1833 lines
47 KiB
C
1833 lines
47 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/* Copyright(c) 2018-2019 Realtek Corporation
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include "main.h"
|
|
#include "pci.h"
|
|
#include "reg.h"
|
|
#include "tx.h"
|
|
#include "rx.h"
|
|
#include "fw.h"
|
|
#include "ps.h"
|
|
#include "debug.h"
|
|
|
|
static bool rtw_disable_msi;
|
|
static bool rtw_pci_disable_aspm;
|
|
module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
|
|
module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
|
|
MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
|
|
MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
|
|
|
|
static u32 rtw_pci_tx_queue_idx_addr[] = {
|
|
[RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ,
|
|
[RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ,
|
|
[RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ,
|
|
[RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ,
|
|
[RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ,
|
|
[RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q,
|
|
[RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ,
|
|
};
|
|
|
|
static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
|
|
enum rtw_tx_queue_type queue)
|
|
{
|
|
switch (queue) {
|
|
case RTW_TX_QUEUE_BCN:
|
|
return TX_DESC_QSEL_BEACON;
|
|
case RTW_TX_QUEUE_H2C:
|
|
return TX_DESC_QSEL_H2C;
|
|
case RTW_TX_QUEUE_MGMT:
|
|
return TX_DESC_QSEL_MGMT;
|
|
case RTW_TX_QUEUE_HI0:
|
|
return TX_DESC_QSEL_HIGH;
|
|
default:
|
|
return skb->priority;
|
|
}
|
|
};
|
|
|
|
static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
return readb(rtwpci->mmap + addr);
|
|
}
|
|
|
|
static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
return readw(rtwpci->mmap + addr);
|
|
}
|
|
|
|
static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
return readl(rtwpci->mmap + addr);
|
|
}
|
|
|
|
static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
writeb(val, rtwpci->mmap + addr);
|
|
}
|
|
|
|
static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
writew(val, rtwpci->mmap + addr);
|
|
}
|
|
|
|
static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
writel(val, rtwpci->mmap + addr);
|
|
}
|
|
|
|
static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
|
|
struct rtw_pci_tx_ring *tx_ring)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
|
|
struct rtw_pci_tx_data *tx_data;
|
|
struct sk_buff *skb, *tmp;
|
|
dma_addr_t dma;
|
|
|
|
/* free every skb remained in tx list */
|
|
skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
|
|
__skb_unlink(skb, &tx_ring->queue);
|
|
tx_data = rtw_pci_get_tx_data(skb);
|
|
dma = tx_data->dma;
|
|
|
|
dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
}
|
|
|
|
static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
|
|
struct rtw_pci_tx_ring *tx_ring)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
|
|
u8 *head = tx_ring->r.head;
|
|
u32 len = tx_ring->r.len;
|
|
int ring_sz = len * tx_ring->r.desc_size;
|
|
|
|
rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
|
|
|
|
/* free the ring itself */
|
|
dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
|
|
tx_ring->r.head = NULL;
|
|
}
|
|
|
|
static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
|
|
struct rtw_pci_rx_ring *rx_ring)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
|
|
struct sk_buff *skb;
|
|
int buf_sz = RTK_PCI_RX_BUF_SIZE;
|
|
dma_addr_t dma;
|
|
int i;
|
|
|
|
for (i = 0; i < rx_ring->r.len; i++) {
|
|
skb = rx_ring->buf[i];
|
|
if (!skb)
|
|
continue;
|
|
|
|
dma = *((dma_addr_t *)skb->cb);
|
|
dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
rx_ring->buf[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
|
|
struct rtw_pci_rx_ring *rx_ring)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
|
|
u8 *head = rx_ring->r.head;
|
|
int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
|
|
|
|
rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
|
|
|
|
dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
|
|
}
|
|
|
|
static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct rtw_pci_tx_ring *tx_ring;
|
|
struct rtw_pci_rx_ring *rx_ring;
|
|
int i;
|
|
|
|
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
|
|
tx_ring = &rtwpci->tx_rings[i];
|
|
rtw_pci_free_tx_ring(rtwdev, tx_ring);
|
|
}
|
|
|
|
for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
|
|
rx_ring = &rtwpci->rx_rings[i];
|
|
rtw_pci_free_rx_ring(rtwdev, rx_ring);
|
|
}
|
|
}
|
|
|
|
static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
|
|
struct rtw_pci_tx_ring *tx_ring,
|
|
u8 desc_size, u32 len)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
|
|
int ring_sz = desc_size * len;
|
|
dma_addr_t dma;
|
|
u8 *head;
|
|
|
|
if (len > TRX_BD_IDX_MASK) {
|
|
rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
|
|
if (!head) {
|
|
rtw_err(rtwdev, "failed to allocate tx ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
skb_queue_head_init(&tx_ring->queue);
|
|
tx_ring->r.head = head;
|
|
tx_ring->r.dma = dma;
|
|
tx_ring->r.len = len;
|
|
tx_ring->r.desc_size = desc_size;
|
|
tx_ring->r.wp = 0;
|
|
tx_ring->r.rp = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
|
|
struct rtw_pci_rx_ring *rx_ring,
|
|
u32 idx, u32 desc_sz)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
|
|
struct rtw_pci_rx_buffer_desc *buf_desc;
|
|
int buf_sz = RTK_PCI_RX_BUF_SIZE;
|
|
dma_addr_t dma;
|
|
|
|
if (!skb)
|
|
return -EINVAL;
|
|
|
|
dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(&pdev->dev, dma))
|
|
return -EBUSY;
|
|
|
|
*((dma_addr_t *)skb->cb) = dma;
|
|
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
|
|
idx * desc_sz);
|
|
memset(buf_desc, 0, sizeof(*buf_desc));
|
|
buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
|
|
buf_desc->dma = cpu_to_le32(dma);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
|
|
struct rtw_pci_rx_ring *rx_ring,
|
|
u32 idx, u32 desc_sz)
|
|
{
|
|
struct device *dev = rtwdev->dev;
|
|
struct rtw_pci_rx_buffer_desc *buf_desc;
|
|
int buf_sz = RTK_PCI_RX_BUF_SIZE;
|
|
|
|
dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
|
|
|
|
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
|
|
idx * desc_sz);
|
|
memset(buf_desc, 0, sizeof(*buf_desc));
|
|
buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
|
|
