linux-zen-desktop/arch/arm64/kernel/head.S

901 lines
26 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Low-level CPU initialisation
* Based on arch/arm/kernel/head.S
*
* Copyright (C) 1994-2002 Russell King
* Copyright (C) 2003-2012 ARM Ltd.
* Authors: Catalin Marinas <catalin.marinas@arm.com>
* Will Deacon <will.deacon@arm.com>
*/
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/pgtable.h>
#include <asm/asm_pointer_auth.h>
#include <asm/assembler.h>
#include <asm/boot.h>
#include <asm/bug.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/cache.h>
#include <asm/cputype.h>
#include <asm/el2_setup.h>
#include <asm/elf.h>
#include <asm/image.h>
#include <asm/kernel-pgtable.h>
#include <asm/kvm_arm.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/page.h>
#include <asm/scs.h>
#include <asm/smp.h>
#include <asm/sysreg.h>
#include <asm/thread_info.h>
#include <asm/virt.h>
#include "efi-header.S"
#if (PAGE_OFFSET & 0x1fffff) != 0
#error PAGE_OFFSET must be at least 2MB aligned
#endif
/*
* Kernel startup entry point.
* ---------------------------
*
* The requirements are:
* MMU = off, D-cache = off, I-cache = on or off,
* x0 = physical address to the FDT blob.
*
* Note that the callee-saved registers are used for storing variables
* that are useful before the MMU is enabled. The allocations are described
* in the entry routines.
*/
__HEAD
/*
* DO NOT MODIFY. Image header expected by Linux boot-loaders.
*/
efi_signature_nop // special NOP to identity as PE/COFF executable
b primary_entry // branch to kernel start, magic
.quad 0 // Image load offset from start of RAM, little-endian
le64sym _kernel_size_le // Effective size of kernel image, little-endian
le64sym _kernel_flags_le // Informative flags, little-endian
.quad 0 // reserved
.quad 0 // reserved
.quad 0 // reserved
.ascii ARM64_IMAGE_MAGIC // Magic number
.long .Lpe_header_offset // Offset to the PE header.
__EFI_PE_HEADER
.section ".idmap.text","a"
/*
* The following callee saved general purpose registers are used on the
* primary lowlevel boot path:
*
* Register Scope Purpose
* x19 primary_entry() .. start_kernel() whether we entered with the MMU on
* x20 primary_entry() .. __primary_switch() CPU boot mode
* x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
* x22 create_idmap() .. start_kernel() ID map VA of the DT blob
* x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset
* x24 __primary_switch() linear map KASLR seed
* x25 primary_entry() .. start_kernel() supported VA size
* x28 create_idmap() callee preserved temp register
*/
SYM_CODE_START(primary_entry)
bl record_mmu_state
bl preserve_boot_args
bl create_idmap
/*
* If we entered with the MMU and caches on, clean the ID mapped part
* of the primary boot code to the PoC so we can safely execute it with
* the MMU off.
*/
cbz x19, 0f
adrp x0, __idmap_text_start
adr_l x1, __idmap_text_end
adr_l x2, dcache_clean_poc
blr x2
0: mov x0, x19
bl init_kernel_el // w0=cpu_boot_mode
mov x20, x0
/*
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
* details.
* On return, the CPU will be ready for the MMU to be turned on and
* the TCR will have been set.
*/
#if VA_BITS > 48
mrs_s x0, SYS_ID_AA64MMFR2_EL1
tst x0, #0xf << ID_AA64MMFR2_EL1_VARange_SHIFT
mov x0, #VA_BITS
mov x25, #VA_BITS_MIN
csel x25, x25, x0, eq
mov x0, x25
#endif
bl __cpu_setup // initialise processor
b __primary_switch
SYM_CODE_END(primary_entry)
__INIT
SYM_CODE_START_LOCAL(record_mmu_state)
mrs x19, CurrentEL
cmp x19, #CurrentEL_EL2
mrs x19, sctlr_el1
b.ne 0f
mrs x19, sctlr_el2
0:
CPU_LE( tbnz x19, #SCTLR_ELx_EE_SHIFT, 1f )
CPU_BE( tbz x19, #SCTLR_ELx_EE_SHIFT, 1f )
tst x19, #SCTLR_ELx_C // Z := (C == 0)
and x19, x19, #SCTLR_ELx_M // isolate M bit
csel x19, xzr, x19, eq // clear x19 if Z
ret
/*
* Set the correct endianness early so all memory accesses issued
* before init_kernel_el() occur in the correct byte order. Note that
* this means the MMU must be disabled, or the active ID map will end
* up getting interpreted with the wrong byte order.
