linux-zen-desktop/drivers/spi/spi-qcom-qspi.c

917 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
#include <linux/clk.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/interconnect.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/pm_opp.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#define QSPI_NUM_CS 2
#define QSPI_BYTES_PER_WORD 4
#define MSTR_CONFIG 0x0000
#define FULL_CYCLE_MODE BIT(3)
#define FB_CLK_EN BIT(4)
#define PIN_HOLDN BIT(6)
#define PIN_WPN BIT(7)
#define DMA_ENABLE BIT(8)
#define BIG_ENDIAN_MODE BIT(9)
#define SPI_MODE_MSK 0xc00
#define SPI_MODE_SHFT 10
#define CHIP_SELECT_NUM BIT(12)
#define SBL_EN BIT(13)
#define LPA_BASE_MSK 0x3c000
#define LPA_BASE_SHFT 14
#define TX_DATA_DELAY_MSK 0xc0000
#define TX_DATA_DELAY_SHFT 18
#define TX_CLK_DELAY_MSK 0x300000
#define TX_CLK_DELAY_SHFT 20
#define TX_CS_N_DELAY_MSK 0xc00000
#define TX_CS_N_DELAY_SHFT 22
#define TX_DATA_OE_DELAY_MSK 0x3000000
#define TX_DATA_OE_DELAY_SHFT 24
#define AHB_MASTER_CFG 0x0004
#define HMEM_TYPE_START_MID_TRANS_MSK 0x7
#define HMEM_TYPE_START_MID_TRANS_SHFT 0
#define HMEM_TYPE_LAST_TRANS_MSK 0x38
#define HMEM_TYPE_LAST_TRANS_SHFT 3
#define USE_HMEMTYPE_LAST_ON_DESC_OR_CHAIN_MSK 0xc0
#define USE_HMEMTYPE_LAST_ON_DESC_OR_CHAIN_SHFT 6
#define HMEMTYPE_READ_TRANS_MSK 0x700
#define HMEMTYPE_READ_TRANS_SHFT 8
#define HSHARED BIT(11)
#define HINNERSHARED BIT(12)
#define MSTR_INT_EN 0x000C
#define MSTR_INT_STATUS 0x0010
#define RESP_FIFO_UNDERRUN BIT(0)
#define RESP_FIFO_NOT_EMPTY BIT(1)
#define RESP_FIFO_RDY BIT(2)
#define HRESP_FROM_NOC_ERR BIT(3)
#define WR_FIFO_EMPTY BIT(9)
#define WR_FIFO_FULL BIT(10)
#define WR_FIFO_OVERRUN BIT(11)
#define TRANSACTION_DONE BIT(16)
#define DMA_CHAIN_DONE BIT(31)
#define QSPI_ERR_IRQS (RESP_FIFO_UNDERRUN | HRESP_FROM_NOC_ERR | \
WR_FIFO_OVERRUN)
#define QSPI_ALL_IRQS (QSPI_ERR_IRQS | RESP_FIFO_RDY | \
WR_FIFO_EMPTY | WR_FIFO_FULL | \
TRANSACTION_DONE | DMA_CHAIN_DONE)
#define PIO_XFER_CTRL 0x0014
#define REQUEST_COUNT_MSK 0xffff
#define PIO_XFER_CFG 0x0018
#define TRANSFER_DIRECTION BIT(0)
#define MULTI_IO_MODE_MSK 0xe
#define MULTI_IO_MODE_SHFT 1
#define TRANSFER_FRAGMENT BIT(8)
#define SDR_1BIT 1
#define SDR_2BIT 2
#define SDR_4BIT 3
#define DDR_1BIT 5
#define DDR_2BIT 6
#define DDR_4BIT 7
#define DMA_DESC_SINGLE_SPI 1
#define DMA_DESC_DUAL_SPI 2
#define DMA_DESC_QUAD_SPI 3
#define PIO_XFER_STATUS 0x001c
#define WR_FIFO_BYTES_MSK 0xffff0000
#define WR_FIFO_BYTES_SHFT 16
#define PIO_DATAOUT_1B 0x0020
#define PIO_DATAOUT_4B 0x0024
#define RD_FIFO_CFG 0x0028
#define CONTINUOUS_MODE BIT(0)
#define RD_FIFO_STATUS 0x002c
#define FIFO_EMPTY BIT(11)
#define WR_CNTS_MSK 0x7f0
#define WR_CNTS_SHFT 4
#define RDY_64BYTE BIT(3)
#define RDY_32BYTE BIT(2)