buf_desc->dma = cpu_to_le32(dma);
|
|
}
|
|
|
|
static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
|
|
struct rtw_pci_rx_ring *rx_ring,
|
|
u8 desc_size, u32 len)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
|
|
struct sk_buff *skb = NULL;
|
|
dma_addr_t dma;
|
|
u8 *head;
|
|
int ring_sz = desc_size * len;
|
|
int buf_sz = RTK_PCI_RX_BUF_SIZE;
|
|
int i, allocated;
|
|
int ret = 0;
|
|
|
|
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
|
|
if (!head) {
|
|
rtw_err(rtwdev, "failed to allocate rx ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
rx_ring->r.head = head;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
skb = dev_alloc_skb(buf_sz);
|
|
if (!skb) {
|
|
allocated = i;
|
|
ret = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
memset(skb->data, 0, buf_sz);
|
|
rx_ring->buf[i] = skb;
|
|
ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
|
|
if (ret) {
|
|
allocated = i;
|
|
dev_kfree_skb_any(skb);
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
rx_ring->r.dma = dma;
|
|
rx_ring->r.len = len;
|
|
rx_ring->r.desc_size = desc_size;
|
|
rx_ring->r.wp = 0;
|
|
rx_ring->r.rp = 0;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
for (i = 0; i < allocated; i++) {
|
|
skb = rx_ring->buf[i];
|
|
if (!skb)
|
|
continue;
|
|
dma = *((dma_addr_t *)skb->cb);
|
|
dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
|
|
dev_kfree_skb_any(skb);
|
|
rx_ring->buf[i] = NULL;
|
|
}
|
|
dma_free_coherent(&pdev->dev, ring_sz, head, dma);
|
|
|
|
rtw_err(rtwdev, "failed to init rx buffer\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct rtw_pci_tx_ring *tx_ring;
|
|
struct rtw_pci_rx_ring *rx_ring;
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
|
|
int tx_desc_size, rx_desc_size;
|
|
u32 len;
|
|
int ret;
|
|
|
|
tx_desc_size = chip->tx_buf_desc_sz;
|
|
|
|
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
|
|
tx_ring = &rtwpci->tx_rings[i];
|
|
len = max_num_of_tx_queue(i);
|
|
ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
rx_desc_size = chip->rx_buf_desc_sz;
|
|
|
|
for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
|
|
rx_ring = &rtwpci->rx_rings[j];
|
|
ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
|
|
RTK_MAX_RX_DESC_NUM);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out:
|
|
tx_alloced = i;
|
|
for (i = 0; i < tx_alloced; i++) {
|
|
tx_ring = &rtwpci->tx_rings[i];
|
|
rtw_pci_free_tx_ring(rtwdev, tx_ring);
|
|
}
|
|
|
|
rx_alloced = j;
|
|
for (j = 0; j < rx_alloced; j++) {
|
|
rx_ring = &rtwpci->rx_rings[j];
|
|
rtw_pci_free_rx_ring(rtwdev, rx_ring);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void rtw_pci_deinit(struct rtw_dev *rtwdev)
|
|
{
|
|
rtw_pci_free_trx_ring(rtwdev);
|
|
}
|
|
|
|
static int rtw_pci_init(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
int ret = 0;
|
|
|
|
rtwpci->irq_mask[0] = IMR_HIGHDOK |
|
|
IMR_MGNTDOK |
|
|
IMR_BKDOK |
|
|
IMR_BEDOK |
|
|
IMR_VIDOK |
|
|
IMR_VODOK |
|
|
IMR_ROK |
|
|
IMR_BCNDMAINT_E |
|
|
IMR_C2HCMD |
|
|
0;
|
|
rtwpci->irq_mask[1] = IMR_TXFOVW |
|
|
0;
|
|
rtwpci->irq_mask[3] = IMR_H2CDOK |
|
|
0;
|
|
spin_lock_init(&rtwpci->irq_lock);
|
|
spin_lock_init(&rtwpci->hwirq_lock);
|
|
ret = rtw_pci_init_trx_ring(rtwdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
u32 len;
|
|
u8 tmp;
|
|
dma_addr_t dma;
|
|
|
|
tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
|
|
rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
|
|
|
|
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
|
|
|
|
if (!rtw_chip_wcpu_11n(rtwdev)) {
|
|
len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
|
|
dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
|
|
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
|
|
}
|
|
|
|
len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
|
|
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
|
|
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
|
|
|
|
len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
|
|
dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
|
|
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
|
|
|
|
len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
|
|
dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
|
|
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
|
|
|
|
len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
|
|
dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
|
|
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
|
|
|
|
len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
|
|
dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
|
|
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
|
|
|
|
len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
|
|
dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
|
|
rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
|
|
rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
|
|
|
|
len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
|
|
dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
|
|
rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
|
|
rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
|
|
rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
|
|
rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
|
|
|
|
/* reset read/write point */
|
|
rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
|
|
|
|
/* reset H2C Queue index in a single write */
|
|
if (rtw_chip_wcpu_11ac(rtwdev))
|
|
rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
|
|
BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
|
|
}
|
|
|
|
static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
|
|
{
|
|
rtw_pci_reset_buf_desc(rtwdev);
|
|
}
|
|
|
|
static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
|
|
struct rtw_pci *rtwpci, bool exclude_rx)
|
|
{
|
|
unsigned long flags;
|
|
u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
|
|
|
|
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
|
|
|
|
rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
|
|
rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
|
|
if (rtw_chip_wcpu_11ac(rtwdev))
|
|
rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
|
|
|
|
rtwpci->irq_enabled = true;
|
|
|
|
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
|
|
}
|
|
|
|
static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
|
|