*/
1: eor x19, x19, #SCTLR_ELx_EE
bic x19, x19, #SCTLR_ELx_M
b.ne 2f
pre_disable_mmu_workaround
msr sctlr_el2, x19
b 3f
2: pre_disable_mmu_workaround
msr sctlr_el1, x19
3: isb
mov x19, xzr
ret
SYM_CODE_END(record_mmu_state)
/*
* Preserve the arguments passed by the bootloader in x0 .. x3
*/
SYM_CODE_START_LOCAL(preserve_boot_args)
mov x21, x0 // x21=FDT
adr_l x0, boot_args // record the contents of
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
cbnz x19, 0f // skip cache invalidation if MMU is on
dmb sy // needed before dc ivac with
// MMU off
add x1, x0, #0x20 // 4 x 8 bytes
b dcache_inval_poc // tail call
0: str_l x19, mmu_enabled_at_boot, x0
ret
SYM_CODE_END(preserve_boot_args)
SYM_FUNC_START_LOCAL(clear_page_tables)
/*
* Clear the init page tables.
*/
adrp x0, init_pg_dir
adrp x1, init_pg_end
sub x2, x1, x0
mov x1, xzr
b __pi_memset // tail call
SYM_FUNC_END(clear_page_tables)
/*
* Macro to populate page table entries, these entries can be pointers to the next level
* or last level entries pointing to physical memory.
*
* tbl: page table address
* rtbl: pointer to page table or physical memory
* index: start index to write
* eindex: end index to write - [index, eindex] written to
* flags: flags for pagetable entry to or in
* inc: increment to rtbl between each entry
* tmp1: temporary variable
*
* Preserves: tbl, eindex, flags, inc
* Corrupts: index, tmp1
* Returns: rtbl
*/
.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
.Lpe\@: phys_to_pte \tmp1, \rtbl
orr \tmp1, \tmp1, \flags // tmp1 = table entry
str \tmp1, [\tbl, \index, lsl #3]
add \rtbl, \rtbl, \inc // rtbl = pa next level
add \index, \index, #1
cmp \index, \eindex
b.ls .Lpe\@
.endm
/*
* Compute indices of table entries from virtual address range. If multiple entries
* were needed in the previous page table level then the next page table level is assumed
* to be composed of multiple pages. (This effectively scales the end index).
*
* vstart: virtual address of start of range
* vend: virtual address of end of range - we map [vstart, vend]
* shift: shift used to transform virtual address into index
* order: #imm 2log(number of entries in page table)
* istart: index in table corresponding to vstart
* iend: index in table corresponding to vend
* count: On entry: how many extra entries were required in previous level, scales
* our end index.
* On exit: returns how many extra entries required for next page table level
*
* Preserves: vstart, vend
* Returns: istart, iend, count
*/
.macro compute_indices, vstart, vend, shift, order, istart, iend, count
ubfx \istart, \vstart, \shift, \order
ubfx \iend, \vend, \shift, \order
add \iend, \iend, \count, lsl \order
sub \count, \iend, \istart
.endm
/*
* Map memory for specified virtual address range. Each level of page table needed supports
* multiple entries. If a level requires n entries the next page table level is assumed to be
* formed from n pages.
*
* tbl: location of page table
* rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
* vstart: virtual address of start of range
* vend: virtual address of end of range - we map [vstart, vend - 1]
* flags: flags to use to map last level entries
* phys: physical address corresponding to vstart - physical memory is contiguous
* order: #imm 2log(number of entries in PGD table)
*
* If extra_shift is set, an extra level will be populated if the end address does
* not fit in 'extra_shift' bits. This assumes vend is in the TTBR0 range.