#define RDY_16BYTE BIT(1)
#define FIFO_RDY BIT(0)
#define RD_FIFO_RESET 0x0030
#define RESET_FIFO BIT(0)
#define NEXT_DMA_DESC_ADDR 0x0040
#define CURRENT_DMA_DESC_ADDR 0x0044
#define CURRENT_MEM_ADDR 0x0048
#define CUR_MEM_ADDR 0x0048
#define HW_VERSION 0x004c
#define RD_FIFO 0x0050
#define SAMPLING_CLK_CFG 0x0090
#define SAMPLING_CLK_STATUS 0x0094
#define QSPI_ALIGN_REQ 32
enum qspi_dir {
QSPI_READ,
QSPI_WRITE,
};
struct qspi_cmd_desc {
u32 data_address;
u32 next_descriptor;
u32 direction:1;
u32 multi_io_mode:3;
u32 reserved1:4;
u32 fragment:1;
u32 reserved2:7;
u32 length:16;
};
struct qspi_xfer {
union {
const void *tx_buf;
void *rx_buf;
};
unsigned int rem_bytes;
unsigned int buswidth;
enum qspi_dir dir;
bool is_last;
};
enum qspi_clocks {
QSPI_CLK_CORE,
QSPI_CLK_IFACE,
QSPI_NUM_CLKS
};
/*
* Number of entries in sgt returned from spi framework that-
* will be supported. Can be modified as required.
* In practice, given max_dma_len is 64KB, the number of
* entries is not expected to exceed 1.
*/
#define QSPI_MAX_SG 5
struct qcom_qspi {
void __iomem *base;
struct device *dev;
struct clk_bulk_data *clks;
struct qspi_xfer xfer;
struct dma_pool *dma_cmd_pool;
dma_addr_t dma_cmd_desc[QSPI_MAX_SG];
void *virt_cmd_desc[QSPI_MAX_SG];
unsigned int n_cmd_desc;
struct icc_path *icc_path_cpu_to_qspi;
unsigned long last_speed;
/* Lock to protect data accessed by IRQs */
spinlock_t lock;
};
static u32 qspi_buswidth_to_iomode(struct qcom_qspi *ctrl,
unsigned int buswidth)
{
switch (buswidth) {
case 1:
return SDR_1BIT;
case 2:
return SDR_2BIT;
case 4:
return SDR_4BIT;
default:
dev_warn_once(ctrl->dev,
"Unexpected bus width: %u\n", buswidth);
return SDR_1BIT;
}
}
static void qcom_qspi_pio_xfer_cfg(struct qcom_qspi *ctrl)
{
u32 pio_xfer_cfg;
u32 iomode;
const struct qspi_xfer *xfer;
xfer = &ctrl->xfer;
pio_xfer_cfg = readl(ctrl->base + PIO_XFER_CFG);
pio_xfer_cfg &= ~TRANSFER_DIRECTION;
pio_xfer_cfg |= xfer->dir;
if (xfer->is_last)
pio_xfer_cfg &= ~TRANSFER_FRAGMENT;
else
pio_xfer_cfg |= TRANSFER_FRAGMENT;
pio_xfer_cfg &= ~MULTI_IO_MODE_MSK;
iomode = qspi_buswidth_to_iomode(ctrl, xfer->buswidth);
pio_xfer_cfg |= iomode << MULTI_IO_MODE_SHFT;
writel(pio_xfer_cfg, ctrl->base + PIO_XFER_CFG);
}
static void qcom_qspi_pio_xfer_ctrl(struct qcom_qspi *ctrl)
{
u32 pio_xfer_ctrl;
pio_xfer_ctrl = readl(ctrl->base + PIO_XFER_CTRL);
pio_xfer_ctrl &= ~REQUEST_COUNT_MSK;
pio_xfer_ctrl |= ctrl->xfer.rem_bytes;
writel(pio_xfer_ctrl, ctrl->base + PIO_XFER_CTRL);
}
static void qcom_qspi_pio_xfer(struct qcom_qspi *ctrl)
{
u32 ints;
qcom_qspi_pio_xfer_cfg(ctrl);
/* Ack any previous interrupts that might be hanging around */
writel(QSPI_ALL_IRQS, ctrl->base + MSTR_INT_STATUS);
/* Setup new interrupts */
