linux-zen-desktop/drivers/thermal/intel/x86_pkg_temp_thermal.c

539 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* x86_pkg_temp_thermal driver
* Copyright (c) 2013, Intel Corporation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/intel_tcc.h>
#include <linux/err.h>
#include <linux/param.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/thermal.h>
#include <linux/debugfs.h>
#include <asm/cpu_device_id.h>
#include "thermal_interrupt.h"
/*
* Rate control delay: Idea is to introduce denounce effect
* This should be long enough to avoid reduce events, when
* threshold is set to a temperature, which is constantly
* violated, but at the short enough to take any action.
* The action can be remove threshold or change it to next
* interesting setting. Based on experiments, in around
* every 5 seconds under load will give us a significant
* temperature change.
*/
#define PKG_TEMP_THERMAL_NOTIFY_DELAY 5000
static int notify_delay_ms = PKG_TEMP_THERMAL_NOTIFY_DELAY;
module_param(notify_delay_ms, int, 0644);
MODULE_PARM_DESC(notify_delay_ms,
"User space notification delay in milli seconds.");
/* Number of trip points in thermal zone. Currently it can't
* be more than 2. MSR can allow setting and getting notifications
* for only 2 thresholds. This define enforces this, if there
* is some wrong values returned by cpuid for number of thresholds.
*/
#define MAX_NUMBER_OF_TRIPS 2
struct zone_device {
int cpu;
bool work_scheduled;
u32 msr_pkg_therm_low;
u32 msr_pkg_therm_high;
struct delayed_work work;
struct thermal_zone_device *tzone;
struct thermal_trip *trips;
struct cpumask cpumask;
};
static struct thermal_zone_params pkg_temp_tz_params = {
.no_hwmon = true,
};
/* Keep track of how many zone pointers we allocated in init() */
static int max_id __read_mostly;
/* Array of zone pointers */
static struct zone_device **zones;
/* Serializes interrupt notification, work and hotplug */
static DEFINE_RAW_SPINLOCK(pkg_temp_lock);
/* Protects zone operation in the work function against hotplug removal */
static DEFINE_MUTEX(thermal_zone_mutex);
/* The dynamically assigned cpu hotplug state for module_exit() */
static enum cpuhp_state pkg_thermal_hp_state __read_mostly;
/* Debug counters to show using debugfs */
static struct dentry *debugfs;
static unsigned int pkg_interrupt_cnt;
static unsigned int pkg_work_cnt;
static void pkg_temp_debugfs_init(void)
{
debugfs = debugfs_create_dir("pkg_temp_thermal", NULL);
debugfs_create_u32("pkg_thres_interrupt", S_IRUGO, debugfs,
&pkg_interrupt_cnt);
debugfs_create_u32("pkg_thres_work", S_IRUGO, debugfs,
&pkg_work_cnt);
}
/*
* Protection:
*
* - cpu hotplug: Read serialized by cpu hotplug lock
* Write must hold pkg_temp_lock
*
* - Other callsites: Must hold pkg_temp_lock
*/
static struct zone_device *pkg_temp_thermal_get_dev(unsigned int cpu)
{
int id = topology_logical_die_id(cpu);
if (id >= 0 && id < max_id)
return zones[id];
return NULL;
}
static int sys_get_curr_temp(struct thermal_zone_device *tzd, int *temp)
{
struct zone_device *zonedev = thermal_zone_device_priv(tzd);
int val;
val = intel_tcc_get_temp(zonedev->cpu, true);
if (val < 0)
return val;
*temp = val * 1000;
pr_debug("sys_get_curr_temp %d\n", *temp);
return 0;
}
static int
sys_set_trip_temp(struct thermal_zone_device *tzd, int trip, int temp)
{
struct zone_device *zonedev = thermal_zone_device_priv(tzd);
u32 l, h, mask, shift, intr;
int tj_max, val, ret;
tj_max = intel_tcc_get_tjmax(zonedev->cpu);
if (tj_max < 0)
return tj_max;
tj_max *= 1000;
val = (tj_max - temp)/1000;
if (trip >= MAX_NUMBER_OF_TRIPS || val < 0 || val > 0x7f)
return -EINVAL;
ret = rdmsr_on_cpu(zonedev->cpu, MSR_IA32_PACKAGE_THERM_INTERRUPT,
&l, &h);
if (ret < 0)
return ret;
if (trip) {
mask = THERM_MASK_THRESHOLD1;
shift = THERM_SHIFT_THRESHOLD1;
intr = THERM_INT_THRESHOLD1_ENABLE;
} else {
mask = THERM_MASK_THRESHOLD0;
shift = THERM_SHIFT_THRESHOLD0;
intr = THERM_INT_THRESHOLD0_ENABLE;
}
l &= ~mask;
/*
* When users space sets a trip temperature == 0, which is indication
* that, it is no longer interested in receiving notifications.
