linux-zen-desktop/drivers/net/wireless/realtek/rtw88/sdio.c

1405 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright (C) 2021 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
* Copyright (C) 2021 Jernej Skrabec <jernej.skrabec@gmail.com>
*
* Based on rtw88/pci.c:
* Copyright(c) 2018-2019 Realtek Corporation
*/
#include <linux/module.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sdio_func.h>
#include "main.h"
#include "debug.h"
#include "fw.h"
#include "ps.h"
#include "reg.h"
#include "rx.h"
#include "sdio.h"
#include "tx.h"
#define RTW_SDIO_INDIRECT_RW_RETRIES 50
static bool rtw_sdio_is_bus_addr(u32 addr)
{
return !!(addr & RTW_SDIO_BUS_MSK);
}
static bool rtw_sdio_bus_claim_needed(struct rtw_sdio *rtwsdio)
{
return !rtwsdio->irq_thread ||
rtwsdio->irq_thread != current;
}
static u32 rtw_sdio_to_bus_offset(struct rtw_dev *rtwdev, u32 addr)
{
switch (addr & RTW_SDIO_BUS_MSK) {
case WLAN_IOREG_OFFSET:
addr &= WLAN_IOREG_REG_MSK;
addr |= FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_MAC_REG);
break;
case SDIO_LOCAL_OFFSET:
addr &= SDIO_LOCAL_REG_MSK;
addr |= FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_SDIO_REG);
break;
default:
rtw_warn(rtwdev, "Cannot convert addr 0x%08x to bus offset",
addr);
}
return addr;
}
static bool rtw_sdio_use_memcpy_io(struct rtw_dev *rtwdev, u32 addr,
u8 alignment)
{
return IS_ALIGNED(addr, alignment) &&
test_bit(RTW_FLAG_POWERON, rtwdev->flags);
}
static void rtw_sdio_writel(struct rtw_dev *rtwdev, u32 val, u32 addr,
int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u8 buf[4];
int i;
if (rtw_sdio_use_memcpy_io(rtwdev, addr, 4)) {
sdio_writel(rtwsdio->sdio_func, val, addr, err_ret);
return;
}
*(__le32 *)buf = cpu_to_le32(val);
for (i = 0; i < 4; i++) {
sdio_writeb(rtwsdio->sdio_func, buf[i], addr + i, err_ret);
if (*err_ret)
return;
}
}
static void rtw_sdio_writew(struct rtw_dev *rtwdev, u16 val, u32 addr,
int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u8 buf[2];
int i;
*(__le16 *)buf = cpu_to_le16(val);
for (i = 0; i < 2; i++) {
sdio_writeb(rtwsdio->sdio_func, buf[i], addr + i, err_ret);
if (*err_ret)
return;
}
}
static u32 rtw_sdio_readl(struct rtw_dev *rtwdev, u32 addr, int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u8 buf[4];
int i;
if (rtw_sdio_use_memcpy_io(rtwdev, addr, 4))
return sdio_readl(rtwsdio->sdio_func, addr, err_ret);
for (i = 0; i < 4; i++) {
buf[i] = sdio_readb(rtwsdio->sdio_func, addr + i, err_ret);
if (*err_ret)
return 0;
}
return le32_to_cpu(*(__le32 *)buf);
}
static u16 rtw_sdio_readw(struct rtw_dev *rtwdev, u32 addr, int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u8 buf[2];
int i;
for (i = 0; i < 2; i++) {
buf[i] = sdio_readb(rtwsdio->sdio_func, addr + i, err_ret);
if (*err_ret)
return 0;
}
return le16_to_cpu(*(__le16 *)buf);
}
static u32 rtw_sdio_to_io_address(struct rtw_dev *rtwdev, u32 addr,
bool direct)
{
if (!direct)
return addr;
if (!rtw_sdio_is_bus_addr(addr))
addr |= WLAN_IOREG_OFFSET;
return rtw_sdio_to_bus_offset(rtwdev, addr);
}
static bool rtw_sdio_use_direct_io(struct rtw_dev *rtwdev, u32 addr)
{
return !rtw_sdio_is_sdio30_supported(rtwdev) ||
rtw_sdio_is_bus_addr(addr);
}
static int rtw_sdio_indirect_reg_cfg(struct rtw_dev *rtwdev, u32 addr, u32 cfg)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
unsigned int retry;
u32 reg_cfg;
int ret;
u8 tmp;
reg_cfg = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_CFG);
rtw_sdio_writel(rtwdev, addr | cfg | BIT_SDIO_INDIRECT_REG_CFG_UNK20,
reg_cfg, &ret);
if (ret)
return ret;
for (retry = 0; retry < RTW_SDIO_INDIRECT_RW_RETRIES; retry++) {
tmp = sdio_readb(rtwsdio->sdio_func, reg_cfg + 2, &ret);
if (!ret && (tmp & BIT(4)))
return 0;
}
return -ETIMEDOUT;
}
static u8 rtw_sdio_indirect_read8(struct rtw_dev *rtwdev, u32 addr,
int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u32 reg_data;
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_READ);
if (*err_ret)
return 0;
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