*
* Temporaries: istart, iend, tmp, count, sv - these need to be different registers
* Preserves: vstart, flags
* Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv
*/
.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, order, istart, iend, tmp, count, sv, extra_shift
sub \vend, \vend, #1
add \rtbl, \tbl, #PAGE_SIZE
mov \count, #0
.ifnb \extra_shift
tst \vend, #~((1 << (\extra_shift)) - 1)
b.eq .L_\@
compute_indices \vstart, \vend, #\extra_shift, #(PAGE_SHIFT - 3), \istart, \iend, \count
mov \sv, \rtbl
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
.endif
.L_\@:
compute_indices \vstart, \vend, #PGDIR_SHIFT, #\order, \istart, \iend, \count
mov \sv, \rtbl
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
#if SWAPPER_PGTABLE_LEVELS > 3
compute_indices \vstart, \vend, #PUD_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
mov \sv, \rtbl
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
#endif
#if SWAPPER_PGTABLE_LEVELS > 2
compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
mov \sv, \rtbl
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
#endif
compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
bic \rtbl, \phys, #SWAPPER_BLOCK_SIZE - 1
populate_entries \tbl, \rtbl, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
.endm
/*
* Remap a subregion created with the map_memory macro with modified attributes
* or output address. The entire remapped region must have been covered in the
* invocation of map_memory.
*
* x0: last level table address (returned in first argument to map_memory)
* x1: start VA of the existing mapping
* x2: start VA of the region to update
* x3: end VA of the region to update (exclusive)
* x4: start PA associated with the region to update
* x5: attributes to set on the updated region
* x6: order of the last level mappings
*/
SYM_FUNC_START_LOCAL(remap_region)
sub x3, x3, #1 // make end inclusive
// Get the index offset for the start of the last level table
lsr x1, x1, x6
bfi x1, xzr, #0, #PAGE_SHIFT - 3
// Derive the start and end indexes into the last level table
// associated with the provided region
lsr x2, x2, x6
lsr x3, x3, x6
sub x2, x2, x1
sub x3, x3, x1
mov x1, #1
lsl x6, x1, x6 // block size at this level
populate_entries x0, x4, x2, x3, x5, x6, x7
ret
SYM_FUNC_END(remap_region)
SYM_FUNC_START_LOCAL(create_idmap)
mov x28, lr
/*
* The ID map carries a 1:1 mapping of the physical address range
* covered by the loaded image, which could be anywhere in DRAM. This
* means that the required size of the VA (== PA) space is decided at
* boot time, and could be more than the configured size of the VA
* space for ordinary kernel and user space mappings.
*
* There are three cases to consider here:
* - 39 <= VA_BITS < 48, and the ID map needs up to 48 VA bits to cover
* the placement of the image. In this case, we configure one extra
* level of translation on the fly for the ID map only. (This case
* also covers 42-bit VA/52-bit PA on 64k pages).
*
* - VA_BITS == 48, and the ID map needs more than 48 VA bits. This can
* only happen when using 64k pages, in which case we need to extend
* the root level table rather than add a level. Note that we can
* treat this case as 'always extended' as long as we take care not
* to program an unsupported T0SZ value into the TCR register.
*
* - Combinations that would require two additional levels of
* translation are not supported, e.g., VA_BITS==36 on 16k pages, or
* VA_BITS==39/4k pages with 5-level paging, where the input address
* requires more than 47 or 48 bits, respectively.
*/
#if (VA_BITS < 48)
#define IDMAP_PGD_ORDER (VA_BITS - PGDIR_SHIFT)
#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
/*
* If VA_BITS < 48, we have to configure an additional table level.
* First, we have to verify our assumption that the current value of
* VA_BITS was chosen such that all translation levels are fully
* utilised, and that lowering T0SZ will always result in an additional
* translation level to be configured.
*/
#if VA_BITS != EXTRA_SHIFT
#error "Mismatch between VA_BITS and page size/number of translation levels"
#endif
#else
#define IDMAP_PGD_ORDER (PHYS_MASK_SHIFT - PGDIR_SHIFT)
#define EXTRA_SHIFT
/*
* If VA_BITS == 48, we don't have to configure an additional
* translation level, but the top-level table has more entries.