*/
if (!temp) {
l &= ~intr;
} else {
l |= val << shift;
l |= intr;
}
return wrmsr_on_cpu(zonedev->cpu, MSR_IA32_PACKAGE_THERM_INTERRUPT,
l, h);
}
/* Thermal zone callback registry */
static struct thermal_zone_device_ops tzone_ops = {
.get_temp = sys_get_curr_temp,
.set_trip_temp = sys_set_trip_temp,
};
static bool pkg_thermal_rate_control(void)
{
return true;
}
/* Enable threshold interrupt on local package/cpu */
static inline void enable_pkg_thres_interrupt(void)
{
u8 thres_0, thres_1;
u32 l, h;
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
/* only enable/disable if it had valid threshold value */
thres_0 = (l & THERM_MASK_THRESHOLD0) >> THERM_SHIFT_THRESHOLD0;
thres_1 = (l & THERM_MASK_THRESHOLD1) >> THERM_SHIFT_THRESHOLD1;
if (thres_0)
l |= THERM_INT_THRESHOLD0_ENABLE;
if (thres_1)
l |= THERM_INT_THRESHOLD1_ENABLE;
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
/* Disable threshold interrupt on local package/cpu */
static inline void disable_pkg_thres_interrupt(void)
{
u32 l, h;
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
l &= ~(THERM_INT_THRESHOLD0_ENABLE | THERM_INT_THRESHOLD1_ENABLE);
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
static void pkg_temp_thermal_threshold_work_fn(struct work_struct *work)
{
struct thermal_zone_device *tzone = NULL;
int cpu = smp_processor_id();
struct zone_device *zonedev;
mutex_lock(&thermal_zone_mutex);
raw_spin_lock_irq(&pkg_temp_lock);
++pkg_work_cnt;
zonedev = pkg_temp_thermal_get_dev(cpu);
if (!zonedev) {
raw_spin_unlock_irq(&pkg_temp_lock);
mutex_unlock(&thermal_zone_mutex);
return;
}
zonedev->work_scheduled = false;
thermal_clear_package_intr_status(PACKAGE_LEVEL, THERM_LOG_THRESHOLD0 | THERM_LOG_THRESHOLD1);
tzone = zonedev->tzone;
enable_pkg_thres_interrupt();
raw_spin_unlock_irq(&pkg_temp_lock);
/*
* If tzone is not NULL, then thermal_zone_mutex will prevent the
* concurrent removal in the cpu offline callback.
*/
if (tzone)
thermal_zone_device_update(tzone, THERMAL_EVENT_UNSPECIFIED);
mutex_unlock(&thermal_zone_mutex);
}
static void pkg_thermal_schedule_work(int cpu, struct delayed_work *work)
{
unsigned long ms = msecs_to_jiffies(notify_delay_ms);
schedule_delayed_work_on(cpu, work, ms);
}
static int pkg_thermal_notify(u64 msr_val)
{
int cpu = smp_processor_id();
struct zone_device *zonedev;
unsigned long flags;
raw_spin_lock_irqsave(&pkg_temp_lock, flags);
++pkg_interrupt_cnt;
disable_pkg_thres_interrupt();
/* Work is per package, so scheduling it once is enough. */
zonedev = pkg_temp_thermal_get_dev(cpu);
if (zonedev && !zonedev->work_scheduled) {
zonedev->work_scheduled = true;
pkg_thermal_schedule_work(zonedev->cpu, &zonedev->work);
}
raw_spin_unlock_irqrestore(&pkg_temp_lock, flags);
return 0;
}
static struct thermal_trip *pkg_temp_thermal_trips_init(int cpu, int tj_max, int num_trips)
{
struct thermal_trip *trips;
unsigned long thres_reg_value;
u32 mask, shift, eax, edx;
int ret, i;
trips = kzalloc(sizeof(*trips) * num_trips, GFP_KERNEL);
if (!trips)
return ERR_PTR(-ENOMEM);
for (i = 0; i < num_trips; i++) {
if (i) {
mask = THERM_MASK_THRESHOLD1;
shift = THERM_SHIFT_THRESHOLD1;
} else {
mask = THERM_MASK_THRESHOLD0;
shift = THERM_SHIFT_THRESHOLD0;
}
ret = rdmsr_on_cpu(cpu, MSR_IA32_PACKAGE_THERM_INTERRUPT,
&eax, &edx);
if (ret < 0) {
kfree(trips);
return ERR_PTR(ret);
}
thres_reg_value = (eax & mask) >> shift;
trips[i].temperature = thres_reg_value ?