return sdio_readb(rtwsdio->sdio_func, reg_data, err_ret);
}
static int rtw_sdio_indirect_read_bytes(struct rtw_dev *rtwdev, u32 addr,
u8 *buf, int count)
{
int i, ret = 0;
for (i = 0; i < count; i++) {
buf[i] = rtw_sdio_indirect_read8(rtwdev, addr + i, &ret);
if (ret)
break;
}
return ret;
}
static u16 rtw_sdio_indirect_read16(struct rtw_dev *rtwdev, u32 addr,
int *err_ret)
{
u32 reg_data;
u8 buf[2];
if (!IS_ALIGNED(addr, 2)) {
*err_ret = rtw_sdio_indirect_read_bytes(rtwdev, addr, buf, 2);
if (*err_ret)
return 0;
return le16_to_cpu(*(__le16 *)buf);
}
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_READ);
if (*err_ret)
return 0;
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
return rtw_sdio_readw(rtwdev, reg_data, err_ret);
}
static u32 rtw_sdio_indirect_read32(struct rtw_dev *rtwdev, u32 addr,
int *err_ret)
{
u32 reg_data;
u8 buf[4];
if (!IS_ALIGNED(addr, 4)) {
*err_ret = rtw_sdio_indirect_read_bytes(rtwdev, addr, buf, 4);
if (*err_ret)
return 0;
return le32_to_cpu(*(__le32 *)buf);
}
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_READ);
if (*err_ret)
return 0;
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
return rtw_sdio_readl(rtwdev, reg_data, err_ret);
}
static u8 rtw_sdio_read8(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
u8 val;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
val = sdio_readb(rtwsdio->sdio_func, addr, &ret);
else
val = rtw_sdio_indirect_read8(rtwdev, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio read8 failed (0x%x): %d", addr, ret);
return val;
}
static u16 rtw_sdio_read16(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
u16 val;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
val = rtw_sdio_readw(rtwdev, addr, &ret);
else
val = rtw_sdio_indirect_read16(rtwdev, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio read16 failed (0x%x): %d", addr, ret);
return val;
}
static u32 rtw_sdio_read32(struct rtw_dev *rtwdev, u32 addr)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
u32 val;
int ret;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
val = rtw_sdio_readl(rtwdev, addr, &ret);
else
val = rtw_sdio_indirect_read32(rtwdev, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio read32 failed (0x%x): %d", addr, ret);
return val;
}
static void rtw_sdio_indirect_write8(struct rtw_dev *rtwdev, u8 val, u32 addr,
int *err_ret)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
u32 reg_data;
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
sdio_writeb(rtwsdio->sdio_func, val, reg_data, err_ret);
if (*err_ret)
return;
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_WRITE);
}
static void rtw_sdio_indirect_write16(struct rtw_dev *rtwdev, u16 val, u32 addr,
int *err_ret)
{
u32 reg_data;
if (!IS_ALIGNED(addr, 2)) {
addr = rtw_sdio_to_io_address(rtwdev, addr, true);
rtw_sdio_writew(rtwdev, val, addr, err_ret);
return;
}
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
rtw_sdio_writew(rtwdev, val, reg_data, err_ret);
if (*err_ret)
return;
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_WRITE |
BIT_SDIO_INDIRECT_REG_CFG_WORD);
}
static void rtw_sdio_indirect_write32(struct rtw_dev *rtwdev, u32 val,
u32 addr, int *err_ret)
{
u32 reg_data;
if (!IS_ALIGNED(addr, 4)) {
addr = rtw_sdio_to_io_address(rtwdev, addr, true);
rtw_sdio_writel(rtwdev, val, addr, err_ret);
return;
}
reg_data = rtw_sdio_to_bus_offset(rtwdev, REG_SDIO_INDIRECT_REG_DATA);
rtw_sdio_writel(rtwdev, val, reg_data, err_ret);
*err_ret = rtw_sdio_indirect_reg_cfg(rtwdev, addr,
BIT_SDIO_INDIRECT_REG_CFG_WRITE |
BIT_SDIO_INDIRECT_REG_CFG_DWORD);
}
static void rtw_sdio_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
sdio_writeb(rtwsdio->sdio_func, val, addr, &ret);
else
rtw_sdio_indirect_write8(rtwdev, val, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio write8 failed (0x%x): %d", addr, ret);
}
static void rtw_sdio_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
rtw_sdio_writew(rtwdev, val, addr, &ret);
else
rtw_sdio_indirect_write16(rtwdev, val, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio write16 failed (0x%x): %d", addr, ret);