if (ctrl->xfer.dir == QSPI_WRITE)
ints = QSPI_ERR_IRQS | WR_FIFO_EMPTY;
else
ints = QSPI_ERR_IRQS | RESP_FIFO_RDY;
writel(ints, ctrl->base + MSTR_INT_EN);
/* Kick off the transfer */
qcom_qspi_pio_xfer_ctrl(ctrl);
}
static void qcom_qspi_handle_err(struct spi_master *master,
struct spi_message *msg)
{
u32 int_status;
struct qcom_qspi *ctrl = spi_master_get_devdata(master);
unsigned long flags;
int i;
spin_lock_irqsave(&ctrl->lock, flags);
writel(0, ctrl->base + MSTR_INT_EN);
int_status = readl(ctrl->base + MSTR_INT_STATUS);
writel(int_status, ctrl->base + MSTR_INT_STATUS);
ctrl->xfer.rem_bytes = 0;
/* free cmd descriptors if they are around (DMA mode) */
for (i = 0; i < ctrl->n_cmd_desc; i++)
dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
ctrl->dma_cmd_desc[i]);
ctrl->n_cmd_desc = 0;
spin_unlock_irqrestore(&ctrl->lock, flags);
}
static int qcom_qspi_set_speed(struct qcom_qspi *ctrl, unsigned long speed_hz)
{
int ret;
unsigned int avg_bw_cpu;
if (speed_hz == ctrl->last_speed)
return 0;
/* In regular operation (SBL_EN=1) core must be 4x transfer clock */
ret = dev_pm_opp_set_rate(ctrl->dev, speed_hz * 4);
if (ret) {
dev_err(ctrl->dev, "Failed to set core clk %d\n", ret);
return ret;
}
/*
* Set BW quota for CPU.
* We don't have explicit peak requirement so keep it equal to avg_bw.
*/
avg_bw_cpu = Bps_to_icc(speed_hz);
ret = icc_set_bw(ctrl->icc_path_cpu_to_qspi, avg_bw_cpu, avg_bw_cpu);
if (ret) {
dev_err(ctrl->dev, "%s: ICC BW voting failed for cpu: %d\n",
__func__, ret);
return ret;
}
ctrl->last_speed = speed_hz;
return 0;
}
static int qcom_qspi_alloc_desc(struct qcom_qspi *ctrl, dma_addr_t dma_ptr,
uint32_t n_bytes)
{
struct qspi_cmd_desc *virt_cmd_desc, *prev;
dma_addr_t dma_cmd_desc;
/* allocate for dma cmd descriptor */
virt_cmd_desc = dma_pool_alloc(ctrl->dma_cmd_pool, GFP_ATOMIC | __GFP_ZERO, &dma_cmd_desc);
if (!virt_cmd_desc) {
dev_warn_once(ctrl->dev, "Couldn't find memory for descriptor\n");
return -EAGAIN;
}
ctrl->virt_cmd_desc[ctrl->n_cmd_desc] = virt_cmd_desc;
ctrl->dma_cmd_desc[ctrl->n_cmd_desc] = dma_cmd_desc;
ctrl->n_cmd_desc++;
/* setup cmd descriptor */
virt_cmd_desc->data_address = dma_ptr;
virt_cmd_desc->direction = ctrl->xfer.dir;
virt_cmd_desc->multi_io_mode = qspi_buswidth_to_iomode(ctrl, ctrl->xfer.buswidth);
virt_cmd_desc->fragment = !ctrl->xfer.is_last;
virt_cmd_desc->length = n_bytes;
/* update previous descriptor */
if (ctrl->n_cmd_desc >= 2) {
prev = (ctrl->virt_cmd_desc)[ctrl->n_cmd_desc - 2];
prev->next_descriptor = dma_cmd_desc;
prev->fragment = 1;
}
return 0;
}
static int qcom_qspi_setup_dma_desc(struct qcom_qspi *ctrl,
struct spi_transfer *xfer)
{
int ret;
struct sg_table *sgt;
dma_addr_t dma_ptr_sg;
unsigned int dma_len_sg;
int i;
if (ctrl->n_cmd_desc) {
