
for (i = 2; i <= 4; i++)
mt76_wr(dev, addr + (i * 4), 0);
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_WTBL2);
mt76_start_tx_ac(dev, GENMASK(3, 0));
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_RX_COUNT_CLEAR);
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_TX_COUNT_CLEAR);
mt7603_wtbl_update(dev, idx, MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
}
void mt7603_wtbl_update_cap(struct mt7603_dev *dev, struct ieee80211_sta *sta)
{
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
int idx = msta->wcid.idx;
u8 ampdu_density;
u32 addr;
u32 val;
addr = mt7603_wtbl1_addr(idx);
ampdu_density = sta->deflink.ht_cap.ampdu_density;
if (ampdu_density < IEEE80211_HT_MPDU_DENSITY_4)
ampdu_density = IEEE80211_HT_MPDU_DENSITY_4;
val = mt76_rr(dev, addr + 2 * 4);
val &= MT_WTBL1_W2_KEY_TYPE | MT_WTBL1_W2_ADMISSION_CONTROL;
val |= FIELD_PREP(MT_WTBL1_W2_AMPDU_FACTOR,
sta->deflink.ht_cap.ampdu_factor) |
FIELD_PREP(MT_WTBL1_W2_MPDU_DENSITY,
sta->deflink.ht_cap.ampdu_density) |
MT_WTBL1_W2_TXS_BAF_REPORT;
if (sta->deflink.ht_cap.cap)
val |= MT_WTBL1_W2_HT;
if (sta->deflink.vht_cap.cap)
val |= MT_WTBL1_W2_VHT;
mt76_wr(dev, addr + 2 * 4, val);
addr = mt7603_wtbl2_addr(idx);
val = mt76_rr(dev, addr + 9 * 4);
val &= ~(MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 |
MT_WTBL2_W9_SHORT_GI_80);
if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20)
val |= MT_WTBL2_W9_SHORT_GI_20;
if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
val |= MT_WTBL2_W9_SHORT_GI_40;
mt76_wr(dev, addr + 9 * 4, val);
}
void mt7603_mac_rx_ba_reset(struct mt7603_dev *dev, void *addr, u8 tid)
{
mt76_wr(dev, MT_BA_CONTROL_0, get_unaligned_le32(addr));
mt76_wr(dev, MT_BA_CONTROL_1,
(get_unaligned_le16(addr + 4) |
FIELD_PREP(MT_BA_CONTROL_1_TID, tid) |
MT_BA_CONTROL_1_RESET));
}
void mt7603_mac_tx_ba_reset(struct mt7603_dev *dev, int wcid, int tid,
int ba_size)
{
u32 addr = mt7603_wtbl2_addr(wcid);
u32 tid_mask = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) |
(MT_WTBL2_W15_BA_WIN_SIZE <<
(tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT));
u32 tid_val;
int i;
if (ba_size < 0) {
/* disable */
mt76_clear(dev, addr + (15 * 4), tid_mask);
return;
}
for (i = 7; i > 0; i--) {
if (ba_size >= MT_AGG_SIZE_LIMIT(i))
break;
}
tid_val = FIELD_PREP(MT_WTBL2_W15_BA_EN_TIDS, BIT(tid)) |
i << (tid * MT_WTBL2_W15_BA_WIN_SIZE_SHIFT);
mt76_rmw(dev, addr + (15 * 4), tid_mask, tid_val);
}
void mt7603_mac_sta_poll(struct mt7603_dev *dev)
{
static const u8 ac_to_tid[4] = {
[IEEE80211_AC_BE] = 0,
[IEEE80211_AC_BK] = 1,
[IEEE80211_AC_VI] = 4,
[IEEE80211_AC_VO] = 6
};
struct ieee80211_sta *sta;
struct mt7603_sta *msta;
u32 total_airtime = 0;
u32 airtime[4];
u32 addr;
int i;
rcu_read_lock();
while (1) {
bool clear = false;
spin_lock_bh(&dev->sta_poll_lock);
if (list_empty(&dev->sta_poll_list)) {
spin_unlock_bh(&dev->sta_poll_lock);
break;
}
msta = list_first_entry(&dev->sta_poll_list, struct mt7603_sta,
poll_list);
list_del_init(&msta->poll_list);
spin_unlock_bh(&dev->sta_poll_lock);
addr = mt7603_wtbl4_addr(msta->wcid.idx);
for (i = 0; i < 4; i++) {
u32 airtime_last = msta->tx_airtime_ac[i];
msta->tx_airtime_ac[i] = mt76_rr(dev, addr + i * 8);
airtime[i] = msta->tx_airtime_ac[i] - airtime_last;
airtime[i] *= 32;
total_airtime += airtime[i];
if (msta->tx_airtime_ac[i] & BIT(22))
clear = true;
}
if (clear) {
mt7603_wtbl_update(dev, msta->wcid.idx,
MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
memset(msta->tx_airtime_ac, 0,
sizeof(msta->tx_airtime_ac));
}
if (!msta->wcid.sta)
continue;
sta = container_of((void *)msta, struct ieee80211_sta, drv_priv);
for (i = 0; i < 4; i++) {
struct mt76_queue *q = dev->mphy.q_tx[i];
u8 qidx = q->hw_idx;
u8 tid = ac_to_tid[i];
u32 txtime = airtime[qidx];
if (!txtime)
continue;
ieee80211_sta_register_airtime(sta, tid, txtime, 0);
}
}
rcu_read_unlock();
if (!total_airtime)
return;
spin_lock_bh(&dev->mt76.cc_lock);
dev->mphy.chan_state->cc_tx += total_airtime;
spin_unlock_bh(&dev->mt76.cc_lock);
}
static struct mt76_wcid *
mt7603_rx_get_wcid(struct mt7603_dev *dev, u8 idx, bool unicast)
{
struct mt7603_sta *sta;
struct mt76_wcid *wcid;
if (idx >= MT7603_WTBL_SIZE)
return NULL;
wcid = rcu_dereference(dev->mt76.wcid[idx]);
if (unicast || !wcid)
return wcid;
if (!wcid->sta)
return NULL;
sta = container_of(wcid, struct mt7603_sta, wcid);
if (!sta->vif)
return NULL;
return &sta->vif->sta.wcid;
}
int
mt7603_mac_fill_rx(struct mt7603_dev *dev, struct sk_buff *skb)
{
struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
struct ieee80211_supported_band *sband;
struct ieee80211_hdr *hdr;
__le32 *rxd = (__le32 *)skb->data;
u32 rxd0 = le32_to_cpu(rxd[0]);
u32 rxd1 = le32_to_cpu(rxd[1]);
u32 rxd2 = le32_to_cpu(rxd[2]);
bool unicast = rxd1 & MT_RXD1_NORMAL_U2M;
bool insert_ccmp_hdr = false;
bool remove_pad;
int idx;
int i;
memset(status, 0, sizeof(*status));
i = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1);
sband = (i & 1) ? &dev->mphy.sband_5g.sband : &dev->mphy.sband_2g.sband;
i >>= 1;
idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2);
status->wcid = mt7603_rx_get_wcid(dev, idx, unicast);
status->band = sband->band;
if (i < sband->n_channels)
status->freq = sband->channels[i].center_freq;
if (rxd2 & MT_RXD2_NORMAL_FCS_ERR)
status->flag |= RX_FLAG_FAILED_FCS_CRC;
if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR)
status->flag |= RX_FLAG_MMIC_ERROR;
/* ICV error or CCMP/BIP/WPI MIC error */
if (rxd2 & MT_RXD2_NORMAL_ICV_ERR)