}
static void rtw_sdio_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool direct, bus_claim;
int ret;
direct = rtw_sdio_use_direct_io(rtwdev, addr);
addr = rtw_sdio_to_io_address(rtwdev, addr, direct);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
if (direct)
rtw_sdio_writel(rtwdev, val, addr, &ret);
else
rtw_sdio_indirect_write32(rtwdev, val, addr, &ret);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev, "sdio write32 failed (0x%x): %d", addr, ret);
}
static u32 rtw_sdio_get_tx_addr(struct rtw_dev *rtwdev, size_t size,
enum rtw_tx_queue_type queue)
{
u32 txaddr;
switch (queue) {
case RTW_TX_QUEUE_BCN:
case RTW_TX_QUEUE_H2C:
case RTW_TX_QUEUE_HI0:
txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_TXFF_HIGH);
break;
case RTW_TX_QUEUE_VI:
case RTW_TX_QUEUE_VO:
txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_TXFF_NORMAL);
break;
case RTW_TX_QUEUE_BE:
case RTW_TX_QUEUE_BK:
txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_TXFF_LOW);
break;
case RTW_TX_QUEUE_MGMT:
txaddr = FIELD_PREP(REG_SDIO_CMD_ADDR_MSK,
REG_SDIO_CMD_ADDR_TXFF_EXTRA);
break;
default:
rtw_warn(rtwdev, "Unsupported queue for TX addr: 0x%02x\n",
queue);
return 0;
}
txaddr += DIV_ROUND_UP(size, 4);
return txaddr;
};
static int rtw_sdio_read_port(struct rtw_dev *rtwdev, u8 *buf, size_t count)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
u32 rxaddr = rtwsdio->rx_addr++;
int ret;
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
ret = sdio_memcpy_fromio(rtwsdio->sdio_func, buf,
RTW_SDIO_ADDR_RX_RX0FF_GEN(rxaddr), count);
if (ret)
rtw_warn(rtwdev,
"Failed to read %zu byte(s) from SDIO port 0x%08x",
count, rxaddr);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
return ret;
}
static int rtw_sdio_check_free_txpg(struct rtw_dev *rtwdev, u8 queue,
size_t count)
{
unsigned int pages_free, pages_needed;
if (rtw_chip_wcpu_11n(rtwdev)) {
u32 free_txpg;
free_txpg = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG);
switch (queue) {
case RTW_TX_QUEUE_BCN:
case RTW_TX_QUEUE_H2C:
case RTW_TX_QUEUE_HI0:
case RTW_TX_QUEUE_MGMT:
/* high */
pages_free = free_txpg & 0xff;
break;
case RTW_TX_QUEUE_VI:
case RTW_TX_QUEUE_VO:
/* normal */
pages_free = (free_txpg >> 8) & 0xff;
break;
case RTW_TX_QUEUE_BE:
case RTW_TX_QUEUE_BK:
/* low */
pages_free = (free_txpg >> 16) & 0xff;
break;
default:
rtw_warn(rtwdev, "Unknown mapping for queue %u\n", queue);
return -EINVAL;
}
/* add the pages from the public queue */
pages_free += (free_txpg >> 24) & 0xff;
} else {
u32 free_txpg[3];
free_txpg[0] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG);
free_txpg[1] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG + 4);
free_txpg[2] = rtw_sdio_read32(rtwdev, REG_SDIO_FREE_TXPG + 8);
switch (queue) {
case RTW_TX_QUEUE_BCN:
case RTW_TX_QUEUE_H2C:
case RTW_TX_QUEUE_HI0:
/* high */
pages_free = free_txpg[0] & 0xfff;
break;
case RTW_TX_QUEUE_VI:
case RTW_TX_QUEUE_VO:
/* normal */
pages_free = (free_txpg[0] >> 16) & 0xfff;
break;
case RTW_TX_QUEUE_BE:
case RTW_TX_QUEUE_BK:
/* low */
pages_free = free_txpg[1] & 0xfff;
break;
case RTW_TX_QUEUE_MGMT:
/* extra */
pages_free = free_txpg[2] & 0xfff;
break;
default:
rtw_warn(rtwdev, "Unknown mapping for queue %u\n", queue);
return -EINVAL;
}
/* add the pages from the public queue */
pages_free += (free_txpg[1] >> 16) & 0xfff;
}
pages_needed = DIV_ROUND_UP(count, rtwdev->chip->page_size);
if (pages_needed > pages_free) {
rtw_dbg(rtwdev, RTW_DBG_SDIO,
"Not enough free pages (%u needed, %u free) in queue %u for %zu bytes\n",
pages_needed, pages_free, queue, count);
return -EBUSY;
}
return 0;
}
static int rtw_sdio_write_port(struct rtw_dev *rtwdev, struct sk_buff *skb,
enum rtw_tx_queue_type queue)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool bus_claim;
size_t txsize;
u32 txaddr;
int ret;
txaddr = rtw_sdio_get_tx_addr(rtwdev, skb->len, queue);
if (!txaddr)
return -EINVAL;
txsize = sdio_align_size(rtwsdio->sdio_func, skb->len);