dev_err(ctrl->dev, "Remnant dma buffers n_cmd_desc-%d\n", ctrl->n_cmd_desc);
return -EIO;
}
sgt = (ctrl->xfer.dir == QSPI_READ) ? &xfer->rx_sg : &xfer->tx_sg;
if (!sgt->nents || sgt->nents > QSPI_MAX_SG) {
dev_warn_once(ctrl->dev, "Cannot handle %d entries in scatter list\n", sgt->nents);
return -EAGAIN;
}
for (i = 0; i < sgt->nents; i++) {
dma_ptr_sg = sg_dma_address(sgt->sgl + i);
dma_len_sg = sg_dma_len(sgt->sgl + i);
if (!IS_ALIGNED(dma_ptr_sg, QSPI_ALIGN_REQ)) {
dev_warn_once(ctrl->dev, "dma_address not aligned to %d\n", QSPI_ALIGN_REQ);
return -EAGAIN;
}
/*
* When reading with DMA the controller writes to memory 1 word
* at a time. If the length isn't a multiple of 4 bytes then
* the controller can clobber the things later in memory.
* Fallback to PIO to be safe.
*/
if (ctrl->xfer.dir == QSPI_READ && (dma_len_sg & 0x03)) {
dev_warn_once(ctrl->dev, "fallback to PIO for read of size %#010x\n",
dma_len_sg);
return -EAGAIN;
}
}
for (i = 0; i < sgt->nents; i++) {
dma_ptr_sg = sg_dma_address(sgt->sgl + i);
dma_len_sg = sg_dma_len(sgt->sgl + i);
ret = qcom_qspi_alloc_desc(ctrl, dma_ptr_sg, dma_len_sg);
if (ret)
goto cleanup;
}
return 0;
cleanup:
for (i = 0; i < ctrl->n_cmd_desc; i++)
dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
ctrl->dma_cmd_desc[i]);
ctrl->n_cmd_desc = 0;
return ret;
}
static void qcom_qspi_dma_xfer(struct qcom_qspi *ctrl)
{
/* Setup new interrupts */
writel(DMA_CHAIN_DONE, ctrl->base + MSTR_INT_EN);
/* kick off transfer */
writel((u32)((ctrl->dma_cmd_desc)[0]), ctrl->base + NEXT_DMA_DESC_ADDR);
}
/* Switch to DMA if transfer length exceeds this */
#define QSPI_MAX_BYTES_FIFO 64
static bool qcom_qspi_can_dma(struct spi_controller *ctlr,
struct spi_device *slv, struct spi_transfer *xfer)
{
return xfer->len > QSPI_MAX_BYTES_FIFO;
}
static int qcom_qspi_transfer_one(struct spi_master *master,
struct spi_device *slv,
struct spi_transfer *xfer)
{
struct qcom_qspi *ctrl = spi_master_get_devdata(master);
int ret;
unsigned long speed_hz;
unsigned long flags;
u32 mstr_cfg;
speed_hz = slv->max_speed_hz;
if (xfer->speed_hz)
speed_hz = xfer->speed_hz;
ret = qcom_qspi_set_speed(ctrl, speed_hz);
if (ret)
return ret;
spin_lock_irqsave(&ctrl->lock, flags);
mstr_cfg = readl(ctrl->base + MSTR_CONFIG);
/* We are half duplex, so either rx or tx will be set */
if (xfer->rx_buf) {
ctrl->xfer.dir = QSPI_READ;
ctrl->xfer.buswidth = xfer->rx_nbits;
ctrl->xfer.rx_buf = xfer->rx_buf;
} else {
ctrl->xfer.dir = QSPI_WRITE;
ctrl->xfer.buswidth = xfer->tx_nbits;
ctrl->xfer.tx_buf = xfer->tx_buf;
}
ctrl->xfer.is_last = list_is_last(&xfer->transfer_list,
&master->cur_msg->transfers);
ctrl->xfer.rem_bytes = xfer->len;
if (xfer->rx_sg.nents || xfer->tx_sg.nents) {
/* do DMA transfer */
