linux-zen-desktop/arch/mips/kernel/perf_event_mipsxx.c

2057 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Linux performance counter support for MIPS.
*
* Copyright (C) 2010 MIPS Technologies, Inc.
* Copyright (C) 2011 Cavium Networks, Inc.
* Author: Deng-Cheng Zhu
*
* This code is based on the implementation for ARM, which is in turn
* based on the sparc64 perf event code and the x86 code. Performance
* counter access is based on the MIPS Oprofile code. And the callchain
* support references the code of MIPS stacktrace.c.
*/
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/stacktrace.h>
#include <asm/time.h> /* For perf_irq */
#define MIPS_MAX_HWEVENTS 4
#define MIPS_TCS_PER_COUNTER 2
#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
struct cpu_hw_events {
/* Array of events on this cpu. */
struct perf_event *events[MIPS_MAX_HWEVENTS];
/*
* Set the bit (indexed by the counter number) when the counter
* is used for an event.
*/
unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
/*
* Software copy of the control register for each performance counter.
* MIPS CPUs vary in performance counters. They use this differently,
* and even may not use it.
*/
unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
};
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
.saved_ctrl = {0},
};
/* The description of MIPS performance events. */
struct mips_perf_event {
unsigned int event_id;
/*
* MIPS performance counters are indexed starting from 0.
* CNTR_EVEN indicates the indexes of the counters to be used are
* even numbers.
*/
unsigned int cntr_mask;
#define CNTR_EVEN 0x55555555
#define CNTR_ODD 0xaaaaaaaa
#define CNTR_ALL 0xffffffff
enum {
T = 0,
V = 1,
P = 2,
} range;
};
static struct mips_perf_event raw_event;
static DEFINE_MUTEX(raw_event_mutex);
#define C(x) PERF_COUNT_HW_CACHE_##x
struct mips_pmu {
u64 max_period;
u64 valid_count;
u64 overflow;
const char *name;
int irq;
u64 (*read_counter)(unsigned int idx);
void (*write_counter)(unsigned int idx, u64 val);
const struct mips_perf_event *(*map_raw_event)(u64 config);
const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
const struct mips_perf_event (*cache_event_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
unsigned int num_counters;
};
static int counter_bits;
static struct mips_pmu mipspmu;
#define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
MIPS_PERFCTRL_EVENT)
#define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
#ifdef CONFIG_CPU_BMIPS5000
#define M_PERFCTL_MT_EN(filter) 0
#else /* !CONFIG_CPU_BMIPS5000 */
#define M_PERFCTL_MT_EN(filter) (filter)
#endif /* CONFIG_CPU_BMIPS5000 */
#define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
#define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
#define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
#define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
MIPS_PERFCTRL_K | \
MIPS_PERFCTRL_U | \
MIPS_PERFCTRL_S | \
MIPS_PERFCTRL_IE)
#ifdef CONFIG_MIPS_MT_SMP
#define M_PERFCTL_CONFIG_MASK 0x3fff801f
#else
#define M_PERFCTL_CONFIG_MASK 0x1f
#endif
#define CNTR_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
static DEFINE_RWLOCK(pmuint_rwlock);
#if defined(CONFIG_CPU_BMIPS5000)
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
#else
#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
0 : cpu_vpe_id(&current_cpu_data))
#endif
/* Copied from op_model_mipsxx.c */
static unsigned int vpe_shift(void)
{
if (num_possible_cpus() > 1)
return 1;
return 0;
}
static unsigned int counters_total_to_per_cpu(unsigned int counters)
{
return counters >> vpe_shift();
}
#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
#define vpe_id() 0
#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
static void resume_local_counters(void);
static void pause_local_counters(void);
static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
static int mipsxx_pmu_handle_shared_irq(void);
/* 0: Not Loongson-3
* 1: Loongson-3A1000/3B1000/3B1500
* 2: Loongson-3A2000/3A3000
* 3: Loongson-3A4000+
*/
#define LOONGSON_PMU_TYPE0 0
#define LOONGSON_PMU_TYPE1 1
#define LOONGSON_PMU_TYPE2 2
#define LOONGSON_PMU_TYPE3 3
static inline int get_loongson3_pmu_type(void)
{
if (boot_cpu_type() != CPU_LOONGSON64)
return LOONGSON_PMU_TYPE0;
if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
return LOONGSON_PMU_TYPE1;
if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
return LOONGSON_PMU_TYPE2;
if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
return LOONGSON_PMU_TYPE3;
return LOONGSON_PMU_TYPE0;
}
static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
{
if (vpe_id() == 1)
idx = (idx + 2) & 3;
return idx;
}
static u64 mipsxx_pmu_read_counter(unsigned int idx)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
/*
* The counters are unsigned, we must cast to truncate
* off the high bits.