ret = rtw_sdio_check_free_txpg(rtwdev, queue, txsize);
if (ret)
return ret;
if (!IS_ALIGNED((unsigned long)skb->data, RTW_SDIO_DATA_PTR_ALIGN))
rtw_warn(rtwdev, "Got unaligned SKB in %s() for queue %u\n",
__func__, queue);
bus_claim = rtw_sdio_bus_claim_needed(rtwsdio);
if (bus_claim)
sdio_claim_host(rtwsdio->sdio_func);
ret = sdio_memcpy_toio(rtwsdio->sdio_func, txaddr, skb->data, txsize);
if (bus_claim)
sdio_release_host(rtwsdio->sdio_func);
if (ret)
rtw_warn(rtwdev,
"Failed to write %zu byte(s) to SDIO port 0x%08x",
txsize, txaddr);
return ret;
}
static void rtw_sdio_init(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
rtwsdio->irq_mask = REG_SDIO_HIMR_RX_REQUEST | REG_SDIO_HIMR_CPWM1;
}
static void rtw_sdio_enable_rx_aggregation(struct rtw_dev *rtwdev)
{
u8 size, timeout;
if (rtw_chip_wcpu_11n(rtwdev)) {
size = 0x6;
timeout = 0x6;
} else {
size = 0xff;
timeout = 0x1;
}
/* Make the firmware honor the size limit configured below */
rtw_write32_set(rtwdev, REG_RXDMA_AGG_PG_TH, BIT_EN_PRE_CALC);
rtw_write8_set(rtwdev, REG_TXDMA_PQ_MAP, BIT_RXDMA_AGG_EN);
rtw_write16(rtwdev, REG_RXDMA_AGG_PG_TH,
FIELD_PREP(BIT_RXDMA_AGG_PG_TH, size) |
FIELD_PREP(BIT_DMA_AGG_TO_V1, timeout));
rtw_write8_set(rtwdev, REG_RXDMA_MODE, BIT_DMA_MODE);
}
static void rtw_sdio_enable_interrupt(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
rtw_write32(rtwdev, REG_SDIO_HIMR, rtwsdio->irq_mask);
}
static void rtw_sdio_disable_interrupt(struct rtw_dev *rtwdev)
{
rtw_write32(rtwdev, REG_SDIO_HIMR, 0x0);
}
static u8 rtw_sdio_get_tx_qsel(struct rtw_dev *rtwdev, struct sk_buff *skb,
u8 queue)
{
switch (queue) {
case RTW_TX_QUEUE_BCN:
return TX_DESC_QSEL_BEACON;
case RTW_TX_QUEUE_H2C:
return TX_DESC_QSEL_H2C;
case RTW_TX_QUEUE_MGMT:
if (rtw_chip_wcpu_11n(rtwdev))
return TX_DESC_QSEL_HIGH;
else
return TX_DESC_QSEL_MGMT;
case RTW_TX_QUEUE_HI0:
return TX_DESC_QSEL_HIGH;
default:
return skb->priority;
}
}
static int rtw_sdio_setup(struct rtw_dev *rtwdev)
{
/* nothing to do */
return 0;
}
static int rtw_sdio_start(struct rtw_dev *rtwdev)
{
rtw_sdio_enable_rx_aggregation(rtwdev);
rtw_sdio_enable_interrupt(rtwdev);
return 0;
}
static void rtw_sdio_stop(struct rtw_dev *rtwdev)
{
rtw_sdio_disable_interrupt(rtwdev);
}
static void rtw_sdio_deep_ps_enter(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
bool tx_empty = true;
u8 queue;
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) {
/* Deep PS state is not allowed to TX-DMA */
for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
/* BCN queue is rsvd page, does not have DMA interrupt
* H2C queue is managed by firmware
*/
if (queue == RTW_TX_QUEUE_BCN ||
queue == RTW_TX_QUEUE_H2C)
continue;
/* check if there is any skb DMAing */
if (skb_queue_len(&rtwsdio->tx_queue[queue])) {
tx_empty = false;
break;
}
}
}
if (!tx_empty) {
rtw_dbg(rtwdev, RTW_DBG_PS,
"TX path not empty, cannot enter deep power save state\n");
return;
}
set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
rtw_power_mode_change(rtwdev, true);
}
static void rtw_sdio_deep_ps_leave(struct rtw_dev *rtwdev)
{
if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_power_mode_change(rtwdev, false);
}
static void rtw_sdio_deep_ps(struct rtw_dev *rtwdev, bool enter)
{
if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_sdio_deep_ps_enter(rtwdev);
if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
rtw_sdio_deep_ps_leave(rtwdev);
}
static void rtw_sdio_tx_kick_off(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
queue_work(rtwsdio->txwq, &rtwsdio->tx_handler_data->work);
}
static void rtw_sdio_link_ps(struct rtw_dev *rtwdev, bool enter)
{
/* nothing to do */
}
static void rtw_sdio_interface_cfg(struct rtw_dev *rtwdev)
{
u32 val;
rtw_read32(rtwdev, REG_SDIO_FREE_TXPG);
val = rtw_read32(rtwdev, REG_SDIO_TX_CTRL);
val &= 0xfff8;
rtw_write32(rtwdev, REG_SDIO_TX_CTRL, val);
}
static struct rtw_sdio_tx_data *rtw_sdio_get_tx_data(struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
BUILD_BUG_ON(sizeof(struct rtw_sdio_tx_data) >
sizeof(info->status.status_driver_data));