if (!(mstr_cfg & DMA_ENABLE)) {
mstr_cfg |= DMA_ENABLE;
writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
}
ret = qcom_qspi_setup_dma_desc(ctrl, xfer);
if (ret != -EAGAIN) {
if (!ret) {
dma_wmb();
qcom_qspi_dma_xfer(ctrl);
}
goto exit;
}
dev_warn_once(ctrl->dev, "DMA failure, falling back to PIO\n");
ret = 0; /* We'll retry w/ PIO */
}
if (mstr_cfg & DMA_ENABLE) {
mstr_cfg &= ~DMA_ENABLE;
writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
}
qcom_qspi_pio_xfer(ctrl);
exit:
spin_unlock_irqrestore(&ctrl->lock, flags);
if (ret)
return ret;
/* We'll call spi_finalize_current_transfer() when done */
return 1;
}
static int qcom_qspi_prepare_message(struct spi_master *master,
struct spi_message *message)
{
u32 mstr_cfg;
struct qcom_qspi *ctrl;
int tx_data_oe_delay = 1;
int tx_data_delay = 1;
unsigned long flags;
ctrl = spi_master_get_devdata(master);
spin_lock_irqsave(&ctrl->lock, flags);
mstr_cfg = readl(ctrl->base + MSTR_CONFIG);
mstr_cfg &= ~CHIP_SELECT_NUM;
if (spi_get_chipselect(message->spi, 0))
mstr_cfg |= CHIP_SELECT_NUM;
mstr_cfg |= FB_CLK_EN | PIN_WPN | PIN_HOLDN | SBL_EN | FULL_CYCLE_MODE;
mstr_cfg &= ~(SPI_MODE_MSK | TX_DATA_OE_DELAY_MSK | TX_DATA_DELAY_MSK);
mstr_cfg |= message->spi->mode << SPI_MODE_SHFT;
mstr_cfg |= tx_data_oe_delay << TX_DATA_OE_DELAY_SHFT;
mstr_cfg |= tx_data_delay << TX_DATA_DELAY_SHFT;
mstr_cfg &= ~DMA_ENABLE;
writel(mstr_cfg, ctrl->base + MSTR_CONFIG);
spin_unlock_irqrestore(&ctrl->lock, flags);
return 0;
}
static int qcom_qspi_alloc_dma(struct qcom_qspi *ctrl)
{
ctrl->dma_cmd_pool = dmam_pool_create("qspi cmd desc pool",
ctrl->dev, sizeof(struct qspi_cmd_desc), 0, 0);
if (!ctrl->dma_cmd_pool)
return -ENOMEM;
return 0;
}
static irqreturn_t pio_read(struct qcom_qspi *ctrl)
{
u32 rd_fifo_status;
u32 rd_fifo;
unsigned int wr_cnts;
unsigned int bytes_to_read;
unsigned int words_to_read;
u32 *word_buf;
u8 *byte_buf;
int i;
rd_fifo_status = readl(ctrl->base + RD_FIFO_STATUS);
if (!(rd_fifo_status & FIFO_RDY)) {
dev_dbg(ctrl->dev, "Spurious IRQ %#x\n", rd_fifo_status);
return IRQ_NONE;
}
wr_cnts = (rd_fifo_status & WR_CNTS_MSK) >> WR_CNTS_SHFT;
wr_cnts = min(wr_cnts, ctrl->xfer.rem_bytes);
words_to_read = wr_cnts / QSPI_BYTES_PER_WORD;
bytes_to_read = wr_cnts % QSPI_BYTES_PER_WORD;
if (words_to_read) {
word_buf = ctrl->xfer.rx_buf;
ctrl->xfer.rem_bytes -= words_to_read * QSPI_BYTES_PER_WORD;
ioread32_rep(ctrl->base + RD_FIFO, word_buf, words_to_read);
ctrl->xfer.rx_buf = word_buf + words_to_read;
}
if (bytes_to_read) {
byte_buf = ctrl->xfer.rx_buf;
rd_fifo = readl(ctrl->base + RD_FIFO);
ctrl->xfer.rem_bytes -= bytes_to_read;
for (i = 0; i < bytes_to_read; i++)
*byte_buf++ = rd_fifo >> (i * BITS_PER_BYTE);
ctrl->xfer.rx_buf = byte_buf;