status->flag |= RX_FLAG_ONLY_MONITOR;
if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 &&
!(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) {
status->flag |= RX_FLAG_DECRYPTED;
status->flag |= RX_FLAG_IV_STRIPPED;
status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED;
}
remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET;
if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR)
return -EINVAL;
if (!sband->channels)
return -EINVAL;
rxd += 4;
if (rxd0 & MT_RXD0_NORMAL_GROUP_4) {
rxd += 4;
if ((u8 *)rxd - skb->data >= skb->len)
return -EINVAL;
}
if (rxd0 & MT_RXD0_NORMAL_GROUP_1) {
u8 *data = (u8 *)rxd;
if (status->flag & RX_FLAG_DECRYPTED) {
switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) {
case MT_CIPHER_AES_CCMP:
case MT_CIPHER_CCMP_CCX:
case MT_CIPHER_CCMP_256:
insert_ccmp_hdr =
FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2);
fallthrough;
case MT_CIPHER_TKIP:
case MT_CIPHER_TKIP_NO_MIC:
case MT_CIPHER_GCMP:
case MT_CIPHER_GCMP_256:
status->iv[0] = data[5];
status->iv[1] = data[4];
status->iv[2] = data[3];
status->iv[3] = data[2];
status->iv[4] = data[1];
status->iv[5] = data[0];
break;
default:
break;
}
}
rxd += 4;
if ((u8 *)rxd - skb->data >= skb->len)
return -EINVAL;
}
if (rxd0 & MT_RXD0_NORMAL_GROUP_2) {
status->timestamp = le32_to_cpu(rxd[0]);
status->flag |= RX_FLAG_MACTIME_START;
if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB |
MT_RXD2_NORMAL_NON_AMPDU))) {
status->flag |= RX_FLAG_AMPDU_DETAILS;
/* all subframes of an A-MPDU have the same timestamp */
if (dev->rx_ampdu_ts != status->timestamp) {
if (!++dev->ampdu_ref)
dev->ampdu_ref++;
}
dev->rx_ampdu_ts = status->timestamp;
status->ampdu_ref = dev->ampdu_ref;
}
rxd += 2;
if ((u8 *)rxd - skb->data >= skb->len)
return -EINVAL;
}
if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
u32 rxdg0 = le32_to_cpu(rxd[0]);
u32 rxdg3 = le32_to_cpu(rxd[3]);
bool cck = false;
i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0);
switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) {
case MT_PHY_TYPE_CCK:
cck = true;
fallthrough;
case MT_PHY_TYPE_OFDM:
i = mt76_get_rate(&dev->mt76, sband, i, cck);
break;
case MT_PHY_TYPE_HT_GF:
case MT_PHY_TYPE_HT:
status->encoding = RX_ENC_HT;
if (i > 15)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (rxdg0 & MT_RXV1_HT_SHORT_GI)
status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (rxdg0 & MT_RXV1_HT_AD_CODE)
status->enc_flags |= RX_ENC_FLAG_LDPC;
status->enc_flags |= RX_ENC_FLAG_STBC_MASK *
FIELD_GET(MT_RXV1_HT_STBC, rxdg0);
status->rate_idx = i;
status->chains = dev->mphy.antenna_mask;
status->chain_signal[0] = FIELD_GET(MT_RXV4_IB_RSSI0, rxdg3) +
dev->rssi_offset[0];
status->chain_signal[1] = FIELD_GET(MT_RXV4_IB_RSSI1, rxdg3) +
dev->rssi_offset[1];
if (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0) == 1)
status->bw = RATE_INFO_BW_40;
rxd += 6;
if ((u8 *)rxd - skb->data >= skb->len)
return -EINVAL;
} else {
return -EINVAL;
}
skb_pull(skb, (u8 *)rxd - skb->data + 2 * remove_pad);
if (insert_ccmp_hdr) {
u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1);
mt76_insert_ccmp_hdr(skb, key_id);
}
hdr = (struct ieee80211_hdr *)skb->data;
if (!status->wcid || !ieee80211_is_data_qos(hdr->frame_control))
return 0;
status->aggr = unicast &&
!ieee80211_is_qos_nullfunc(hdr->frame_control);
status->qos_ctl = *ieee80211_get_qos_ctl(hdr);
status->seqno = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl));
return 0;
}
static u16
mt7603_mac_tx_rate_val(struct mt7603_dev *dev,
const struct ieee80211_tx_rate *rate, bool stbc, u8 *bw)
{
u8 phy, nss, rate_idx;
u16 rateval;
*bw = 0;
if (rate->flags & IEEE80211_TX_RC_MCS) {
rate_idx = rate->idx;
nss = 1 + (rate->idx >> 3);
phy = MT_PHY_TYPE_HT;
if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
phy = MT_PHY_TYPE_HT_GF;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
*bw = 1;
} else {
const struct ieee80211_rate *r;
int band = dev->mphy.chandef.chan->band;
u16 val;
nss = 1;
r = &mt76_hw(dev)->wiphy->bands[band]->bitrates[rate->idx];
if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
val = r->hw_value_short;
else
val = r->hw_value;
phy = val >> 8;
rate_idx = val & 0xff;
}
rateval = (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) |
FIELD_PREP(MT_TX_RATE_MODE, phy));
if (stbc && nss == 1)
rateval |= MT_TX_RATE_STBC;
return rateval;
}
void mt7603_wtbl_set_rates(struct mt7603_dev *dev, struct mt7603_sta *sta,
struct ieee80211_tx_rate *probe_rate,
struct ieee80211_tx_rate *rates)
{
struct ieee80211_tx_rate *ref;
int wcid = sta->wcid.idx;
u32 addr = mt7603_wtbl2_addr(wcid);
bool stbc = false;
int n_rates = sta->n_rates;
u8 bw, bw_prev, bw_idx = 0;
u16 val[4];
u16 probe_val;
u32 w9 = mt76_rr(dev, addr + 9 * 4);
bool rateset;
int i, k;
if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
return;
for (i = n_rates; i < 4; i++)
rates[i] = rates[n_rates - 1];
rateset = !(sta->rate_set_tsf & BIT(0));
memcpy(sta->rateset[rateset].rates, rates,
sizeof(sta->rateset[rateset].rates));
if (probe_rate) {
sta->rateset[rateset].probe_rate = *probe_rate;
ref = &sta->rateset[rateset].probe_rate;
} else {
sta->rateset[rateset].probe_rate.idx = -1;
ref = &sta->rateset[rateset].rates[0];
}
rates = sta->rateset[rateset].rates;
for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) {
/*
* We don't support switching between short and long GI
* within the rate set. For accurate tx status reporting, we
* need to make sure that flags match.