struct rtw_pci *rtwpci)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
|
|
|
|
if (!rtwpci->irq_enabled)
|
|
goto out;
|
|
|
|
rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
|
|
rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
|
|
if (rtw_chip_wcpu_11ac(rtwdev))
|
|
rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
|
|
|
|
rtwpci->irq_enabled = false;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
|
|
}
|
|
|
|
static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
|
|
{
|
|
/* reset dma and rx tag */
|
|
rtw_write32_set(rtwdev, RTK_PCI_CTRL,
|
|
BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
|
|
rtwpci->rx_tag = 0;
|
|
}
|
|
|
|
static int rtw_pci_setup(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
rtw_pci_reset_trx_ring(rtwdev);
|
|
rtw_pci_dma_reset(rtwdev, rtwpci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
|
|
{
|
|
struct rtw_pci_tx_ring *tx_ring;
|
|
enum rtw_tx_queue_type queue;
|
|
|
|
rtw_pci_reset_trx_ring(rtwdev);
|
|
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
|
|
tx_ring = &rtwpci->tx_rings[queue];
|
|
rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
|
|
}
|
|
}
|
|
|
|
static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
|
|
return;
|
|
|
|
napi_enable(&rtwpci->napi);
|
|
}
|
|
|
|
static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
|
|
return;
|
|
|
|
napi_synchronize(&rtwpci->napi);
|
|
napi_disable(&rtwpci->napi);
|
|
}
|
|
|
|
static int rtw_pci_start(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
rtw_pci_napi_start(rtwdev);
|
|
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
rtwpci->running = true;
|
|
rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rtw_pci_stop(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct pci_dev *pdev = rtwpci->pdev;
|
|
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
rtwpci->running = false;
|
|
rtw_pci_disable_interrupt(rtwdev, rtwpci);
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
|
|
synchronize_irq(pdev->irq);
|
|
rtw_pci_napi_stop(rtwdev);
|
|
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
rtw_pci_dma_release(rtwdev, rtwpci);
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
}
|
|
|
|
static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct rtw_pci_tx_ring *tx_ring;
|
|
enum rtw_tx_queue_type queue;
|
|
bool tx_empty = true;
|
|
|
|
if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
|
|
goto enter_deep_ps;
|
|
|
|
lockdep_assert_held(&rtwpci->irq_lock);
|
|
|
|
/* Deep PS state is not allowed to TX-DMA */
|
|
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
|
|
/* BCN queue is rsvd page, does not have DMA interrupt
|
|
* H2C queue is managed by firmware
|
|
*/
|
|
if (queue == RTW_TX_QUEUE_BCN ||
|
|
queue == RTW_TX_QUEUE_H2C)
|
|
continue;
|
|
|
|
tx_ring = &rtwpci->tx_rings[queue];
|
|
|
|
/* check if there is any skb DMAing */
|
|
if (skb_queue_len(&tx_ring->queue)) {
|
|
tx_empty = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!tx_empty) {
|
|
rtw_dbg(rtwdev, RTW_DBG_PS,
|
|
"TX path not empty, cannot enter deep power save state\n");
|
|
return;
|
|
}
|
|
enter_deep_ps:
|
|
set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
|
|
rtw_power_mode_change(rtwdev, true);
|
|
}
|
|
|
|
static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
lockdep_assert_held(&rtwpci->irq_lock);
|
|
|
|
if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
|
|
rtw_power_mode_change(rtwdev, false);
|
|
}
|
|
|
|
static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
|
|
if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
|
|
rtw_pci_deep_ps_enter(rtwdev);
|
|
|
|
if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
|
|
rtw_pci_deep_ps_leave(rtwdev);
|
|
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
}
|
|
|
|
static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
|
|
struct rtw_pci_tx_ring *ring)
|
|
{
|
|
struct sk_buff *prev = skb_dequeue(&ring->queue);
|
|
struct rtw_pci_tx_data *tx_data;
|
|
dma_addr_t dma;
|
|
|
|
if (!prev)
|
|
return;
|
|
|
|
tx_data = rtw_pci_get_tx_data(prev);
|
|
dma = tx_data->dma;
|
|
dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
|
|
dev_kfree_skb_any(prev);
|
|
}
|
|
|
|
static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
|
|
struct rtw_pci_rx_ring *rx_ring,
|
|
u32 idx)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
struct rtw_pci_rx_buffer_desc *buf_desc;
|
|
u32 desc_sz = chip->rx_buf_desc_sz;
|
|
u16 total_pkt_size;
|
|
|
|
buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
|
|
idx * desc_sz);
|
|
total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
|
|
|
|
/* rx tag mismatch, throw a warning */
|
|
if (total_pkt_size != rtwpci->rx_tag)
|
|
rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
|
|
|
|
rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
|
|
}
|
|
|
|
static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
|
|
{
|
|
u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
|
|
u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
|
|
|
|
return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
|
|
}
|
|
|
|
static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
|
|
u32 cur_rp;
|
|
u8 i;
|
|
|
|
/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
|
|
* bit dynamic, it's hard to define a reasonable fixed total timeout to
|
|
* use read_poll_timeout* helper. Instead, we can ensure a reasonable
|
|
* polling times, so we just use for loop with udelay here.
|
|
*/
|
|
for (i = 0; i < 30; i++) {
|
|
cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
|
|
if (cur_rp == ring->r.wp)
|
|
return;
|
|
|
|
udelay(1);
|
|
}
|
|
|
|
if (!drop)
|
|
rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
|
|
}
|
|
|
|
static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
|
|
bool drop)
|
|
{
|
|
u8 q;
|
|
|
|
for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
|
|
/* Unnecessary to flush BCN, H2C and HI tx queues. */
|
|
if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C ||
|
|
q == RTW_TX_QUEUE_HI0)
|
|
continue;
|
|
|
|
if (pci_queues & BIT(q))
|
|
__pci_flush_queue(rtwdev, q, drop);
|
|
}
|
|
}
|
|
|
|
static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
|
|
{
|
|
u32 pci_queues = 0;
|
|
u8 i;
|
|
|
|
/* If all of the hardware queues are requested to flush,
|
|
* flush all of the pci queues.