}
return IRQ_HANDLED;
}
static irqreturn_t pio_write(struct qcom_qspi *ctrl)
{
const void *xfer_buf = ctrl->xfer.tx_buf;
const int *word_buf;
const char *byte_buf;
unsigned int wr_fifo_bytes;
unsigned int wr_fifo_words;
unsigned int wr_size;
unsigned int rem_words;
wr_fifo_bytes = readl(ctrl->base + PIO_XFER_STATUS);
wr_fifo_bytes >>= WR_FIFO_BYTES_SHFT;
if (ctrl->xfer.rem_bytes < QSPI_BYTES_PER_WORD) {
/* Process the last 1-3 bytes */
wr_size = min(wr_fifo_bytes, ctrl->xfer.rem_bytes);
ctrl->xfer.rem_bytes -= wr_size;
byte_buf = xfer_buf;
while (wr_size--)
writel(*byte_buf++,
ctrl->base + PIO_DATAOUT_1B);
ctrl->xfer.tx_buf = byte_buf;
} else {
/*
* Process all the whole words; to keep things simple we'll
* just wait for the next interrupt to handle the last 1-3
* bytes if we don't have an even number of words.
*/
rem_words = ctrl->xfer.rem_bytes / QSPI_BYTES_PER_WORD;
wr_fifo_words = wr_fifo_bytes / QSPI_BYTES_PER_WORD;
wr_size = min(rem_words, wr_fifo_words);
ctrl->xfer.rem_bytes -= wr_size * QSPI_BYTES_PER_WORD;
word_buf = xfer_buf;
iowrite32_rep(ctrl->base + PIO_DATAOUT_4B, word_buf, wr_size);
ctrl->xfer.tx_buf = word_buf + wr_size;
}
return IRQ_HANDLED;
}
static irqreturn_t qcom_qspi_irq(int irq, void *dev_id)
{
u32 int_status;
struct qcom_qspi *ctrl = dev_id;
irqreturn_t ret = IRQ_NONE;
spin_lock(&ctrl->lock);
int_status = readl(ctrl->base + MSTR_INT_STATUS);
writel(int_status, ctrl->base + MSTR_INT_STATUS);
/* Ignore disabled interrupts */
int_status &= readl(ctrl->base + MSTR_INT_EN);
/* PIO mode handling */
if (ctrl->xfer.dir == QSPI_WRITE) {
if (int_status & WR_FIFO_EMPTY)
ret = pio_write(ctrl);
} else {
if (int_status & RESP_FIFO_RDY)
ret = pio_read(ctrl);
}
if (int_status & QSPI_ERR_IRQS) {
if (int_status & RESP_FIFO_UNDERRUN)
dev_err(ctrl->dev, "IRQ error: FIFO underrun\n");
if (int_status & WR_FIFO_OVERRUN)
dev_err(ctrl->dev, "IRQ error: FIFO overrun\n");
if (int_status & HRESP_FROM_NOC_ERR)
dev_err(ctrl->dev, "IRQ error: NOC response error\n");
ret = IRQ_HANDLED;
}
if (!ctrl->xfer.rem_bytes) {
writel(0, ctrl->base + MSTR_INT_EN);
spi_finalize_current_transfer(dev_get_drvdata(ctrl->dev));
}
/* DMA mode handling */
if (int_status & DMA_CHAIN_DONE) {
int i;
writel(0, ctrl->base + MSTR_INT_EN);
ctrl->xfer.rem_bytes = 0;
for (i = 0; i < ctrl->n_cmd_desc; i++)
dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i],
ctrl->dma_cmd_desc[i]);
ctrl->n_cmd_desc = 0;
ret = IRQ_HANDLED;
spi_finalize_current_transfer(dev_get_drvdata(ctrl->dev));
}
spin_unlock(&ctrl->lock);
return ret;
}
static int qcom_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
/*
* If qcom_qspi_can_dma() is going to return false we don't need to
* adjust anything.
*/
if (op->data.nbytes <= QSPI_MAX_BYTES_FIFO)