* For improved performance, avoid duplicate entries by
* decrementing the MCS index if necessary
*/
if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI)
rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI;
for (k = 0; k < i; k++) {
if (rates[i].idx != rates[k].idx)
continue;
if ((rates[i].flags ^ rates[k].flags) &
IEEE80211_TX_RC_40_MHZ_WIDTH)
continue;
if (!rates[i].idx)
continue;
rates[i].idx--;
}
}
w9 &= MT_WTBL2_W9_SHORT_GI_20 | MT_WTBL2_W9_SHORT_GI_40 |
MT_WTBL2_W9_SHORT_GI_80;
val[0] = mt7603_mac_tx_rate_val(dev, &rates[0], stbc, &bw);
bw_prev = bw;
if (probe_rate) {
probe_val = mt7603_mac_tx_rate_val(dev, probe_rate, stbc, &bw);
if (bw)
bw_idx = 1;
else
bw_prev = 0;
} else {
probe_val = val[0];
}
w9 |= FIELD_PREP(MT_WTBL2_W9_CC_BW_SEL, bw);
w9 |= FIELD_PREP(MT_WTBL2_W9_BW_CAP, bw);
val[1] = mt7603_mac_tx_rate_val(dev, &rates[1], stbc, &bw);
if (bw_prev) {
bw_idx = 3;
bw_prev = bw;
}
val[2] = mt7603_mac_tx_rate_val(dev, &rates[2], stbc, &bw);
if (bw_prev) {
bw_idx = 5;
bw_prev = bw;
}
val[3] = mt7603_mac_tx_rate_val(dev, &rates[3], stbc, &bw);
if (bw_prev)
bw_idx = 7;
w9 |= FIELD_PREP(MT_WTBL2_W9_CHANGE_BW_RATE,
bw_idx ? bw_idx - 1 : 7);
mt76_wr(dev, MT_WTBL_RIUCR0, w9);
mt76_wr(dev, MT_WTBL_RIUCR1,
FIELD_PREP(MT_WTBL_RIUCR1_RATE0, probe_val) |
FIELD_PREP(MT_WTBL_RIUCR1_RATE1, val[0]) |
FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, val[1]));
mt76_wr(dev, MT_WTBL_RIUCR2,
FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, val[1] >> 8) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE3, val[1]) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE4, val[2]) |
FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, val[2]));
mt76_wr(dev, MT_WTBL_RIUCR3,
FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, val[2] >> 4) |
FIELD_PREP(MT_WTBL_RIUCR3_RATE6, val[3]) |
FIELD_PREP(MT_WTBL_RIUCR3_RATE7, val[3]));
mt76_set(dev, MT_LPON_T0CR, MT_LPON_T0CR_MODE); /* TSF read */
sta->rate_set_tsf = (mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0)) | rateset;
mt76_wr(dev, MT_WTBL_UPDATE,
FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) |
MT_WTBL_UPDATE_RATE_UPDATE |
MT_WTBL_UPDATE_TX_COUNT_CLEAR);
if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET))
mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
sta->rate_count = 2 * MT7603_RATE_RETRY * n_rates;
sta->wcid.tx_info |= MT_WCID_TX_INFO_SET;
}
static enum mt76_cipher_type
mt7603_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
{
memset(key_data, 0, 32);
if (!key)
return MT_CIPHER_NONE;
if (key->keylen > 32)
return MT_CIPHER_NONE;
memcpy(key_data, key->key, key->keylen);
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
return MT_CIPHER_WEP40;
case WLAN_CIPHER_SUITE_WEP104:
return MT_CIPHER_WEP104;
case WLAN_CIPHER_SUITE_TKIP:
/* Rx/Tx MIC keys are swapped */
memcpy(key_data + 16, key->key + 24, 8);
memcpy(key_data + 24, key->key + 16, 8);
return MT_CIPHER_TKIP;
case WLAN_CIPHER_SUITE_CCMP:
return MT_CIPHER_AES_CCMP;
default:
return MT_CIPHER_NONE;
}
}
int mt7603_wtbl_set_key(struct mt7603_dev *dev, int wcid,
struct ieee80211_key_conf *key)
{
enum mt76_cipher_type cipher;
u32 addr = mt7603_wtbl3_addr(wcid);
u8 key_data[32];
int key_len = sizeof(key_data);
cipher = mt7603_mac_get_key_info(key, key_data);
if (cipher == MT_CIPHER_NONE && key)
return -EOPNOTSUPP;
if (key && (cipher == MT_CIPHER_WEP40 || cipher == MT_CIPHER_WEP104)) {
addr += key->keyidx * 16;
key_len = 16;
}
mt76_wr_copy(dev, addr, key_data, key_len);
addr = mt7603_wtbl1_addr(wcid);
mt76_rmw_field(dev, addr + 2 * 4, MT_WTBL1_W2_KEY_TYPE, cipher);
if (key)
mt76_rmw_field(dev, addr, MT_WTBL1_W0_KEY_IDX, key->keyidx);
mt76_rmw_field(dev, addr, MT_WTBL1_W0_RX_KEY_VALID, !!key);
return 0;
}
static int
mt7603_mac_write_txwi(struct mt7603_dev *dev, __le32 *txwi,
struct sk_buff *skb, enum mt76_txq_id qid,
struct mt76_wcid *wcid, struct ieee80211_sta *sta,
int pid, struct ieee80211_key_conf *key)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_rate *rate = &info->control.rates[0];
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
struct ieee80211_vif *vif = info->control.vif;
struct mt76_queue *q = dev->mphy.q_tx[qid];
struct mt7603_vif *mvif;
int wlan_idx;
int hdr_len = ieee80211_get_hdrlen_from_skb(skb);
int tx_count = 8;
u8 frame_type, frame_subtype;
u16 fc = le16_to_cpu(hdr->frame_control);
u16 seqno = 0;
u8 vif_idx = 0;
u32 val;
u8 bw;
if (vif) {