*/
#endif
adrp x0, init_idmap_pg_dir
adrp x3, _text
adrp x6, _end + MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE
mov x7, SWAPPER_RX_MMUFLAGS
map_memory x0, x1, x3, x6, x7, x3, IDMAP_PGD_ORDER, x10, x11, x12, x13, x14, EXTRA_SHIFT
/* Remap the kernel page tables r/w in the ID map */
adrp x1, _text
adrp x2, init_pg_dir
adrp x3, init_pg_end
bic x4, x2, #SWAPPER_BLOCK_SIZE - 1
mov x5, SWAPPER_RW_MMUFLAGS
mov x6, #SWAPPER_BLOCK_SHIFT
bl remap_region
/* Remap the FDT after the kernel image */
adrp x1, _text
adrp x22, _end + SWAPPER_BLOCK_SIZE
bic x2, x22, #SWAPPER_BLOCK_SIZE - 1
bfi x22, x21, #0, #SWAPPER_BLOCK_SHIFT // remapped FDT address
add x3, x2, #MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE
bic x4, x21, #SWAPPER_BLOCK_SIZE - 1
mov x5, SWAPPER_RW_MMUFLAGS
mov x6, #SWAPPER_BLOCK_SHIFT
bl remap_region
/*
* Since the page tables have been populated with non-cacheable
* accesses (MMU disabled), invalidate those tables again to
* remove any speculatively loaded cache lines.
*/
cbnz x19, 0f // skip cache invalidation if MMU is on
dmb sy
adrp x0, init_idmap_pg_dir
adrp x1, init_idmap_pg_end
bl dcache_inval_poc
0: ret x28
SYM_FUNC_END(create_idmap)
SYM_FUNC_START_LOCAL(create_kernel_mapping)
adrp x0, init_pg_dir
mov_q x5, KIMAGE_VADDR // compile time __va(_text)
#ifdef CONFIG_RELOCATABLE
add x5, x5, x23 // add KASLR displacement
#endif
adrp x6, _end // runtime __pa(_end)
adrp x3, _text // runtime __pa(_text)
sub x6, x6, x3 // _end - _text
add x6, x6, x5 // runtime __va(_end)
mov x7, SWAPPER_RW_MMUFLAGS
map_memory x0, x1, x5, x6, x7, x3, (VA_BITS - PGDIR_SHIFT), x10, x11, x12, x13, x14
dsb ishst // sync with page table walker
ret
SYM_FUNC_END(create_kernel_mapping)
/*
* Initialize CPU registers with task-specific and cpu-specific context.
*
* Create a final frame record at task_pt_regs(current)->stackframe, so
* that the unwinder can identify the final frame record of any task by
* its location in the task stack. We reserve the entire pt_regs space
* for consistency with user tasks and kthreads.
*/
.macro init_cpu_task tsk, tmp1, tmp2
msr sp_el0, \tsk
ldr \tmp1, [\tsk, #TSK_STACK]
add sp, \tmp1, #THREAD_SIZE
sub sp, sp, #PT_REGS_SIZE
stp xzr, xzr, [sp, #S_STACKFRAME]
add x29, sp, #S_STACKFRAME
scs_load_current
adr_l \tmp1, __per_cpu_offset
ldr w\tmp2, [\tsk, #TSK_TI_CPU]
ldr \tmp1, [\tmp1, \tmp2, lsl #3]
set_this_cpu_offset \tmp1
.endm
/*
* The following fragment of code is executed with the MMU enabled.