|
|
*/
|
|
if (queues == BIT(rtwdev->hw->queues) - 1) {
|
|
pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
|
|
} else {
|
|
for (i = 0; i < rtwdev->hw->queues; i++)
|
|
if (queues & BIT(i))
|
|
pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
|
|
}
|
|
|
|
__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
|
|
}
|
|
|
|
static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
|
|
enum rtw_tx_queue_type queue)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct rtw_pci_tx_ring *ring;
|
|
u32 bd_idx;
|
|
|
|
ring = &rtwpci->tx_rings[queue];
|
|
bd_idx = rtw_pci_tx_queue_idx_addr[queue];
|
|
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
|
|
rtw_pci_deep_ps_leave(rtwdev);
|
|
rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
}
|
|
|
|
static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
enum rtw_tx_queue_type queue;
|
|
|
|
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
|
|
if (test_and_clear_bit(queue, rtwpci->tx_queued))
|
|
rtw_pci_tx_kick_off_queue(rtwdev, queue);
|
|
}
|
|
|
|
static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
|
|
struct rtw_tx_pkt_info *pkt_info,
|
|
struct sk_buff *skb,
|
|
enum rtw_tx_queue_type queue)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
struct rtw_pci_tx_ring *ring;
|
|
struct rtw_pci_tx_data *tx_data;
|
|
dma_addr_t dma;
|
|
u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
|
|
u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
|
|
u32 size;
|
|
u32 psb_len;
|
|
u8 *pkt_desc;
|
|
struct rtw_pci_tx_buffer_desc *buf_desc;
|
|
|
|
ring = &rtwpci->tx_rings[queue];
|
|
|
|
size = skb->len;
|
|
|
|
if (queue == RTW_TX_QUEUE_BCN)
|
|
rtw_pci_release_rsvd_page(rtwpci, ring);
|
|
else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
|
|
return -ENOSPC;
|
|
|
|
pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
|
|
memset(pkt_desc, 0, tx_pkt_desc_sz);
|
|
pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
|
|
rtw_tx_fill_tx_desc(pkt_info, skb);
|
|
dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&rtwpci->pdev->dev, dma))
|
|
return -EBUSY;
|
|
|
|
/* after this we got dma mapped, there is no way back */
|
|
buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
|
|
memset(buf_desc, 0, tx_buf_desc_sz);
|
|
psb_len = (skb->len - 1) / 128 + 1;
|
|
if (queue == RTW_TX_QUEUE_BCN)
|
|
psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
|
|
|
|
buf_desc[0].psb_len = cpu_to_le16(psb_len);
|
|
buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
|
|
buf_desc[0].dma = cpu_to_le32(dma);
|
|
buf_desc[1].buf_size = cpu_to_le16(size);
|
|
buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
|
|
|
|
tx_data = rtw_pci_get_tx_data(skb);
|
|
tx_data->dma = dma;
|
|
tx_data->sn = pkt_info->sn;
|
|
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
|
|
skb_queue_tail(&ring->queue, skb);
|
|
|
|
if (queue == RTW_TX_QUEUE_BCN)
|
|
goto out_unlock;
|
|
|
|
/* update write-index, and kick it off later */
|
|
set_bit(queue, rtwpci->tx_queued);
|
|
if (++ring->r.wp >= ring->r.len)
|
|
ring->r.wp = 0;
|
|
|
|
out_unlock:
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
|
|
u32 size)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct rtw_tx_pkt_info pkt_info = {0};
|
|
u8 reg_bcn_work;
|
|
int ret;
|
|
|
|
skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to write rsvd page data\n");
|
|
return ret;
|
|
}
|
|
|
|
/* reserved pages go through beacon queue */
|
|
reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
|
|
reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
|
|
rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct rtw_tx_pkt_info pkt_info = {0};
|
|
int ret;
|
|
|
|
skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to write h2c data\n");
|
|
return ret;
|
|
}
|
|
|
|
rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
|
|
struct rtw_tx_pkt_info *pkt_info,
|
|
struct sk_buff *skb)
|
|
{
|
|
enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct rtw_pci_tx_ring *ring;
|
|
int ret;
|
|
|
|
ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ring = &rtwpci->tx_rings[queue];
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
|
|
ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
|
|
ring->queue_stopped = true;
|
|
}
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
|
|
u8 hw_queue)
|
|
{
|
|
struct ieee80211_hw *hw = rtwdev->hw;
|
|
struct ieee80211_tx_info *info;
|
|
struct rtw_pci_tx_ring *ring;
|
|
struct rtw_pci_tx_data *tx_data;
|
|
struct sk_buff *skb;
|
|
u32 count;
|
|
u32 bd_idx_addr;
|
|
u32 bd_idx, cur_rp, rp_idx;
|
|
u16 q_map;
|
|
|
|
ring = &rtwpci->tx_rings[hw_queue];
|
|
|
|
bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
|
|
bd_idx = rtw_read32(rtwdev, bd_idx_addr);
|
|
cur_rp = bd_idx >> 16;
|
|
cur_rp &= TRX_BD_IDX_MASK;
|
|
rp_idx = ring->r.rp;
|
|
if (cur_rp >= ring->r.rp)
|
|
count = cur_rp - ring->r.rp;
|
|
else
|
|
count = ring->r.len - (ring->r.rp - cur_rp);
|
|
|
|
while (count--) {
|
|
skb = skb_dequeue(&ring->queue);
|
|
if (!skb) {
|
|
rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
|
|
count, hw_queue, bd_idx, ring->r.rp, cur_rp);
|
|
break;
|
|
}
|
|
tx_data = rtw_pci_get_tx_data(skb);
|
|
dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
|
|
DMA_TO_DEVICE);
|
|
|
|
/* just free command packets from host to card */
|