mvif = (struct mt7603_vif *)vif->drv_priv;
vif_idx = mvif->idx;
if (vif_idx && qid >= MT_TXQ_BEACON)
vif_idx += 0x10;
}
if (sta) {
struct mt7603_sta *msta = (struct mt7603_sta *)sta->drv_priv;
tx_count = msta->rate_count;
}
if (wcid)
wlan_idx = wcid->idx;
else
wlan_idx = MT7603_WTBL_RESERVED;
frame_type = (fc & IEEE80211_FCTL_FTYPE) >> 2;
frame_subtype = (fc & IEEE80211_FCTL_STYPE) >> 4;
val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + MT_TXD_SIZE) |
FIELD_PREP(MT_TXD0_Q_IDX, q->hw_idx);
txwi[0] = cpu_to_le32(val);
val = MT_TXD1_LONG_FORMAT |
FIELD_PREP(MT_TXD1_OWN_MAC, vif_idx) |
FIELD_PREP(MT_TXD1_TID,
skb->priority & IEEE80211_QOS_CTL_TID_MASK) |
FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) |
FIELD_PREP(MT_TXD1_HDR_INFO, hdr_len / 2) |
FIELD_PREP(MT_TXD1_WLAN_IDX, wlan_idx) |
FIELD_PREP(MT_TXD1_PROTECTED, !!key);
txwi[1] = cpu_to_le32(val);
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
txwi[1] |= cpu_to_le32(MT_TXD1_NO_ACK);
val = FIELD_PREP(MT_TXD2_FRAME_TYPE, frame_type) |
FIELD_PREP(MT_TXD2_SUB_TYPE, frame_subtype) |
FIELD_PREP(MT_TXD2_MULTICAST,
is_multicast_ether_addr(hdr->addr1));
txwi[2] = cpu_to_le32(val);
if (!(info->flags & IEEE80211_TX_CTL_AMPDU))
txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
txwi[4] = 0;
val = MT_TXD5_TX_STATUS_HOST | MT_TXD5_SW_POWER_MGMT |
FIELD_PREP(MT_TXD5_PID, pid);
txwi[5] = cpu_to_le32(val);
txwi[6] = 0;
if (rate->idx >= 0 && rate->count &&
!(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
bool stbc = info->flags & IEEE80211_TX_CTL_STBC;
u16 rateval = mt7603_mac_tx_rate_val(dev, rate, stbc, &bw);
txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE);
val = MT_TXD6_FIXED_BW |
FIELD_PREP(MT_TXD6_BW, bw) |
FIELD_PREP(MT_TXD6_TX_RATE, rateval);
txwi[6] |= cpu_to_le32(val);
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
txwi[6] |= cpu_to_le32(MT_TXD6_SGI);
if (!(rate->flags & IEEE80211_TX_RC_MCS))
txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
tx_count = rate->count;
}
/* use maximum tx count for beacons and buffered multicast */
if (qid >= MT_TXQ_BEACON)
tx_count = 0x1f;
val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count) |
MT_TXD3_SN_VALID;
if (ieee80211_is_data_qos(hdr->frame_control))
seqno = le16_to_cpu(hdr->seq_ctrl);
else if (ieee80211_is_back_req(hdr->frame_control))
seqno = le16_to_cpu(bar->start_seq_num);
else
val &= ~MT_TXD3_SN_VALID;
val |= FIELD_PREP(MT_TXD3_SEQ, seqno >> 4);
txwi[3] = cpu_to_le32(val);
if (key) {
u64 pn = atomic64_inc_return(&key->tx_pn);
txwi[3] |= cpu_to_le32(MT_TXD3_PN_VALID);
txwi[4] = cpu_to_le32(pn & GENMASK(31, 0));
txwi[5] |= cpu_to_le32(FIELD_PREP(MT_TXD5_PN_HIGH, pn >> 32));
}
txwi[7] = 0;
return 0;
}
int mt7603_tx_prepare_skb(struct mt76_dev *mdev, void *txwi_ptr,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
struct mt7603_sta *msta = container_of(wcid, struct mt7603_sta, wcid);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_info->skb);
struct ieee80211_key_conf *key = info->control.hw_key;
int pid;
if (!wcid)
wcid = &dev->global_sta.wcid;
if (sta) {
msta = (struct mt7603_sta *)sta->drv_priv;
if ((info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
IEEE80211_TX_CTL_CLEAR_PS_FILT)) ||
(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE))
mt7603_wtbl_set_ps(dev, msta, false);
mt76_tx_check_agg_ssn(sta, tx_info->skb);
}
pid = mt76_tx_status_skb_add(mdev, wcid, tx_info->skb);
if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) {
spin_lock_bh(&dev->mt76.lock);
mt7603_wtbl_set_rates(dev, msta, &info->control.rates[0],
msta->rates);
msta->rate_probe = true;
spin_unlock_bh(&dev->mt76.lock);
}
mt7603_mac_write_txwi(dev, txwi_ptr, tx_info->skb, qid, wcid,
sta, pid, key);
return 0;
}
static bool
mt7603_fill_txs(struct mt7603_dev *dev, struct mt7603_sta *sta,
struct ieee80211_tx_info *info, __le32 *txs_data)
{
struct ieee80211_supported_band *sband;
struct mt7603_rate_set *rs;
int first_idx = 0, last_idx;
u32 rate_set_tsf;
u32 final_rate;
u32 final_rate_flags;
bool rs_idx;
bool ack_timeout;
bool fixed_rate;
bool probe;
bool ampdu;
bool cck = false;
int count;
u32 txs;
int idx;
int i;
fixed_rate = info->status.rates[0].count;
probe = !!(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
txs = le32_to_cpu(txs_data[4]);
ampdu = !fixed_rate && (txs & MT_TXS4_AMPDU);
count = FIELD_GET(MT_TXS4_TX_COUNT, txs);
last_idx = FIELD_GET(MT_TXS4_LAST_TX_RATE, txs);
txs = le32_to_cpu(txs_data[0]);