*
* x0 = __pa(KERNEL_START)
*/
SYM_FUNC_START_LOCAL(__primary_switched)
adr_l x4, init_task
init_cpu_task x4, x5, x6
adr_l x8, vectors // load VBAR_EL1 with virtual
msr vbar_el1, x8 // vector table address
isb
stp x29, x30, [sp, #-16]!
mov x29, sp
str_l x21, __fdt_pointer, x5 // Save FDT pointer
ldr_l x4, kimage_vaddr // Save the offset between
sub x4, x4, x0 // the kernel virtual and
str_l x4, kimage_voffset, x5 // physical mappings
mov x0, x20
bl set_cpu_boot_mode_flag
// Clear BSS
adr_l x0, __bss_start
mov x1, xzr
adr_l x2, __bss_stop
sub x2, x2, x0
bl __pi_memset
dsb ishst // Make zero page visible to PTW
#if VA_BITS > 48
adr_l x8, vabits_actual // Set this early so KASAN early init
str x25, [x8] // ... observes the correct value
dc civac, x8 // Make visible to booting secondaries
#endif
#ifdef CONFIG_RANDOMIZE_BASE
adrp x5, memstart_offset_seed // Save KASLR linear map seed
strh w24, [x5, :lo12:memstart_offset_seed]
#endif
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
bl kasan_early_init
#endif
mov x0, x21 // pass FDT address in x0
bl early_fdt_map // Try mapping the FDT early
mov x0, x20 // pass the full boot status
bl init_feature_override // Parse cpu feature overrides
#ifdef CONFIG_UNWIND_PATCH_PAC_INTO_SCS
bl scs_patch_vmlinux
#endif
mov x0, x20
bl finalise_el2 // Prefer VHE if possible
ldp x29, x30, [sp], #16
bl start_kernel
ASM_BUG()
SYM_FUNC_END(__primary_switched)
/*
* end early head section, begin head code that is also used for
* hotplug and needs to have the same protections as the text region
*/
.section ".idmap.text","a"
/*
* Starting from EL2 or EL1, configure the CPU to execute at the highest
* reachable EL supported by the kernel in a chosen default state. If dropping
* from EL2 to EL1, configure EL2 before configuring EL1.
*
* Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
* SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
*
* Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x0 if
* booted in EL1 or EL2 respectively, with the top 32 bits containing
* potential context flags. These flags are *not* stored in __boot_cpu_mode.
*
* x0: whether we are being called from the primary boot path with the MMU on
*/
SYM_FUNC_START(init_kernel_el)
mrs x1, CurrentEL
cmp x1, #CurrentEL_EL2
b.eq init_el2
SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
pre_disable_mmu_workaround
msr sctlr_el1, x0
isb
mov_q x0, INIT_PSTATE_EL1
msr spsr_el1, x0
msr elr_el1, lr
mov w0, #BOOT_CPU_MODE_EL1
eret
SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
msr elr_el2, lr
// clean all HYP code to the PoC if we booted at EL2 with the MMU on
cbz x0, 0f
adrp x0, __hyp_idmap_text_start
adr_l x1, __hyp_text_end
adr_l x2, dcache_clean_poc
blr x2
0:
mov_q x0, HCR_HOST_NVHE_FLAGS
msr hcr_el2, x0
isb
init_el2_state
/* Hypervisor stub */
adr_l x0, __hyp_stub_vectors
msr vbar_el2, x0
isb
mov_q x1, INIT_SCTLR_EL1_MMU_OFF
/*
* Fruity CPUs seem to have HCR_EL2.E2H set to RES1,
* making it impossible to start in nVHE mode. Is that
* compliant with the architecture? Absolutely not!
*/
mrs x0, hcr_el2
and x0, x0, #HCR_E2H
cbz x0, 1f
/* Set a sane SCTLR_EL1, the VHE way */
pre_disable_mmu_workaround
msr_s SYS_SCTLR_EL12, x1
mov x2, #BOOT_CPU_FLAG_E2H
b 2f
1:
pre_disable_mmu_workaround
msr sctlr_el1, x1
mov x2, xzr
2:
mov w0, #BOOT_CPU_MODE_EL2
orr x0, x0, x2
eret
SYM_FUNC_END(init_kernel_el)
/*
* This provides a "holding pen" for platforms to hold all secondary
* cores are held until we're ready for them to initialise.
*/
SYM_FUNC_START(secondary_holding_pen)
mov x0, xzr
bl init_kernel_el // w0=cpu_boot_mode
mrs x2, mpidr_el1
mov_q x1, MPIDR_HWID_BITMASK
and x2, x2, x1
adr_l x3, secondary_holding_pen_release
pen: ldr x4, [x3]
cmp x4, x2
b.eq secondary_startup
wfe
b pen
SYM_FUNC_END(secondary_holding_pen)
/*
* Secondary entry point that jumps straight into the kernel. Only to
* be used where CPUs are brought online dynamically by the kernel.