|
if (hw_queue == RTW_TX_QUEUE_H2C) {
|
|
dev_kfree_skb_irq(skb);
|
|
continue;
|
|
}
|
|
|
|
if (ring->queue_stopped &&
|
|
avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
|
|
q_map = skb_get_queue_mapping(skb);
|
|
ieee80211_wake_queue(hw, q_map);
|
|
ring->queue_stopped = false;
|
|
}
|
|
|
|
if (++rp_idx >= ring->r.len)
|
|
rp_idx = 0;
|
|
|
|
skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
|
|
|
|
info = IEEE80211_SKB_CB(skb);
|
|
|
|
/* enqueue to wait for tx report */
|
|
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
|
|
rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
|
|
continue;
|
|
}
|
|
|
|
/* always ACK for others, then they won't be marked as drop */
|
|
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
|
|
info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
|
|
else
|
|
info->flags |= IEEE80211_TX_STAT_ACK;
|
|
|
|
ieee80211_tx_info_clear_status(info);
|
|
ieee80211_tx_status_irqsafe(hw, skb);
|
|
}
|
|
|
|
ring->r.rp = cur_rp;
|
|
}
|
|
|
|
static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct napi_struct *napi = &rtwpci->napi;
|
|
|
|
napi_schedule(napi);
|
|
}
|
|
|
|
static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
|
|
struct rtw_pci *rtwpci)
|
|
{
|
|
struct rtw_pci_rx_ring *ring;
|
|
int count = 0;
|
|
u32 tmp, cur_wp;
|
|
|
|
ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
|
|
tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
|
|
cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
|
|
if (cur_wp >= ring->r.wp)
|
|
count = cur_wp - ring->r.wp;
|
|
else
|
|
count = ring->r.len - (ring->r.wp - cur_wp);
|
|
|
|
return count;
|
|
}
|
|
|
|
static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
|
|
u8 hw_queue, u32 limit)
|
|
{
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
struct napi_struct *napi = &rtwpci->napi;
|
|
struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
|
|
struct rtw_rx_pkt_stat pkt_stat;
|
|
struct ieee80211_rx_status rx_status;
|
|
struct sk_buff *skb, *new;
|
|
u32 cur_rp = ring->r.rp;
|
|
u32 count, rx_done = 0;
|
|
u32 pkt_offset;
|
|
u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
|
|
u32 buf_desc_sz = chip->rx_buf_desc_sz;
|
|
u32 new_len;
|
|
u8 *rx_desc;
|
|
dma_addr_t dma;
|
|
|
|
count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
|
|
count = min(count, limit);
|
|
|
|
while (count--) {
|
|
rtw_pci_dma_check(rtwdev, ring, cur_rp);
|
|
skb = ring->buf[cur_rp];
|
|
dma = *((dma_addr_t *)skb->cb);
|
|
dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
rx_desc = skb->data;
|
|
chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
|
|
|
|
/* offset from rx_desc to payload */
|
|
pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
|
|
pkt_stat.shift;
|
|
|
|
/* allocate a new skb for this frame,
|
|
* discard the frame if none available
|
|
*/
|
|
new_len = pkt_stat.pkt_len + pkt_offset;
|
|
new = dev_alloc_skb(new_len);
|
|
if (WARN_ONCE(!new, "rx routine starvation\n"))
|
|
goto next_rp;
|
|
|
|
/* put the DMA data including rx_desc from phy to new skb */
|
|
skb_put_data(new, skb->data, new_len);
|
|
|
|
if (pkt_stat.is_c2h) {
|
|
rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
|
|
} else {
|
|
/* remove rx_desc */
|
|
skb_pull(new, pkt_offset);
|
|
|
|
rtw_rx_stats(rtwdev, pkt_stat.vif, new);
|
|
memcpy(new->cb, &rx_status, sizeof(rx_status));
|
|
ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
|
|
rx_done++;
|
|
}
|
|
|
|
next_rp:
|
|
/* new skb delivered to mac80211, re-enable original skb DMA */
|
|
rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
|
|
buf_desc_sz);
|
|
|
|
/* host read next element in ring */
|
|
if (++cur_rp >= ring->r.len)
|
|
cur_rp = 0;
|
|
}
|
|
|
|
ring->r.rp = cur_rp;
|
|
/* 'rp', the last position we have read, is seen as previous posistion
|
|
* of 'wp' that is used to calculate 'count' next time.
|
|
*/
|
|
ring->r.wp = cur_rp;
|
|
rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
|
|
|
|
return rx_done;
|
|
}
|
|
|
|
static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
|
|
struct rtw_pci *rtwpci, u32 *irq_status)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
|
|
|
|
irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
|
|
irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
|
|
if (rtw_chip_wcpu_11ac(rtwdev))
|
|
irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
|
|
else
|
|
irq_status[3] = 0;
|
|
irq_status[0] &= rtwpci->irq_mask[0];
|
|
irq_status[1] &= rtwpci->irq_mask[1];
|
|
irq_status[3] &= rtwpci->irq_mask[3];
|
|
rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
|
|
rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
|
|
if (rtw_chip_wcpu_11ac(rtwdev))
|
|
rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
|
|
|
|
spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
|
|
}
|
|
|
|
static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
|
|
{
|
|
struct rtw_dev *rtwdev = dev;
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
/* disable RTW PCI interrupt to avoid more interrupts before the end of
|
|
* thread function
|
|
*
|
|
* disable HIMR here to also avoid new HISR flag being raised before
|
|
* the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
|
|
* are cleared, the edge-triggered interrupt will not be generated when
|
|
* a new HISR flag is set.