tj_max - thres_reg_value * 1000 : THERMAL_TEMP_INVALID;
trips[i].type = THERMAL_TRIP_PASSIVE;
pr_debug("%s: cpu=%d, trip=%d, temp=%d\n",
__func__, cpu, i, trips[i].temperature);
}
return trips;
}
static int pkg_temp_thermal_device_add(unsigned int cpu)
{
int id = topology_logical_die_id(cpu);
u32 eax, ebx, ecx, edx;
struct zone_device *zonedev;
int thres_count, err;
int tj_max;
if (id >= max_id)
return -ENOMEM;
cpuid(6, &eax, &ebx, &ecx, &edx);
thres_count = ebx & 0x07;
if (!thres_count)
return -ENODEV;
thres_count = clamp_val(thres_count, 0, MAX_NUMBER_OF_TRIPS);
tj_max = intel_tcc_get_tjmax(cpu);
if (tj_max < 0)
return tj_max;
zonedev = kzalloc(sizeof(*zonedev), GFP_KERNEL);
if (!zonedev)
return -ENOMEM;
zonedev->trips = pkg_temp_thermal_trips_init(cpu, tj_max, thres_count);
if (IS_ERR(zonedev->trips)) {
err = PTR_ERR(zonedev->trips);
goto out_kfree_zonedev;
}
INIT_DELAYED_WORK(&zonedev->work, pkg_temp_thermal_threshold_work_fn);
zonedev->cpu = cpu;
zonedev->tzone = thermal_zone_device_register_with_trips("x86_pkg_temp",
zonedev->trips, thres_count,
(thres_count == MAX_NUMBER_OF_TRIPS) ? 0x03 : 0x01,
zonedev, &tzone_ops, &pkg_temp_tz_params, 0, 0);
if (IS_ERR(zonedev->tzone)) {
err = PTR_ERR(zonedev->tzone);
goto out_kfree_trips;
}
err = thermal_zone_device_enable(zonedev->tzone);
if (err)
goto out_unregister_tz;
/* Store MSR value for package thermal interrupt, to restore at exit */
rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, zonedev->msr_pkg_therm_low,
zonedev->msr_pkg_therm_high);
cpumask_set_cpu(cpu, &zonedev->cpumask);
raw_spin_lock_irq(&pkg_temp_lock);
zones[id] = zonedev;
raw_spin_unlock_irq(&pkg_temp_lock);
return 0;
out_unregister_tz:
thermal_zone_device_unregister(zonedev->tzone);
out_kfree_trips:
kfree(zonedev->trips);
out_kfree_zonedev:
kfree(zonedev);
return err;
}
static int pkg_thermal_cpu_offline(unsigned int cpu)
{
struct zone_device *zonedev = pkg_temp_thermal_get_dev(cpu);
bool lastcpu, was_target;
int target;
if (!zonedev)
return 0;
target = cpumask_any_but(&zonedev->cpumask, cpu);
cpumask_clear_cpu(cpu, &zonedev->cpumask);
lastcpu = target >= nr_cpu_ids;
/*
* Remove the sysfs files, if this is the last cpu in the package
* before doing further cleanups.