final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs);
ack_timeout = txs & MT_TXS0_ACK_TIMEOUT;
if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT))
return false;
if (txs & MT_TXS0_QUEUE_TIMEOUT)
return false;
if (!ack_timeout)
info->flags |= IEEE80211_TX_STAT_ACK;
info->status.ampdu_len = 1;
info->status.ampdu_ack_len = !!(info->flags &
IEEE80211_TX_STAT_ACK);
if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU))
info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU;
first_idx = max_t(int, 0, last_idx - (count - 1) / MT7603_RATE_RETRY);
if (fixed_rate && !probe) {
info->status.rates[0].count = count;
i = 0;
goto out;
}
rate_set_tsf = READ_ONCE(sta->rate_set_tsf);
rs_idx = !((u32)(le32_get_bits(txs_data[1], MT_TXS1_F0_TIMESTAMP) -
rate_set_tsf) < 1000000);
rs_idx ^= rate_set_tsf & BIT(0);
rs = &sta->rateset[rs_idx];
if (!first_idx && rs->probe_rate.idx >= 0) {
info->status.rates[0] = rs->probe_rate;
spin_lock_bh(&dev->mt76.lock);
if (sta->rate_probe) {
mt7603_wtbl_set_rates(dev, sta, NULL,
sta->rates);
sta->rate_probe = false;
}
spin_unlock_bh(&dev->mt76.lock);
} else {
info->status.rates[0] = rs->rates[first_idx / 2];
}
info->status.rates[0].count = 0;
for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) {
struct ieee80211_tx_rate *cur_rate;
int cur_count;
cur_rate = &rs->rates[idx / 2];
cur_count = min_t(int, MT7603_RATE_RETRY, count);
count -= cur_count;
if (idx && (cur_rate->idx != info->status.rates[i].idx ||
cur_rate->flags != info->status.rates[i].flags)) {
i++;
if (i == ARRAY_SIZE(info->status.rates)) {
i--;
break;
}
info->status.rates[i] = *cur_rate;
info->status.rates[i].count = 0;
}
info->status.rates[i].count += cur_count;
}
out:
final_rate_flags = info->status.rates[i].flags;
switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) {
case MT_PHY_TYPE_CCK:
cck = true;
fallthrough;
case MT_PHY_TYPE_OFDM:
if (dev->mphy.chandef.chan->band == NL80211_BAND_5GHZ)
sband = &dev->mphy.sband_5g.sband;
else
sband = &dev->mphy.sband_2g.sband;
final_rate &= GENMASK(5, 0);
final_rate = mt76_get_rate(&dev->mt76, sband, final_rate,
cck);
final_rate_flags = 0;
break;
case MT_PHY_TYPE_HT_GF:
case MT_PHY_TYPE_HT:
final_rate_flags |= IEEE80211_TX_RC_MCS;
final_rate &= GENMASK(5, 0);
if (final_rate > 15)
return false;
break;
default:
return false;
}
info->status.rates[i].idx = final_rate;
info->status.rates[i].flags = final_rate_flags;
return true;
}
static bool
mt7603_mac_add_txs_skb(struct mt7603_dev *dev, struct mt7603_sta *sta, int pid,
__le32 *txs_data)
{
struct mt76_dev *mdev = &dev->mt76;
struct sk_buff_head list;
struct sk_buff *skb;
if (pid < MT_PACKET_ID_FIRST)
return false;
trace_mac_txdone(mdev, sta->wcid.idx, pid);
mt76_tx_status_lock(mdev, &list);
skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list);
if (skb) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (!mt7603_fill_txs(dev, sta, info, txs_data)) {
info->status.rates[0].count = 0;
info->status.rates[0].idx = -1;
}
mt76_tx_status_skb_done(mdev, skb, &list);
}
mt76_tx_status_unlock(mdev, &list);
return !!skb;
}
void mt7603_mac_add_txs(struct mt7603_dev *dev, void *data)
{
struct ieee80211_tx_info info = {};
struct ieee80211_sta *sta = NULL;
struct mt7603_sta *msta = NULL;
struct mt76_wcid *wcid;
__le32 *txs_data = data;
u8 wcidx;
u8 pid;
pid = le32_get_bits(txs_data[4], MT_TXS4_PID);
wcidx = le32_get_bits(txs_data[3], MT_TXS3_WCID);
if (pid == MT_PACKET_ID_NO_ACK)
return;
if (wcidx >= MT7603_WTBL_SIZE)
return;
rcu_read_lock();
wcid = rcu_dereference(dev->mt76.wcid[wcidx]);
if (!wcid)
goto out;
msta = container_of(wcid, struct mt7603_sta, wcid);
sta = wcid_to_sta(wcid);
if (list_empty(&msta->poll_list)) {
spin_lock_bh(&dev->sta_poll_lock);
list_add_tail(&msta->poll_list, &dev->sta_poll_list);
spin_unlock_bh(&dev->sta_poll_lock);
}
if (mt7603_mac_add_txs_skb(dev, msta, pid, txs_data))
goto out;
if (wcidx >= MT7603_WTBL_STA || !sta)
goto out;
if (mt7603_fill_txs(dev, msta, &info, txs_data)) {
spin_lock_bh(&dev->mt76.rx_lock);
ieee80211_tx_status_noskb(mt76_hw(dev), sta, &info);
spin_unlock_bh(&dev->mt76.rx_lock);
}
out:
rcu_read_unlock();
}
void mt7603_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue_entry *e)
{
struct mt7603_dev *dev = container_of(mdev, struct mt7603_dev, mt76);
struct sk_buff *skb = e->skb;
if (!e->txwi) {
dev_kfree_skb_any(skb);
return;
}
dev->tx_hang_check = 0;
mt76_tx_complete_skb(mdev, e->wcid, skb);
}
static bool