*/
SYM_FUNC_START(secondary_entry)
mov x0, xzr
bl init_kernel_el // w0=cpu_boot_mode
b secondary_startup
SYM_FUNC_END(secondary_entry)
SYM_FUNC_START_LOCAL(secondary_startup)
/*
* Common entry point for secondary CPUs.
*/
mov x20, x0 // preserve boot mode
bl __cpu_secondary_check52bitva
#if VA_BITS > 48
ldr_l x0, vabits_actual
#endif
bl __cpu_setup // initialise processor
adrp x1, swapper_pg_dir
adrp x2, idmap_pg_dir
bl __enable_mmu
ldr x8, =__secondary_switched
br x8
SYM_FUNC_END(secondary_startup)
.text
SYM_FUNC_START_LOCAL(__secondary_switched)
mov x0, x20
bl set_cpu_boot_mode_flag
mov x0, x20
bl finalise_el2
str_l xzr, __early_cpu_boot_status, x3
adr_l x5, vectors
msr vbar_el1, x5
isb
adr_l x0, secondary_data
ldr x2, [x0, #CPU_BOOT_TASK]
cbz x2, __secondary_too_slow
init_cpu_task x2, x1, x3
#ifdef CONFIG_ARM64_PTR_AUTH
ptrauth_keys_init_cpu x2, x3, x4, x5
#endif
bl secondary_start_kernel
ASM_BUG()
SYM_FUNC_END(__secondary_switched)
SYM_FUNC_START_LOCAL(__secondary_too_slow)
wfe
wfi
b __secondary_too_slow
SYM_FUNC_END(__secondary_too_slow)
/*
* Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
* in w0. See arch/arm64/include/asm/virt.h for more info.
*/
SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
adr_l x1, __boot_cpu_mode
cmp w0, #BOOT_CPU_MODE_EL2
b.ne 1f
add x1, x1, #4
1: str w0, [x1] // Save CPU boot mode
ret
SYM_FUNC_END(set_cpu_boot_mode_flag)
/*
* The booting CPU updates the failed status @__early_cpu_boot_status,
* with MMU turned off.
*
* update_early_cpu_boot_status tmp, status
* - Corrupts tmp1, tmp2
* - Writes 'status' to __early_cpu_boot_status and makes sure
* it is committed to memory.
*/
.macro update_early_cpu_boot_status status, tmp1, tmp2
mov \tmp2, #\status
adr_l \tmp1, __early_cpu_boot_status
str \tmp2, [\tmp1]
dmb sy
dc ivac, \tmp1 // Invalidate potentially stale cache line
.endm
/*
* Enable the MMU.
*
* x0 = SCTLR_EL1 value for turning on the MMU.
* x1 = TTBR1_EL1 value
* x2 = ID map root table address
*
* Returns to the caller via x30/lr. This requires the caller to be covered
* by the .idmap.text section.
*
* Checks if the selected granule size is supported by the CPU.
* If it isn't, park the CPU
*/
.section ".idmap.text","a"
SYM_FUNC_START(__enable_mmu)
mrs x3, ID_AA64MMFR0_EL1
ubfx x3, x3, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN
b.lt __no_granule_support
cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX
b.gt __no_granule_support
phys_to_ttbr x2, x2
msr ttbr0_el1, x2 // load TTBR0
load_ttbr1 x1, x1, x3
set_sctlr_el1 x0
ret
SYM_FUNC_END(__enable_mmu)
SYM_FUNC_START(__cpu_secondary_check52bitva)
#if VA_BITS > 48
ldr_l x0, vabits_actual
cmp x0, #52
b.ne 2f
mrs_s x0, SYS_ID_AA64MMFR2_EL1
and x0, x0, #(0xf << ID_AA64MMFR2_EL1_VARange_SHIFT)
cbnz x0, 2f
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
1: wfe
wfi
b 1b
#endif
2: ret
SYM_FUNC_END(__cpu_secondary_check52bitva)
SYM_FUNC_START_LOCAL(__no_granule_support)
/* Indicate that this CPU can't boot and is stuck in the kernel */
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
1:
wfe
wfi
b 1b
SYM_FUNC_END(__no_granule_support)
#ifdef CONFIG_RELOCATABLE
SYM_FUNC_START_LOCAL(__relocate_kernel)
/*
* Iterate over each entry in the relocation table, and apply the
* relocations in place.