|
|
*/
|
|
rtw_pci_disable_interrupt(rtwdev, rtwpci);
|
|
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
|
|
{
|
|
struct rtw_dev *rtwdev = dev;
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
u32 irq_status[4];
|
|
bool rx = false;
|
|
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
|
|
|
|
if (irq_status[0] & IMR_MGNTDOK)
|
|
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
|
|
if (irq_status[0] & IMR_HIGHDOK)
|
|
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
|
|
if (irq_status[0] & IMR_BEDOK)
|
|
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
|
|
if (irq_status[0] & IMR_BKDOK)
|
|
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
|
|
if (irq_status[0] & IMR_VODOK)
|
|
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
|
|
if (irq_status[0] & IMR_VIDOK)
|
|
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
|
|
if (irq_status[3] & IMR_H2CDOK)
|
|
rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
|
|
if (irq_status[0] & IMR_ROK) {
|
|
rtw_pci_rx_isr(rtwdev);
|
|
rx = true;
|
|
}
|
|
if (unlikely(irq_status[0] & IMR_C2HCMD))
|
|
rtw_fw_c2h_cmd_isr(rtwdev);
|
|
|
|
/* all of the jobs for this interrupt have been done */
|
|
if (rtwpci->running)
|
|
rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
unsigned long len;
|
|
u8 bar_id = 2;
|
|
int ret;
|
|
|
|
ret = pci_request_regions(pdev, KBUILD_MODNAME);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to request pci regions\n");
|
|
return ret;
|
|
}
|
|
|
|
len = pci_resource_len(pdev, bar_id);
|
|
rtwpci->mmap = pci_iomap(pdev, bar_id, len);
|
|
if (!rtwpci->mmap) {
|
|
pci_release_regions(pdev);
|
|
rtw_err(rtwdev, "failed to map pci memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
|
|
struct pci_dev *pdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
if (rtwpci->mmap) {
|
|
pci_iounmap(pdev, rtwpci->mmap);
|
|
pci_release_regions(pdev);
|
|
}
|
|
}
|
|
|
|
static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
|
|
{
|
|
u16 write_addr;
|
|
u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
|
|
u8 flag;
|
|
u8 cnt;
|
|
|
|
write_addr = addr & BITS_DBI_ADDR_MASK;
|
|
write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
|
|
rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
|
|
rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
|
|
rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
|
|
|
|
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
|
|
flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
|
|
if (flag == 0)
|
|
return;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
|
|
}
|
|
|
|
static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
|
|
{
|
|
u16 read_addr = addr & BITS_DBI_ADDR_MASK;
|
|
u8 flag;
|
|
u8 cnt;
|
|
|
|
rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
|
|
rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
|
|
|
|
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
|
|
flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
|
|
if (flag == 0) {
|
|
read_addr = REG_DBI_RDATA_V1 + (addr & 3);
|
|
*value = rtw_read8(rtwdev, read_addr);
|
|
return 0;
|
|
}
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
|
|
return -EIO;
|
|
}
|
|
|
|
static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
|
|
{
|
|
u8 page;
|
|
u8 wflag;
|
|
u8 cnt;
|
|
|
|
rtw_write16(rtwdev, REG_MDIO_V1, data);
|
|
|
|
page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
|
|
page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
|
|
rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
|
|
rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
|
|
rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
|
|
|
|
for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
|
|
wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
|
|
BIT_MDIO_WFLAG_V1);
|
|
if (wflag == 0)
|
|
return;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
|
|
}
|
|
|
|
static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
|
|
{
|
|
u8 value;
|
|
int ret;
|
|
|
|
if (rtw_pci_disable_aspm)
|
|
return;
|
|
|
|
ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
|
|
return;
|
|
}
|
|
|
|
if (enable)
|
|
value |= BIT_CLKREQ_SW_EN;
|
|
else
|
|
value &= ~BIT_CLKREQ_SW_EN;
|
|
|
|
rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
|
|
}
|
|
|
|
static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
|
|
{
|
|
u8 value;
|
|
int ret;
|
|
|
|
ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
|
|
return;
|
|
}
|
|
|
|
if (enable)
|
|
value &= ~BIT_CLKREQ_N_PAD;
|
|
else
|
|
value |= BIT_CLKREQ_N_PAD;
|
|
|
|
rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
|
|
}
|
|
|
|
static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
|
|
{
|
|
u8 value;
|
|
int ret;
|
|
|
|
if (rtw_pci_disable_aspm)
|
|
return;
|
|
|
|
ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
|
|
return;
|
|
}
|
|
|
|
if (enable)
|
|
value |= BIT_L1_SW_EN;
|
|
else
|
|
value &= ~BIT_L1_SW_EN;
|
|
|
|
rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
|
|
}
|
|
|
|
static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
|
|
* only be enabled when host supports it.
|
|
*
|
|
* And ASPM mechanism should be enabled when driver/firmware enters
|
|
* power save mode, without having heavy traffic. Because we've
|
|
* experienced some inter-operability issues that the link tends
|
|
* to enter L1 state on the fly even when driver is having high
|
|
* throughput. This is probably because the ASPM behavior slightly
|
|
* varies from different SOC.
|
|
*/
|
|
if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
|
|
return;
|
|
|
|
if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
|
|
(!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
|
|
rtw_pci_aspm_set(rtwdev, enter);
|
|
}
|
|
|
|
static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
|
|
{
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
struct pci_dev *pdev = rtwpci->pdev;
|
|
u16 link_ctrl;
|
|
int ret;
|
|
|
|
/* RTL8822CE has enabled REFCLK auto calibration, it does not need
|
|
* to add clock delay to cover the REFCLK timing gap.
|
|
*/
|
|
if (chip->id == RTW_CHIP_TYPE_8822C)
|
|
rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
|
|
|
|
/* Though there is standard PCIE configuration space to set the
|
|
* link control register, but by Realtek's design, driver should
|
|
* check if host supports CLKREQ/ASPM to enable the HW module.
|
|
*
|
|
* These functions are implemented by two HW modules associated,
|
|
* one is responsible to access PCIE configuration space to
|
|
* follow the host settings, and another is in charge of doing
|
|
* CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
|
|
* the host does not support it, and due to some reasons or wrong
|
|
* settings (ex. CLKREQ# not Bi-Direction), it could lead to device
|
|
* loss if HW misbehaves on the link.
|
|
*
|
|
* Hence it's designed that driver should first check the PCIE
|
|
* configuration space is sync'ed and enabled, then driver can turn
|
|
* on the other module that is actually working on the mechanism.