return 0;
/*
* When reading, the transfer needs to be a multiple of 4 bytes so
* shrink the transfer if that's not true. The caller will then do a
* second transfer to finish things up.
*/
if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes & 0x3))
op->data.nbytes &= ~0x3;
return 0;
}
static const struct spi_controller_mem_ops qcom_qspi_mem_ops = {
.adjust_op_size = qcom_qspi_adjust_op_size,
};
static int qcom_qspi_probe(struct platform_device *pdev)
{
int ret;
struct device *dev;
struct spi_master *master;
struct qcom_qspi *ctrl;
dev = &pdev->dev;
master = devm_spi_alloc_master(dev, sizeof(*ctrl));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
ctrl = spi_master_get_devdata(master);
spin_lock_init(&ctrl->lock);
ctrl->dev = dev;
ctrl->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ctrl->base))
return PTR_ERR(ctrl->base);
ctrl->clks = devm_kcalloc(dev, QSPI_NUM_CLKS,
sizeof(*ctrl->clks), GFP_KERNEL);
if (!ctrl->clks)
return -ENOMEM;
ctrl->clks[QSPI_CLK_CORE].id = "core";
ctrl->clks[QSPI_CLK_IFACE].id = "iface";
ret = devm_clk_bulk_get(dev, QSPI_NUM_CLKS, ctrl->clks);
if (ret)
return ret;
ctrl->icc_path_cpu_to_qspi = devm_of_icc_get(dev, "qspi-config");
if (IS_ERR(ctrl->icc_path_cpu_to_qspi))
return dev_err_probe(dev, PTR_ERR(ctrl->icc_path_cpu_to_qspi),
"Failed to get cpu path\n");
/* Set BW vote for register access */
ret = icc_set_bw(ctrl->icc_path_cpu_to_qspi, Bps_to_icc(1000),
Bps_to_icc(1000));
if (ret) {
dev_err(ctrl->dev, "%s: ICC BW voting failed for cpu: %d\n",
__func__, ret);
return ret;
}
ret = icc_disable(ctrl->icc_path_cpu_to_qspi);
if (ret) {
dev_err(ctrl->dev, "%s: ICC disable failed for cpu: %d\n",
__func__, ret);
return ret;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0)
return ret;
ret = devm_request_irq(dev, ret, qcom_qspi_irq, 0, dev_name(dev), ctrl);
if (ret) {
dev_err(dev, "Failed to request irq %d\n", ret);
return ret;
}
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
return dev_err_probe(dev, ret, "could not set DMA mask\n");
master->max_speed_hz = 300000000;
master->max_dma_len = 65536; /* as per HPG */
master->dma_alignment = QSPI_ALIGN_REQ;
master->num_chipselect = QSPI_NUM_CS;
master->bus_num = -1;
master->dev.of_node = pdev->dev.of_node;
master->mode_bits = SPI_MODE_0 |
SPI_TX_DUAL | SPI_RX_DUAL |
SPI_TX_QUAD | SPI_RX_QUAD;
master->flags = SPI_MASTER_HALF_DUPLEX;
master->prepare_message = qcom_qspi_prepare_message;
master->transfer_one = qcom_qspi_transfer_one;
master->handle_err = qcom_qspi_handle_err;
if (of_property_read_bool(pdev->dev.of_node, "iommus"))
master->can_dma = qcom_qspi_can_dma;
master->auto_runtime_pm = true;
master->mem_ops = &qcom_qspi_mem_ops;
ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