return (struct rtw_sdio_tx_data *)info->status.status_driver_data;
}
static void rtw_sdio_tx_skb_prepare(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb,
enum rtw_tx_queue_type queue)
{
const struct rtw_chip_info *chip = rtwdev->chip;
unsigned long data_addr, aligned_addr;
size_t offset;
u8 *pkt_desc;
pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
data_addr = (unsigned long)pkt_desc;
aligned_addr = ALIGN(data_addr, RTW_SDIO_DATA_PTR_ALIGN);
if (data_addr != aligned_addr) {
/* Ensure that the start of the pkt_desc is always aligned at
* RTW_SDIO_DATA_PTR_ALIGN.
*/
offset = RTW_SDIO_DATA_PTR_ALIGN - (aligned_addr - data_addr);
pkt_desc = skb_push(skb, offset);
/* By inserting padding to align the start of the pkt_desc we
* need to inform the firmware that the actual data starts at
* a different offset than normal.
*/
pkt_info->offset += offset;
}
memset(pkt_desc, 0, chip->tx_pkt_desc_sz);
pkt_info->qsel = rtw_sdio_get_tx_qsel(rtwdev, skb, queue);
rtw_tx_fill_tx_desc(pkt_info, skb);
rtw_tx_fill_txdesc_checksum(rtwdev, pkt_info, pkt_desc);
}
static int rtw_sdio_write_data(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb,
enum rtw_tx_queue_type queue)
{
int ret;
rtw_sdio_tx_skb_prepare(rtwdev, pkt_info, skb, queue);
ret = rtw_sdio_write_port(rtwdev, skb, queue);
dev_kfree_skb_any(skb);
return ret;
}
static int rtw_sdio_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
u32 size)
{
struct rtw_tx_pkt_info pkt_info = {};
struct sk_buff *skb;
skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
if (!skb)
return -ENOMEM;
return rtw_sdio_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
}
static int rtw_sdio_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
{
struct rtw_tx_pkt_info pkt_info = {};
struct sk_buff *skb;
skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
if (!skb)
return -ENOMEM;
return rtw_sdio_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
}
static int rtw_sdio_tx_write(struct rtw_dev *rtwdev,
struct rtw_tx_pkt_info *pkt_info,
struct sk_buff *skb)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
struct rtw_sdio_tx_data *tx_data;
rtw_sdio_tx_skb_prepare(rtwdev, pkt_info, skb, queue);
tx_data = rtw_sdio_get_tx_data(skb);
tx_data->sn = pkt_info->sn;
skb_queue_tail(&rtwsdio->tx_queue[queue], skb);
return 0;
}
static void rtw_sdio_tx_err_isr(struct rtw_dev *rtwdev)
{
u32 val = rtw_read32(rtwdev, REG_TXDMA_STATUS);
rtw_write32(rtwdev, REG_TXDMA_STATUS, val);
}
static void rtw_sdio_rx_skb(struct rtw_dev *rtwdev, struct sk_buff *skb,
u32 pkt_offset, struct rtw_rx_pkt_stat *pkt_stat,
struct ieee80211_rx_status *rx_status)
{
*IEEE80211_SKB_RXCB(skb) = *rx_status;
if (pkt_stat->is_c2h) {
skb_put(skb, pkt_stat->pkt_len + pkt_offset);
rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, skb);
return;
}
skb_put(skb, pkt_stat->pkt_len);
skb_reserve(skb, pkt_offset);
rtw_rx_stats(rtwdev, pkt_stat->vif, skb);
ieee80211_rx_irqsafe(rtwdev->hw, skb);
}
static void rtw_sdio_rxfifo_recv(struct rtw_dev *rtwdev, u32 rx_len)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
const struct rtw_chip_info *chip = rtwdev->chip;
u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
struct ieee80211_rx_status rx_status;
struct rtw_rx_pkt_stat pkt_stat;
struct sk_buff *skb, *split_skb;
u32 pkt_offset, curr_pkt_len;
size_t bufsz;
u8 *rx_desc;
int ret;
bufsz = sdio_align_size(rtwsdio->sdio_func, rx_len);
skb = dev_alloc_skb(bufsz);
if (!skb)
return;
ret = rtw_sdio_read_port(rtwdev, skb->data, bufsz);
if (ret) {
dev_kfree_skb_any(skb);
return;
}
while (true) {
rx_desc = skb->data;
chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat,
&rx_status);
pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
pkt_stat.shift;
curr_pkt_len = ALIGN(pkt_offset + pkt_stat.pkt_len,
RTW_SDIO_DATA_PTR_ALIGN);
if ((curr_pkt_len + pkt_desc_sz) >= rx_len) {
/* Use the original skb (with it's adjusted offset)
* when processing the last (or even the only) entry to
* have it's memory freed automatically.