|
|
*/
|
|
ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
|
|
return;
|
|
}
|
|
|
|
if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
|
|
rtw_pci_clkreq_set(rtwdev, true);
|
|
|
|
rtwpci->link_ctrl = link_ctrl;
|
|
}
|
|
|
|
static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
|
|
{
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
|
|
switch (chip->id) {
|
|
case RTW_CHIP_TYPE_8822C:
|
|
if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
|
|
rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
|
|
BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
struct pci_dev *pdev = rtwpci->pdev;
|
|
const struct rtw_intf_phy_para *para;
|
|
u16 cut;
|
|
u16 value;
|
|
u16 offset;
|
|
int i;
|
|
int ret;
|
|
|
|
cut = BIT(0) << rtwdev->hal.cut_version;
|
|
|
|
for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
|
|
para = &chip->intf_table->gen1_para[i];
|
|
if (!(para->cut_mask & cut))
|
|
continue;
|
|
if (para->offset == 0xffff)
|
|
break;
|
|
offset = para->offset;
|
|
value = para->value;
|
|
if (para->ip_sel == RTW_IP_SEL_PHY)
|
|
rtw_mdio_write(rtwdev, offset, value, true);
|
|
else
|
|
rtw_dbi_write8(rtwdev, offset, value);
|
|
}
|
|
|
|
for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
|
|
para = &chip->intf_table->gen2_para[i];
|
|
if (!(para->cut_mask & cut))
|
|
continue;
|
|
if (para->offset == 0xffff)
|
|
break;
|
|
offset = para->offset;
|
|
value = para->value;
|
|
if (para->ip_sel == RTW_IP_SEL_PHY)
|
|
rtw_mdio_write(rtwdev, offset, value, false);
|
|
else
|
|
rtw_dbi_write8(rtwdev, offset, value);
|
|
}
|
|
|
|
rtw_pci_link_cfg(rtwdev);
|
|
|
|
/* Disable 8821ce completion timeout by default */
|
|
if (chip->id == RTW_CHIP_TYPE_8821C) {
|
|
ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
|
|
PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
|
|
if (ret)
|
|
rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
|
|
ret);
|
|
}
|
|
}
|
|
|
|
static int __maybe_unused rtw_pci_suspend(struct device *dev)
|
|
{
|
|
struct ieee80211_hw *hw = dev_get_drvdata(dev);
|
|
struct rtw_dev *rtwdev = hw->priv;
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
struct rtw_efuse *efuse = &rtwdev->efuse;
|
|
|
|
if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
|
|
rtw_pci_clkreq_pad_low(rtwdev, true);
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused rtw_pci_resume(struct device *dev)
|
|
{
|
|
struct ieee80211_hw *hw = dev_get_drvdata(dev);
|
|
struct rtw_dev *rtwdev = hw->priv;
|
|
const struct rtw_chip_info *chip = rtwdev->chip;
|
|
struct rtw_efuse *efuse = &rtwdev->efuse;
|
|
|
|
if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
|
|
rtw_pci_clkreq_pad_low(rtwdev, false);
|
|
return 0;
|
|
}
|
|
|
|
SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
|
|
EXPORT_SYMBOL(rtw_pm_ops);
|
|
|
|
static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = pci_enable_device(pdev);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to enable pci device\n");
|
|
return ret;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
pci_set_drvdata(pdev, rtwdev->hw);
|
|
SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
|
|
{
|
|
pci_disable_device(pdev);
|
|
}
|
|
|
|
static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
|
|
{
|
|
struct rtw_pci *rtwpci;
|
|
int ret;
|
|
|
|
rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
rtwpci->pdev = pdev;
|
|
|
|
/* after this driver can access to hw registers */
|
|
ret = rtw_pci_io_mapping(rtwdev, pdev);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to request pci io region\n");
|
|
goto err_out;
|
|
}
|
|
|
|
ret = rtw_pci_init(rtwdev);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to allocate pci resources\n");
|
|
goto err_io_unmap;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_io_unmap:
|
|
rtw_pci_io_unmapping(rtwdev, pdev);
|
|
|
|
err_out:
|
|
return ret;
|
|
}
|
|
|
|
static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
|
|
{
|
|
rtw_pci_deinit(rtwdev);
|
|
rtw_pci_io_unmapping(rtwdev, pdev);
|
|
}
|
|
|
|
static struct rtw_hci_ops rtw_pci_ops = {
|
|
.tx_write = rtw_pci_tx_write,
|
|
.tx_kick_off = rtw_pci_tx_kick_off,
|
|
.flush_queues = rtw_pci_flush_queues,
|
|
.setup = rtw_pci_setup,
|
|
.start = rtw_pci_start,
|
|
.stop = rtw_pci_stop,
|
|
.deep_ps = rtw_pci_deep_ps,
|
|
.link_ps = rtw_pci_link_ps,
|
|
.interface_cfg = rtw_pci_interface_cfg,
|
|
|
|
.read8 = rtw_pci_read8,
|
|
.read16 = rtw_pci_read16,
|
|
.read32 = rtw_pci_read32,
|
|
.write8 = rtw_pci_write8,
|
|
.write16 = rtw_pci_write16,
|
|
.write32 = rtw_pci_write32,
|
|
.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
|
|
.write_data_h2c = rtw_pci_write_data_h2c,
|
|
};
|
|
|
|
static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
|
|
{
|
|
unsigned int flags = PCI_IRQ_LEGACY;
|
|
int ret;
|
|
|
|
if (!rtw_disable_msi)
|
|
flags |= PCI_IRQ_MSI;
|
|
|
|
ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
|
|
if (ret < 0) {
|
|
rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
|
|
rtw_pci_interrupt_handler,
|
|
rtw_pci_interrupt_threadfn,
|
|
IRQF_SHARED, KBUILD_MODNAME, rtwdev);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to request irq %d\n", ret);
|
|
pci_free_irq_vectors(pdev);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
|
|
{
|
|
devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
|
|
pci_free_irq_vectors(pdev);
|
|
}
|
|
|
|
static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
|
|
struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
|
|
priv);
|
|
int work_done = 0;
|
|
|
|
if (rtwpci->rx_no_aspm)
|
|
rtw_pci_link_ps(rtwdev, false);
|
|
|
|
while (work_done < budget) {
|
|
u32 work_done_once;
|
|
|
|
work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
|
|
budget - work_done);
|
|
if (work_done_once == 0)
|
|
break;
|
|
work_done += work_done_once;
|
|
}
|
|
if (work_done < budget) {
|
|
napi_complete_done(napi, work_done);
|
|
spin_lock_bh(&rtwpci->irq_lock);
|
|
if (rtwpci->running)
|
|
rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
|
|
spin_unlock_bh(&rtwpci->irq_lock);
|
|
/* When ISR happens during polling and before napi_complete
|
|
* while no further data is received. Data on the dma_ring will
|
|
* not be processed immediately. Check whether dma ring is
|
|
* empty and perform napi_schedule accordingly.