*/
adr_l x9, __rela_start
adr_l x10, __rela_end
mov_q x11, KIMAGE_VADDR // default virtual offset
add x11, x11, x23 // actual virtual offset
0: cmp x9, x10
b.hs 1f
ldp x12, x13, [x9], #24
ldr x14, [x9, #-8]
cmp w13, #R_AARCH64_RELATIVE
b.ne 0b
add x14, x14, x23 // relocate
str x14, [x12, x23]
b 0b
1:
#ifdef CONFIG_RELR
/*
* Apply RELR relocations.
*
* RELR is a compressed format for storing relative relocations. The
* encoded sequence of entries looks like:
* [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
*
* i.e. start with an address, followed by any number of bitmaps. The
* address entry encodes 1 relocation. The subsequent bitmap entries
* encode up to 63 relocations each, at subsequent offsets following
* the last address entry.
*
* The bitmap entries must have 1 in the least significant bit. The
* assumption here is that an address cannot have 1 in lsb. Odd
* addresses are not supported. Any odd addresses are stored in the RELA
* section, which is handled above.
*
* Excluding the least significant bit in the bitmap, each non-zero
* bit in the bitmap represents a relocation to be applied to
* a corresponding machine word that follows the base address
* word. The second least significant bit represents the machine
* word immediately following the initial address, and each bit
* that follows represents the next word, in linear order. As such,
* a single bitmap can encode up to 63 relocations in a 64-bit object.
*
* In this implementation we store the address of the next RELR table
* entry in x9, the address being relocated by the current address or
* bitmap entry in x13 and the address being relocated by the current
* bit in x14.
*/
adr_l x9, __relr_start
adr_l x10, __relr_end
2: cmp x9, x10
b.hs 7f
ldr x11, [x9], #8
tbnz x11, #0, 3f // branch to handle bitmaps
add x13, x11, x23
ldr x12, [x13] // relocate address entry
add x12, x12, x23
str x12, [x13], #8 // adjust to start of bitmap
b 2b
3: mov x14, x13
4: lsr x11, x11, #1
cbz x11, 6f
tbz x11, #0, 5f // skip bit if not set
ldr x12, [x14] // relocate bit
add x12, x12, x23
str x12, [x14]
5: add x14, x14, #8 // move to next bit's address
b 4b
6: /*
* Move to the next bitmap's address. 8 is the word size, and 63 is the
* number of significant bits in a bitmap entry.
*/
add x13, x13, #(8 * 63)
b 2b
7:
#endif
ret
SYM_FUNC_END(__relocate_kernel)
#endif
SYM_FUNC_START_LOCAL(__primary_switch)
adrp x1, reserved_pg_dir
adrp x2, init_idmap_pg_dir
bl __enable_mmu
#ifdef CONFIG_RELOCATABLE
adrp x23, KERNEL_START
and x23, x23, MIN_KIMG_ALIGN - 1
#ifdef CONFIG_RANDOMIZE_BASE
mov x0, x22
adrp x1, init_pg_end
mov sp, x1
mov x29, xzr
bl __pi_kaslr_early_init
and x24, x0, #SZ_2M - 1 // capture memstart offset seed
bic x0, x0, #SZ_2M - 1
orr x23, x23, x0 // record kernel offset
#endif
#endif
bl clear_page_tables
bl create_kernel_mapping
adrp x1, init_pg_dir
load_ttbr1 x1, x1, x2
#ifdef CONFIG_RELOCATABLE
bl __relocate_kernel
#endif
ldr x8, =__primary_switched
adrp x0, KERNEL_START // __pa(KERNEL_START)
br x8
SYM_FUNC_END(__primary_switch)