*/
rtw_sdio_rx_skb(rtwdev, skb, pkt_offset, &pkt_stat,
&rx_status);
break;
}
split_skb = dev_alloc_skb(curr_pkt_len);
if (!split_skb) {
rtw_sdio_rx_skb(rtwdev, skb, pkt_offset, &pkt_stat,
&rx_status);
break;
}
skb_copy_header(split_skb, skb);
memcpy(split_skb->data, skb->data, curr_pkt_len);
rtw_sdio_rx_skb(rtwdev, split_skb, pkt_offset, &pkt_stat,
&rx_status);
/* Move to the start of the next RX descriptor */
skb_reserve(skb, curr_pkt_len);
rx_len -= curr_pkt_len;
}
}
static void rtw_sdio_rx_isr(struct rtw_dev *rtwdev)
{
u32 rx_len, hisr, total_rx_bytes = 0;
do {
if (rtw_chip_wcpu_11n(rtwdev))
rx_len = rtw_read16(rtwdev, REG_SDIO_RX0_REQ_LEN);
else
rx_len = rtw_read32(rtwdev, REG_SDIO_RX0_REQ_LEN);
if (!rx_len)
break;
rtw_sdio_rxfifo_recv(rtwdev, rx_len);
total_rx_bytes += rx_len;
if (rtw_chip_wcpu_11n(rtwdev)) {
/* Stop if no more RX requests are pending, even if
* rx_len could be greater than zero in the next
* iteration. This is needed because the RX buffer may
* already contain data while either HW or FW are not
* done filling that buffer yet. Still reading the
* buffer can result in packets where
* rtw_rx_pkt_stat.pkt_len is zero or points beyond the
* end of the buffer.
*/
hisr = rtw_read32(rtwdev, REG_SDIO_HISR);
} else {
/* RTW_WCPU_11AC chips have improved hardware or
* firmware and can use rx_len unconditionally.
*/
hisr = REG_SDIO_HISR_RX_REQUEST;
}
} while (total_rx_bytes < SZ_64K && hisr & REG_SDIO_HISR_RX_REQUEST);
}
static void rtw_sdio_handle_interrupt(struct sdio_func *sdio_func)
{
struct ieee80211_hw *hw = sdio_get_drvdata(sdio_func);
struct rtw_sdio *rtwsdio;
struct rtw_dev *rtwdev;
u32 hisr;
rtwdev = hw->priv;
rtwsdio = (struct rtw_sdio *)rtwdev->priv;
rtwsdio->irq_thread = current;
hisr = rtw_read32(rtwdev, REG_SDIO_HISR);
if (hisr & REG_SDIO_HISR_TXERR)
rtw_sdio_tx_err_isr(rtwdev);
if (hisr & REG_SDIO_HISR_RX_REQUEST) {
hisr &= ~REG_SDIO_HISR_RX_REQUEST;
rtw_sdio_rx_isr(rtwdev);
}
rtw_write32(rtwdev, REG_SDIO_HISR, hisr);
rtwsdio->irq_thread = NULL;
}
static int __maybe_unused rtw_sdio_suspend(struct device *dev)
{
struct sdio_func *func = dev_to_sdio_func(dev);
struct ieee80211_hw *hw = dev_get_drvdata(dev);
struct rtw_dev *rtwdev = hw->priv;
int ret;
ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
if (ret)
rtw_err(rtwdev, "Failed to host PM flag MMC_PM_KEEP_POWER");
return ret;
}
static int __maybe_unused rtw_sdio_resume(struct device *dev)
{
return 0;
}
SIMPLE_DEV_PM_OPS(rtw_sdio_pm_ops, rtw_sdio_suspend, rtw_sdio_resume);
EXPORT_SYMBOL(rtw_sdio_pm_ops);
static int rtw_sdio_claim(struct rtw_dev *rtwdev, struct sdio_func *sdio_func)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
int ret;
sdio_claim_host(sdio_func);
ret = sdio_enable_func(sdio_func);
if (ret) {
rtw_err(rtwdev, "Failed to enable SDIO func");
goto err_release_host;
}
ret = sdio_set_block_size(sdio_func, RTW_SDIO_BLOCK_SIZE);
if (ret) {
rtw_err(rtwdev, "Failed to set SDIO block size to 512");
goto err_disable_func;
}
rtwsdio->sdio_func = sdio_func;
rtwsdio->sdio3_bus_mode = mmc_card_uhs(sdio_func->card);
sdio_set_drvdata(sdio_func, rtwdev->hw);
SET_IEEE80211_DEV(rtwdev->hw, &sdio_func->dev);
sdio_release_host(sdio_func);
return 0;
err_disable_func:
sdio_disable_func(sdio_func);
err_release_host:
sdio_release_host(sdio_func);
return ret;
}
static void rtw_sdio_declaim(struct rtw_dev *rtwdev,
struct sdio_func *sdio_func)
{
sdio_claim_host(sdio_func);
sdio_disable_func(sdio_func);
sdio_release_host(sdio_func);
}
static struct rtw_hci_ops rtw_sdio_ops = {
.tx_write = rtw_sdio_tx_write,
.tx_kick_off = rtw_sdio_tx_kick_off,
.setup = rtw_sdio_setup,
.start = rtw_sdio_start,
.stop = rtw_sdio_stop,
.deep_ps = rtw_sdio_deep_ps,
.link_ps = rtw_sdio_link_ps,
.interface_cfg = rtw_sdio_interface_cfg,
.read8 = rtw_sdio_read8,
.read16 = rtw_sdio_read16,
.read32 = rtw_sdio_read32,
.write8 = rtw_sdio_write8,
.write16 = rtw_sdio_write16,
.write32 = rtw_sdio_write32,
.write_data_rsvd_page = rtw_sdio_write_data_rsvd_page,
.write_data_h2c = rtw_sdio_write_data_h2c,
};
static int rtw_sdio_request_irq(struct rtw_dev *rtwdev,
struct sdio_func *sdio_func)
{
int ret;
sdio_claim_host(sdio_func);
ret = sdio_claim_irq(sdio_func, &rtw_sdio_handle_interrupt);
sdio_release_host(sdio_func);
if (ret) {
rtw_err(rtwdev, "failed to claim SDIO IRQ");
return ret;
}
return 0;
}
static void rtw_sdio_indicate_tx_status(struct rtw_dev *rtwdev,
struct sk_buff *skb)
{
struct rtw_sdio_tx_data *tx_data = rtw_sdio_get_tx_data(skb);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hw *hw = rtwdev->hw;
/* enqueue to wait for tx report */
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
return;
}
/* always ACK for others, then they won't be marked as drop */
ieee80211_tx_info_clear_status(info);
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
else
info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
}
static void rtw_sdio_process_tx_queue(struct rtw_dev *rtwdev,
enum rtw_tx_queue_type queue)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
struct sk_buff *skb;
int ret;
skb = skb_dequeue(&rtwsdio->tx_queue[queue]);
if (!skb)
return;
ret = rtw_sdio_write_port(rtwdev, skb, queue);
if (ret) {
skb_queue_head(&rtwsdio->tx_queue[queue], skb);
return;
}
if (queue <= RTW_TX_QUEUE_VO)
rtw_sdio_indicate_tx_status(rtwdev, skb);
else
dev_kfree_skb_any(skb);
}
static void rtw_sdio_tx_handler(struct work_struct *work)
{
struct rtw_sdio_work_data *work_data =
container_of(work, struct rtw_sdio_work_data, work);
struct rtw_sdio *rtwsdio;
struct rtw_dev *rtwdev;
int limit, queue;
rtwdev = work_data->rtwdev;
rtwsdio = (struct rtw_sdio *)rtwdev->priv;
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
rtw_sdio_deep_ps_leave(rtwdev);
for (queue = RTK_MAX_TX_QUEUE_NUM - 1; queue >= 0; queue--) {
for (limit = 0; limit < 1000; limit++) {
rtw_sdio_process_tx_queue(rtwdev, queue);
if (skb_queue_empty(&rtwsdio->tx_queue[queue]))
break;
}
}
}
static void rtw_sdio_free_irq(struct rtw_dev *rtwdev,
struct sdio_func *sdio_func)
{
sdio_claim_host(sdio_func);
sdio_release_irq(sdio_func);
sdio_release_host(sdio_func);
}
static int rtw_sdio_init_tx(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
int i;
rtwsdio->txwq = create_singlethread_workqueue("rtw88_sdio: tx wq");
if (!rtwsdio->txwq) {
rtw_err(rtwdev, "failed to create TX work queue\n");
return -ENOMEM;
}
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++)
skb_queue_head_init(&rtwsdio->tx_queue[i]);