*/
if (lastcpu) {
struct thermal_zone_device *tzone = zonedev->tzone;
/*
* We must protect against a work function calling
* thermal_zone_update, after/while unregister. We null out
* the pointer under the zone mutex, so the worker function
* won't try to call.
*/
mutex_lock(&thermal_zone_mutex);
zonedev->tzone = NULL;
mutex_unlock(&thermal_zone_mutex);
thermal_zone_device_unregister(tzone);
}
/* Protect against work and interrupts */
raw_spin_lock_irq(&pkg_temp_lock);
/*
* Check whether this cpu was the current target and store the new
* one. When we drop the lock, then the interrupt notify function
* will see the new target.
*/
was_target = zonedev->cpu == cpu;
zonedev->cpu = target;
/*
* If this is the last CPU in the package remove the package
* reference from the array and restore the interrupt MSR. When we
* drop the lock neither the interrupt notify function nor the
* worker will see the package anymore.
*/
if (lastcpu) {
zones[topology_logical_die_id(cpu)] = NULL;
/* After this point nothing touches the MSR anymore. */
wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
zonedev->msr_pkg_therm_low, zonedev->msr_pkg_therm_high);
}
/*
* Check whether there is work scheduled and whether the work is
* targeted at the outgoing CPU.
*/
if (zonedev->work_scheduled && was_target) {
/*
* To cancel the work we need to drop the lock, otherwise
* we might deadlock if the work needs to be flushed.
*/
raw_spin_unlock_irq(&pkg_temp_lock);
cancel_delayed_work_sync(&zonedev->work);
raw_spin_lock_irq(&pkg_temp_lock);
/*
* If this is not the last cpu in the package and the work
* did not run after we dropped the lock above, then we
* need to reschedule the work, otherwise the interrupt
* stays disabled forever.
*/
if (!lastcpu && zonedev->work_scheduled)
pkg_thermal_schedule_work(target, &zonedev->work);
}
raw_spin_unlock_irq(&pkg_temp_lock);
/* Final cleanup if this is the last cpu */
if (lastcpu) {
kfree(zonedev->trips);
kfree(zonedev);
}
return 0;
}
static int pkg_thermal_cpu_online(unsigned int cpu)
{
struct zone_device *zonedev = pkg_temp_thermal_get_dev(cpu);
struct cpuinfo_x86 *c = &cpu_data(cpu);
/* Paranoia check */
if (!cpu_has(c, X86_FEATURE_DTHERM) || !cpu_has(c, X86_FEATURE_PTS))
return -ENODEV;
/* If the package exists, nothing to do */
if (zonedev) {
cpumask_set_cpu(cpu, &zonedev->cpumask);
return 0;
}
return pkg_temp_thermal_device_add(cpu);
}
static const struct x86_cpu_id __initconst pkg_temp_thermal_ids[] = {
X86_MATCH_VENDOR_FEATURE(INTEL, X86_FEATURE_PTS, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, pkg_temp_thermal_ids);
static int __init pkg_temp_thermal_init(void)
{
int ret;
if (!x86_match_cpu(pkg_temp_thermal_ids))
return -ENODEV;
max_id = topology_max_packages() * topology_max_die_per_package();
zones = kcalloc(max_id, sizeof(struct zone_device *),
GFP_KERNEL);
if (!zones)
return -ENOMEM;
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "thermal/x86_pkg:online",
pkg_thermal_cpu_online, pkg_thermal_cpu_offline);
if (ret < 0)
goto err;
/* Store the state for module exit */
pkg_thermal_hp_state = ret;
platform_thermal_package_notify = pkg_thermal_notify;
platform_thermal_package_rate_control = pkg_thermal_rate_control;
/* Don't care if it fails */
pkg_temp_debugfs_init();
return 0;
err:
kfree(zones);
return ret;
}
module_init(pkg_temp_thermal_init)
static void __exit pkg_temp_thermal_exit(void)
{
platform_thermal_package_notify = NULL;
platform_thermal_package_rate_control = NULL;
cpuhp_remove_state(pkg_thermal_hp_state);
debugfs_remove_recursive(debugfs);
kfree(zones);
}
module_exit(pkg_temp_thermal_exit)
MODULE_IMPORT_NS(INTEL_TCC);
MODULE_DESCRIPTION("X86 PKG TEMP Thermal Driver");
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");