if (ret)
return ret;
/* OPP table is optional */
ret = devm_pm_opp_of_add_table(&pdev->dev);
if (ret && ret != -ENODEV) {
dev_err(&pdev->dev, "invalid OPP table in device tree\n");
return ret;
}
ret = qcom_qspi_alloc_dma(ctrl);
if (ret)
return ret;
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, 250);
pm_runtime_enable(dev);
ret = spi_register_master(master);
if (!ret)
return 0;
pm_runtime_disable(dev);
return ret;
}
static void qcom_qspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
/* Unregister _before_ disabling pm_runtime() so we stop transfers */
spi_unregister_master(master);
pm_runtime_disable(&pdev->dev);
}
static int __maybe_unused qcom_qspi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct qcom_qspi *ctrl = spi_master_get_devdata(master);
int ret;
/* Drop the performance state vote */
dev_pm_opp_set_rate(dev, 0);
clk_bulk_disable_unprepare(QSPI_NUM_CLKS, ctrl->clks);
ret = icc_disable(ctrl->icc_path_cpu_to_qspi);
if (ret) {
dev_err_ratelimited(ctrl->dev, "%s: ICC disable failed for cpu: %d\n",
__func__, ret);
return ret;
}
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused qcom_qspi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct qcom_qspi *ctrl = spi_master_get_devdata(master);
int ret;
pinctrl_pm_select_default_state(dev);
ret = icc_enable(ctrl->icc_path_cpu_to_qspi);
if (ret) {
dev_err_ratelimited(ctrl->dev, "%s: ICC enable failed for cpu: %d\n",
__func__, ret);
return ret;
}
ret = clk_bulk_prepare_enable(QSPI_NUM_CLKS, ctrl->clks);
if (ret)
return ret;
return dev_pm_opp_set_rate(dev, ctrl->last_speed * 4);
}
static int __maybe_unused qcom_qspi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
int ret;
ret = spi_master_suspend(master);
if (ret)
return ret;
ret = pm_runtime_force_suspend(dev);
if (ret)
spi_master_resume(master);
return ret;
}
static int __maybe_unused qcom_qspi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_force_resume(dev);
if (ret)
return ret;
ret = spi_master_resume(master);
if (ret)
pm_runtime_force_suspend(dev);
return ret;
}
static const struct dev_pm_ops qcom_qspi_dev_pm_ops = {
SET_RUNTIME_PM_OPS(qcom_qspi_runtime_suspend,
qcom_qspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(qcom_qspi_suspend, qcom_qspi_resume)
};
static const struct of_device_id qcom_qspi_dt_match[] = {
{ .compatible = "qcom,qspi-v1", },
{ }
};
MODULE_DEVICE_TABLE(of, qcom_qspi_dt_match);
static struct platform_driver qcom_qspi_driver = {
.driver = {
.name = "qcom_qspi",
.pm = &qcom_qspi_dev_pm_ops,
.of_match_table = qcom_qspi_dt_match,
},
.probe = qcom_qspi_probe,
.remove_new = qcom_qspi_remove,
};
module_platform_driver(qcom_qspi_driver);
MODULE_DESCRIPTION("SPI driver for QSPI cores");
MODULE_LICENSE("GPL v2");