wait_for_wpdma(struct mt7603_dev *dev)
{
return mt76_poll(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY,
0, 1000);
}
static void mt7603_pse_reset(struct mt7603_dev *dev)
{
/* Clear previous reset result */
if (!dev->reset_cause[RESET_CAUSE_RESET_FAILED])
mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE_S);
/* Reset PSE */
mt76_set(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE);
if (!mt76_poll_msec(dev, MT_MCU_DEBUG_RESET,
MT_MCU_DEBUG_RESET_PSE_S,
MT_MCU_DEBUG_RESET_PSE_S, 500)) {
dev->reset_cause[RESET_CAUSE_RESET_FAILED]++;
mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_PSE);
} else {
dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0;
mt76_clear(dev, MT_MCU_DEBUG_RESET, MT_MCU_DEBUG_RESET_QUEUES);
}
if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] >= 3)
dev->reset_cause[RESET_CAUSE_RESET_FAILED] = 0;
}
void mt7603_mac_dma_start(struct mt7603_dev *dev)
{
mt7603_mac_start(dev);
wait_for_wpdma(dev);
usleep_range(50, 100);
mt76_set(dev, MT_WPDMA_GLO_CFG,
(MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_EN |
FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3) |
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE));
mt7603_irq_enable(dev, MT_INT_RX_DONE_ALL | MT_INT_TX_DONE_ALL);
}
void mt7603_mac_start(struct mt7603_dev *dev)
{
mt76_clear(dev, MT_ARB_SCR,
MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
mt76_wr(dev, MT_WF_ARB_TX_START_0, ~0);
mt76_set(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START);
}
void mt7603_mac_stop(struct mt7603_dev *dev)
{
mt76_set(dev, MT_ARB_SCR,
MT_ARB_SCR_TX_DISABLE | MT_ARB_SCR_RX_DISABLE);
mt76_wr(dev, MT_WF_ARB_TX_START_0, 0);
mt76_clear(dev, MT_WF_ARB_RQCR, MT_WF_ARB_RQCR_RX_START);
}
void mt7603_pse_client_reset(struct mt7603_dev *dev)
{
u32 addr;
addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR +
MT_CLIENT_RESET_TX);
/* Clear previous reset state */
mt76_clear(dev, addr,
MT_CLIENT_RESET_TX_R_E_1 |
MT_CLIENT_RESET_TX_R_E_2 |
MT_CLIENT_RESET_TX_R_E_1_S |
MT_CLIENT_RESET_TX_R_E_2_S);
/* Start PSE client TX abort */
mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_1);
mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_1_S,
MT_CLIENT_RESET_TX_R_E_1_S, 500);
mt76_set(dev, addr, MT_CLIENT_RESET_TX_R_E_2);
mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_SW_RESET);
/* Wait for PSE client to clear TX FIFO */
mt76_poll_msec(dev, addr, MT_CLIENT_RESET_TX_R_E_2_S,
MT_CLIENT_RESET_TX_R_E_2_S, 500);
/* Clear PSE client TX abort state */
mt76_clear(dev, addr,
MT_CLIENT_RESET_TX_R_E_1 |
MT_CLIENT_RESET_TX_R_E_2);
}
static void mt7603_dma_sched_reset(struct mt7603_dev *dev)
{
if (!is_mt7628(dev))
return;
mt76_set(dev, MT_SCH_4, MT_SCH_4_RESET);
mt76_clear(dev, MT_SCH_4, MT_SCH_4_RESET);
}
static void mt7603_mac_watchdog_reset(struct mt7603_dev *dev)
{
int beacon_int = dev->mt76.beacon_int;
u32 mask = dev->mt76.mmio.irqmask;
int i;
ieee80211_stop_queues(dev->mt76.hw);
set_bit(MT76_RESET, &dev->mphy.state);
/* lock/unlock all queues to ensure that no tx is pending */
mt76_txq_schedule_all(&dev->mphy);
mt76_worker_disable(&dev->mt76.tx_worker);
tasklet_disable(&dev->mt76.pre_tbtt_tasklet);
napi_disable(&dev->mt76.napi[0]);
napi_disable(&dev->mt76.napi[1]);
napi_disable(&dev->mt76.tx_napi);
mutex_lock(&dev->mt76.mutex);
mt7603_beacon_set_timer(dev, -1, 0);
if (dev->reset_cause[RESET_CAUSE_RESET_FAILED] ||
dev->cur_reset_cause == RESET_CAUSE_RX_PSE_BUSY ||
dev->cur_reset_cause == RESET_CAUSE_BEACON_STUCK ||
dev->cur_reset_cause == RESET_CAUSE_TX_HANG)
mt7603_pse_reset(dev);
if (dev->reset_cause[RESET_CAUSE_RESET_FAILED])
goto skip_dma_reset;
mt7603_mac_stop(dev);
mt76_clear(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_RX_DMA_EN | MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
usleep_range(1000, 2000);
mt7603_irq_disable(dev, mask);
mt76_set(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_FORCE_TX_EOF);
mt7603_pse_client_reset(dev);
mt76_queue_tx_cleanup(dev, dev->mt76.q_mcu[MT_MCUQ_WM], true);
for (i = 0; i < __MT_TXQ_MAX; i++)
mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], true);
mt76_for_each_q_rx(&dev->mt76, i) {
mt76_queue_rx_reset(dev, i);
}
mt76_tx_status_check(&dev->mt76, true);
mt7603_dma_sched_reset(dev);
mt7603_mac_dma_start(dev);
mt7603_irq_enable(dev, mask);
skip_dma_reset:
clear_bit(MT76_RESET, &dev->mphy.state);
mutex_unlock(&dev->mt76.mutex);
mt76_worker_enable(&dev->mt76.tx_worker);