|
|
*/
|
|
if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
|
|
napi_schedule(napi);
|
|
}
|
|
if (rtwpci->rx_no_aspm)
|
|
rtw_pci_link_ps(rtwdev, true);
|
|
|
|
return work_done;
|
|
}
|
|
|
|
static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
init_dummy_netdev(&rtwpci->netdev);
|
|
netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
|
|
}
|
|
|
|
static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
|
|
{
|
|
struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
rtw_pci_napi_stop(rtwdev);
|
|
netif_napi_del(&rtwpci->napi);
|
|
}
|
|
|
|
int rtw_pci_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *id)
|
|
{
|
|
struct pci_dev *bridge = pci_upstream_bridge(pdev);
|
|
struct ieee80211_hw *hw;
|
|
struct rtw_dev *rtwdev;
|
|
struct rtw_pci *rtwpci;
|
|
int drv_data_size;
|
|
int ret;
|
|
|
|
drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
|
|
hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
|
|
if (!hw) {
|
|
dev_err(&pdev->dev, "failed to allocate hw\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rtwdev = hw->priv;
|
|
rtwdev->hw = hw;
|
|
rtwdev->dev = &pdev->dev;
|
|
rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
|
|
rtwdev->hci.ops = &rtw_pci_ops;
|
|
rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
|
|
|
|
rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
atomic_set(&rtwpci->link_usage, 1);
|
|
|
|
ret = rtw_core_init(rtwdev);
|
|
if (ret)
|
|
goto err_release_hw;
|
|
|
|
rtw_dbg(rtwdev, RTW_DBG_PCI,
|
|
"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
|
|
pdev->vendor, pdev->device, pdev->revision);
|
|
|
|
ret = rtw_pci_claim(rtwdev, pdev);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to claim pci device\n");
|
|
goto err_deinit_core;
|
|
}
|
|
|
|
ret = rtw_pci_setup_resource(rtwdev, pdev);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to setup pci resources\n");
|
|
goto err_pci_declaim;
|
|
}
|
|
|
|
rtw_pci_napi_init(rtwdev);
|
|
|
|
ret = rtw_chip_info_setup(rtwdev);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to setup chip information\n");
|
|
goto err_destroy_pci;
|
|
}
|
|
|
|
/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
|
|
if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
|
|
rtwpci->rx_no_aspm = true;
|
|
|
|
rtw_pci_phy_cfg(rtwdev);
|
|
|
|
ret = rtw_register_hw(rtwdev, hw);
|
|
if (ret) {
|
|
rtw_err(rtwdev, "failed to register hw\n");
|
|
goto err_destroy_pci;
|
|
}
|
|
|
|
ret = rtw_pci_request_irq(rtwdev, pdev);
|
|
if (ret) {
|
|
ieee80211_unregister_hw(hw);
|
|
goto err_destroy_pci;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_destroy_pci:
|
|
rtw_pci_napi_deinit(rtwdev);
|
|
rtw_pci_destroy(rtwdev, pdev);
|
|
|
|
err_pci_declaim:
|
|
rtw_pci_declaim(rtwdev, pdev);
|
|
|
|
err_deinit_core:
|
|
rtw_core_deinit(rtwdev);
|
|
|
|
err_release_hw:
|
|
ieee80211_free_hw(hw);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rtw_pci_probe);
|
|
|
|
void rtw_pci_remove(struct pci_dev *pdev)
|
|
{
|
|
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
|
|
struct rtw_dev *rtwdev;
|
|
struct rtw_pci *rtwpci;
|
|
|
|
if (!hw)
|
|
return;
|
|
|
|
rtwdev = hw->priv;
|
|
rtwpci = (struct rtw_pci *)rtwdev->priv;
|
|
|
|
rtw_unregister_hw(rtwdev, hw);
|
|
rtw_pci_disable_interrupt(rtwdev, rtwpci);
|
|
rtw_pci_napi_deinit(rtwdev);
|
|
rtw_pci_destroy(rtwdev, pdev);
|
|
rtw_pci_declaim(rtwdev, pdev);
|
|
rtw_pci_free_irq(rtwdev, pdev);
|
|
rtw_core_deinit(rtwdev);
|
|
ieee80211_free_hw(hw);
|
|
}
|
|
EXPORT_SYMBOL(rtw_pci_remove);
|
|
|
|
void rtw_pci_shutdown(struct pci_dev *pdev)
|
|
{
|
|
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
|
|
struct rtw_dev *rtwdev;
|
|
const struct rtw_chip_info *chip;
|
|
|
|
if (!hw)
|
|
return;
|
|
|
|
rtwdev = hw->priv;
|
|
chip = rtwdev->chip;
|
|
|
|
if (chip->ops->shutdown)
|
|
chip->ops->shutdown(rtwdev);
|
|
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
}
|
|
EXPORT_SYMBOL(rtw_pci_shutdown);
|
|
|
|
MODULE_AUTHOR("Realtek Corporation");
|
|
MODULE_DESCRIPTION("Realtek PCI 802.11ac wireless driver");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|