rtwsdio->tx_handler_data = kmalloc(sizeof(*rtwsdio->tx_handler_data),
GFP_KERNEL);
if (!rtwsdio->tx_handler_data)
goto err_destroy_wq;
rtwsdio->tx_handler_data->rtwdev = rtwdev;
INIT_WORK(&rtwsdio->tx_handler_data->work, rtw_sdio_tx_handler);
return 0;
err_destroy_wq:
destroy_workqueue(rtwsdio->txwq);
return -ENOMEM;
}
static void rtw_sdio_deinit_tx(struct rtw_dev *rtwdev)
{
struct rtw_sdio *rtwsdio = (struct rtw_sdio *)rtwdev->priv;
int i;
for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++)
skb_queue_purge(&rtwsdio->tx_queue[i]);
flush_workqueue(rtwsdio->txwq);
destroy_workqueue(rtwsdio->txwq);
kfree(rtwsdio->tx_handler_data);
}
int rtw_sdio_probe(struct sdio_func *sdio_func,
const struct sdio_device_id *id)
{
struct ieee80211_hw *hw;
struct rtw_dev *rtwdev;
int drv_data_size;
int ret;
drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_sdio);
hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
if (!hw) {
dev_err(&sdio_func->dev, "failed to allocate hw");
return -ENOMEM;
}
rtwdev = hw->priv;
rtwdev->hw = hw;
rtwdev->dev = &sdio_func->dev;
rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
rtwdev->hci.ops = &rtw_sdio_ops;
rtwdev->hci.type = RTW_HCI_TYPE_SDIO;
ret = rtw_core_init(rtwdev);
if (ret)
goto err_release_hw;
rtw_dbg(rtwdev, RTW_DBG_SDIO,
"rtw88 SDIO probe: vendor=0x%04x device=%04x class=%02x",
id->vendor, id->device, id->class);
ret = rtw_sdio_claim(rtwdev, sdio_func);
if (ret) {
rtw_err(rtwdev, "failed to claim SDIO device");
goto err_deinit_core;
}
rtw_sdio_init(rtwdev);
ret = rtw_sdio_init_tx(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to init SDIO TX queue\n");
goto err_sdio_declaim;
}
ret = rtw_chip_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip information");
goto err_destroy_txwq;
}
ret = rtw_sdio_request_irq(rtwdev, sdio_func);
if (ret)
goto err_destroy_txwq;
ret = rtw_register_hw(rtwdev, hw);
if (ret) {
rtw_err(rtwdev, "failed to register hw");
goto err_free_irq;
}
return 0;
err_free_irq:
rtw_sdio_free_irq(rtwdev, sdio_func);
err_destroy_txwq:
rtw_sdio_deinit_tx(rtwdev);
err_sdio_declaim:
rtw_sdio_declaim(rtwdev, sdio_func);
err_deinit_core:
rtw_core_deinit(rtwdev);
err_release_hw:
ieee80211_free_hw(hw);
return ret;
}
EXPORT_SYMBOL(rtw_sdio_probe);
void rtw_sdio_remove(struct sdio_func *sdio_func)
{
struct ieee80211_hw *hw = sdio_get_drvdata(sdio_func);
struct rtw_dev *rtwdev;
if (!hw)
return;
rtwdev = hw->priv;
rtw_unregister_hw(rtwdev, hw);
rtw_sdio_disable_interrupt(rtwdev);
rtw_sdio_free_irq(rtwdev, sdio_func);
rtw_sdio_declaim(rtwdev, sdio_func);
rtw_sdio_deinit_tx(rtwdev);
rtw_core_deinit(rtwdev);
ieee80211_free_hw(hw);
}
EXPORT_SYMBOL(rtw_sdio_remove);
void rtw_sdio_shutdown(struct device *dev)
{
struct sdio_func *sdio_func = dev_to_sdio_func(dev);
const struct rtw_chip_info *chip;
struct ieee80211_hw *hw;
struct rtw_dev *rtwdev;
hw = sdio_get_drvdata(sdio_func);
if (!hw)
return;
rtwdev = hw->priv;
chip = rtwdev->chip;
if (chip->ops->shutdown)
chip->ops->shutdown(rtwdev);
}
EXPORT_SYMBOL(rtw_sdio_shutdown);
MODULE_AUTHOR("Martin Blumenstingl");
MODULE_AUTHOR("Jernej Skrabec");
MODULE_DESCRIPTION("Realtek 802.11ac wireless SDIO driver");
MODULE_LICENSE("Dual BSD/GPL");