tasklet_enable(&dev->mt76.pre_tbtt_tasklet);
mt7603_beacon_set_timer(dev, -1, beacon_int);
local_bh_disable();
napi_enable(&dev->mt76.tx_napi);
napi_schedule(&dev->mt76.tx_napi);
napi_enable(&dev->mt76.napi[0]);
napi_schedule(&dev->mt76.napi[0]);
napi_enable(&dev->mt76.napi[1]);
napi_schedule(&dev->mt76.napi[1]);
local_bh_enable();
ieee80211_wake_queues(dev->mt76.hw);
mt76_txq_schedule_all(&dev->mphy);
}
static u32 mt7603_dma_debug(struct mt7603_dev *dev, u8 index)
{
u32 val;
mt76_wr(dev, MT_WPDMA_DEBUG,
FIELD_PREP(MT_WPDMA_DEBUG_IDX, index) |
MT_WPDMA_DEBUG_SEL);
val = mt76_rr(dev, MT_WPDMA_DEBUG);
return FIELD_GET(MT_WPDMA_DEBUG_VALUE, val);
}
static bool mt7603_rx_fifo_busy(struct mt7603_dev *dev)
{
if (is_mt7628(dev))
return mt7603_dma_debug(dev, 9) & BIT(9);
return mt7603_dma_debug(dev, 2) & BIT(8);
}
static bool mt7603_rx_dma_busy(struct mt7603_dev *dev)
{
if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_RX_DMA_BUSY))
return false;
return mt7603_rx_fifo_busy(dev);
}
static bool mt7603_tx_dma_busy(struct mt7603_dev *dev)
{
u32 val;
if (!(mt76_rr(dev, MT_WPDMA_GLO_CFG) & MT_WPDMA_GLO_CFG_TX_DMA_BUSY))
return false;
val = mt7603_dma_debug(dev, 9);
return (val & BIT(8)) && (val & 0xf) != 0xf;
}
static bool mt7603_tx_hang(struct mt7603_dev *dev)
{
struct mt76_queue *q;
u32 dma_idx, prev_dma_idx;
int i;
for (i = 0; i < 4; i++) {
q = dev->mphy.q_tx[i];
if (!q->queued)
continue;
prev_dma_idx = dev->tx_dma_idx[i];
dma_idx = readl(&q->regs->dma_idx);
dev->tx_dma_idx[i] = dma_idx;
if (dma_idx == prev_dma_idx &&
dma_idx != readl(&q->regs->cpu_idx))
break;
}
return i < 4;
}
static bool mt7603_rx_pse_busy(struct mt7603_dev *dev)
{
u32 addr, val;
if (mt76_rr(dev, MT_MCU_DEBUG_RESET) & MT_MCU_DEBUG_RESET_QUEUES)
return true;
if (mt7603_rx_fifo_busy(dev))
return false;
addr = mt7603_reg_map(dev, MT_CLIENT_BASE_PHYS_ADDR + MT_CLIENT_STATUS);
mt76_wr(dev, addr, 3);
val = mt76_rr(dev, addr) >> 16;
if (is_mt7628(dev) && (val & 0x4001) == 0x4001)
return true;
return (val & 0x8001) == 0x8001 || (val & 0xe001) == 0xe001;
}
static bool
mt7603_watchdog_check(struct mt7603_dev *dev, u8 *counter,
enum mt7603_reset_cause cause,
bool (*check)(struct mt7603_dev *dev))
{
if (dev->reset_test == cause + 1) {
dev->reset_test = 0;
goto trigger;
}
if (check) {
if (!check(dev) && *counter < MT7603_WATCHDOG_TIMEOUT) {
*counter = 0;
return false;
}
(*counter)++;
}
if (*counter < MT7603_WATCHDOG_TIMEOUT)
return false;
trigger:
dev->cur_reset_cause = cause;
dev->reset_cause[cause]++;
return true;
}
void mt7603_update_channel(struct mt76_phy *mphy)
{
struct mt7603_dev *dev = container_of(mphy->dev, struct mt7603_dev, mt76);
struct mt76_channel_state *state;
state = mphy->chan_state;
state->cc_busy += mt76_rr(dev, MT_MIB_STAT_CCA);
}
void
mt7603_edcca_set_strict(struct mt7603_dev *dev, bool val)
{
u32 rxtd_6 = 0xd7c80000;
if (val == dev->ed_strict_mode)
return;
dev->ed_strict_mode = val;
/* Ensure that ED/CCA does not trigger if disabled */
if (!dev->ed_monitor)
rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x34);
else
rxtd_6 |= FIELD_PREP(MT_RXTD_6_CCAED_TH, 0x7d);
if (dev->ed_monitor && !dev->ed_strict_mode)
rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x0f);
else
rxtd_6 |= FIELD_PREP(MT_RXTD_6_ACI_TH, 0x10);
mt76_wr(dev, MT_RXTD(6), rxtd_6);
mt76_rmw_field(dev, MT_RXTD(13), MT_RXTD_13_ACI_TH_EN,
dev->ed_monitor && !dev->ed_strict_mode);
}
static void
mt7603_edcca_check(struct mt7603_dev *dev)
{
u32 val = mt76_rr(dev, MT_AGC(41));
ktime_t cur_time;
int rssi0, rssi1;
u32 active;
u32 ed_busy;
if (!dev->ed_monitor)
return;
rssi0 = FIELD_GET(MT_AGC_41_RSSI_0, val);
if (rssi0 > 128)
rssi0 -= 256;
if (dev->mphy.antenna_mask & BIT(1)) {
rssi1 = FIELD_GET(MT_AGC_41_RSSI_1, val);
if (rssi1 > 128)
rssi1 -= 256;
} else {
rssi1 = rssi0;
}
if (max(rssi0, rssi1) >= -40 &&
dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH)
dev->ed_strong_signal++;
else if (dev->ed_strong_signal > 0)
dev->ed_strong_signal--;
cur_time = ktime_get_boottime();
ed_busy = mt76_rr(dev, MT_MIB_STAT_ED) & MT_MIB_STAT_ED_MASK;
active = ktime_to_us(ktime_sub(cur_time, dev->ed_time));
dev->ed_time = cur_time;
if (!active)
return;
if (100 * ed_busy / active > 90) {
if (dev->ed_trigger < 0)
dev->ed_trigger = 0;
dev->ed_trigger++;
} else {
if (dev->ed_trigger > 0)
dev->ed_trigger = 0;
dev->ed_trigger--;
}
if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH ||
dev->ed_strong_signal < MT7603_EDCCA_BLOCK_TH / 2) {
mt7603_edcca_set_strict(dev, true);
} else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH) {
mt7603_edcca_set_strict(dev, false);
}
if (dev->ed_trigger > MT7603_EDCCA_BLOCK_TH)
dev->ed_trigger = MT7603_EDCCA_BLOCK_TH;
else if (dev->ed_trigger < -MT7603_EDCCA_BLOCK_TH)
dev->ed_trigger = -MT7603_EDCCA_BLOCK_TH;
}
void mt7603_cca_stats_reset(struct mt7603_dev *dev)
{
mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET);
mt76_clear(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_RESET);
mt76_set(dev, MT_PHYCTRL(2), MT_PHYCTRL_2_STATUS_EN);
}
static void
mt7603_adjust_sensitivity(struct mt7603_dev *dev)
{
u32 agc0 = dev->agc0, agc3 = dev->agc3;
u32 adj;
if (!dev->sensitivity || dev->sensitivity < -100) {
dev->sensitivity = 0;
} else if (dev->sensitivity <= -84) {
adj = 7 + (dev->sensitivity + 92) / 2;
agc0 = 0x56f0076f;
agc0 |= adj << 12;
agc0 |= adj << 16;
agc3 = 0x81d0d5e3;
} else if (dev->sensitivity <= -72) {
adj = 7 + (dev->sensitivity + 80) / 2;
agc0 = 0x6af0006f;
agc0 |= adj << 8;
agc0 |= adj << 12;
agc0 |= adj << 16;
agc3 = 0x8181d5e3;
} else {
if (dev->sensitivity > -54)
dev->sensitivity = -54;
adj = 7 + (dev->sensitivity + 80) / 2;
agc0 = 0x7ff0000f;
agc0 |= adj << 4;
agc0 |= adj << 8;
agc0 |= adj << 12;
agc0 |= adj << 16;
agc3 = 0x818181e3;
}
mt76_wr(dev, MT_AGC(0), agc0);
mt76_wr(dev, MT_AGC1(0), agc0);
mt76_wr(dev, MT_AGC(3), agc3);
mt76_wr(dev, MT_AGC1(3), agc3);
}
static void
mt7603_false_cca_check(struct mt7603_dev *dev)
{
int pd_cck, pd_ofdm, mdrdy_cck, mdrdy_ofdm;
int false_cca;
int min_signal;
u32 val;
if (!dev->dynamic_sensitivity)
return;
val = mt76_rr(dev, MT_PHYCTRL_STAT_PD);
pd_cck = FIELD_GET(MT_PHYCTRL_STAT_PD_CCK, val);
pd_ofdm = FIELD_GET(MT_PHYCTRL_STAT_PD_OFDM, val);
val = mt76_rr(dev, MT_PHYCTRL_STAT_MDRDY);
mdrdy_cck = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_CCK, val);
mdrdy_ofdm = FIELD_GET(MT_PHYCTRL_STAT_MDRDY_OFDM, val);
dev->false_cca_ofdm = pd_ofdm - mdrdy_ofdm;
dev->false_cca_cck = pd_cck - mdrdy_cck;
mt7603_cca_stats_reset(dev);
min_signal = mt76_get_min_avg_rssi(&dev->mt76, false);
if (!min_signal) {
dev->sensitivity = 0;
dev->last_cca_adj = jiffies;
goto out;
}
min_signal -= 15;
false_cca = dev->false_cca_ofdm + dev->false_cca_cck;
if (false_cca > 600 &&
dev->sensitivity < -100 + dev->sensitivity_limit) {
if (!dev->sensitivity)
dev->sensitivity = -92;
else
dev->sensitivity += 2;
dev->last_cca_adj = jiffies;
} else if (false_cca < 100 ||
time_after(jiffies, dev->last_cca_adj + 10 * HZ)) {
dev->last_cca_adj = jiffies;
if (!dev->sensitivity)
goto out;
dev->sensitivity -= 2;
}
if (dev->sensitivity && dev->sensitivity > min_signal) {
dev->sensitivity = min_signal;
dev->last_cca_adj = jiffies;
}
out:
mt7603_adjust_sensitivity(dev);
}
void mt7603_mac_work(struct work_struct *work)
{
struct mt7603_dev *dev = container_of(work, struct mt7603_dev,
mphy.mac_work.work);
bool reset = false;
int i, idx;
mt76_tx_status_check(&dev->mt76, false);
mutex_lock(&dev->mt76.mutex);
dev->mphy.mac_work_count++;
mt76_update_survey(&dev->mphy);
mt7603_edcca_check(dev);
for (i = 0, idx = 0; i < 2; i++) {
u32 val = mt76_rr(dev, MT_TX_AGG_CNT(i));
dev->mphy.aggr_stats[idx++] += val & 0xffff;
dev->mphy.aggr_stats[idx++] += val >> 16;
}
if (dev->mphy.mac_work_count == 10)
mt7603_false_cca_check(dev);
if (mt7603_watchdog_check(dev, &dev->rx_pse_check,
RESET_CAUSE_RX_PSE_BUSY,
mt7603_rx_pse_busy) ||
mt7603_watchdog_check(dev, &dev->beacon_check,
RESET_CAUSE_BEACON_STUCK,
NULL) ||
mt7603_watchdog_check(dev, &dev->tx_hang_check,
RESET_CAUSE_TX_HANG,
mt7603_tx_hang) ||
mt7603_watchdog_check(dev, &dev->tx_dma_check,
RESET_CAUSE_TX_BUSY,
mt7603_tx_dma_busy) ||
mt7603_watchdog_check(dev, &dev->rx_dma_check,
RESET_CAUSE_RX_BUSY,
mt7603_rx_dma_busy) ||
mt7603_watchdog_check(dev, &dev->mcu_hang,
RESET_CAUSE_MCU_HANG,
NULL) ||
dev->reset_cause[RESET_CAUSE_RESET_FAILED]) {
dev->beacon_check = 0;
dev->tx_dma_check = 0;
dev->tx_hang_check = 0;
dev->rx_dma_check = 0;
dev->rx_pse_check = 0;
dev->mcu_hang = 0;
dev->rx_dma_idx = ~0;
memset(dev->tx_dma_idx, 0xff, sizeof(dev->tx_dma_idx));
reset = true;
dev->mphy.mac_work_count = 0;
}
if (dev->mphy.mac_work_count >= 10)
dev->mphy.mac_work_count = 0;
mutex_unlock(&dev->mt76.mutex);
if (reset)
mt7603_mac_watchdog_reset(dev);
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mphy.mac_work,
msecs_to_jiffies(MT7603_WATCHDOG_TIME));
}