*/
return (u32)read_c0_perfcntr0();
case 1:
return (u32)read_c0_perfcntr1();
case 2:
return (u32)read_c0_perfcntr2();
case 3:
return (u32)read_c0_perfcntr3();
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
}
static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
{
u64 mask = CNTR_BIT_MASK(counter_bits);
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
return read_c0_perfcntr0_64() & mask;
case 1:
return read_c0_perfcntr1_64() & mask;
case 2:
return read_c0_perfcntr2_64() & mask;
case 3:
return read_c0_perfcntr3_64() & mask;
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
}
static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
write_c0_perfcntr0(val);
return;
case 1:
write_c0_perfcntr1(val);
return;
case 2:
write_c0_perfcntr2(val);
return;
case 3:
write_c0_perfcntr3(val);
return;
}
}
static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
{
val &= CNTR_BIT_MASK(counter_bits);
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
write_c0_perfcntr0_64(val);
return;
case 1:
write_c0_perfcntr1_64(val);
return;
case 2:
write_c0_perfcntr2_64(val);
return;
case 3:
write_c0_perfcntr3_64(val);
return;
}
}
static unsigned int mipsxx_pmu_read_control(unsigned int idx)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
return read_c0_perfctrl0();
case 1:
return read_c0_perfctrl1();
case 2:
return read_c0_perfctrl2();
case 3:
return read_c0_perfctrl3();
default:
WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
return 0;
}
}
static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
{
idx = mipsxx_pmu_swizzle_perf_idx(idx);
switch (idx) {
case 0:
write_c0_perfctrl0(val);
return;
case 1:
write_c0_perfctrl1(val);
return;
case 2:
write_c0_perfctrl2(val);
return;
case 3:
write_c0_perfctrl3(val);
return;
}
}
static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
struct hw_perf_event *hwc)
{
int i;
unsigned long cntr_mask;
/*
* We only need to care the counter mask. The range has been
* checked definitely.
*/
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
cntr_mask = (hwc->event_base >> 10) & 0xffff;
else
cntr_mask = (hwc->event_base >> 8) & 0xffff;
for (i = mipspmu.num_counters - 1; i >= 0; i--) {
/*
* Note that some MIPS perf events can be counted by both
* even and odd counters, whereas many other are only by
* even _or_ odd counters. This introduces an issue that
* when the former kind of event takes the counter the
* latter kind of event wants to use, then the "counter
* allocation" for the latter event will fail. In fact if
* they can be dynamically swapped, they both feel happy.
* But here we leave this issue alone for now.
*/
if (test_bit(i, &cntr_mask) &&
!test_and_set_bit(i, cpuc->used_mask))
return i;
}
return -EAGAIN;
}
static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
{
struct perf_event *event = container_of(evt, struct perf_event, hw);
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
unsigned int range = evt->event_base >> 24;
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
(evt->config_base & M_PERFCTL_CONFIG_MASK) |
/* Make sure interrupt enabled. */
MIPS_PERFCTRL_IE;
else
cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
(evt->config_base & M_PERFCTL_CONFIG_MASK) |
/* Make sure interrupt enabled. */
MIPS_PERFCTRL_IE;
if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
/* enable the counter for the calling thread */
cpuc->saved_ctrl[idx] |=
(1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
} else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
/* The counter is processor wide. Set it up to count all TCs. */
pr_debug("Enabling perf counter for all TCs\n");
cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
} else {
unsigned int cpu, ctrl;
/*
* Set up the counter for a particular CPU when event->cpu is
* a valid CPU number. Otherwise set up the counter for the CPU
* scheduling this thread.
*/
cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
ctrl |= M_TC_EN_VPE;
cpuc->saved_ctrl[idx] |= ctrl;
pr_debug("Enabling perf counter for CPU%d\n", cpu);
}
/*
* We do not actually let the counter run. Leave it until start().
*/
}
static void mipsxx_pmu_disable_event(int idx)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
unsigned long flags;
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
local_irq_save(flags);
cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
~M_PERFCTL_COUNT_EVENT_WHENEVER;
mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
local_irq_restore(flags);
}
static int mipspmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
u64 left = local64_read(&hwc->period_left);
u64 period = hwc->sample_period;
int ret = 0;
if (unlikely((left + period) & (1ULL << 63))) {
/* left underflowed by more than period. */
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
} else if (unlikely((left + period) <= period)) {
/* left underflowed by less than period. */
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (left > mipspmu.max_period) {
left = mipspmu.max_period;
local64_set(&hwc->period_left, left);
}
local64_set(&hwc->prev_count, mipspmu.overflow - left);
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
mipsxx_pmu_write_control(idx,
M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
mipspmu.write_counter(idx, mipspmu.overflow - left);
perf_event_update_userpage(event);
return ret;
}
static void mipspmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
u64 prev_raw_count, new_raw_count;
u64 delta;
again:
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = mipspmu.read_counter(idx);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
delta = new_raw_count - prev_raw_count;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
}
static void mipspmu_start(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
if (flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
hwc->state = 0;
/* Set the period for the event. */
mipspmu_event_set_period(event, hwc, hwc->idx);
/* Enable the event. */
mipsxx_pmu_enable_event(hwc, hwc->idx);
}
static void mipspmu_stop(struct perf_event *event, int flags)
{
struct hw_perf_event *hwc = &event->hw;
if (!(hwc->state & PERF_HES_STOPPED)) {
/* We are working on a local event. */
mipsxx_pmu_disable_event(hwc->idx);
barrier();
mipspmu_event_update(event, hwc, hwc->idx);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
}
static int mipspmu_add(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx;
int err = 0;
perf_pmu_disable(event->pmu);
/* To look for a free counter for this event. */
idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
if (idx < 0) {
err = idx;
goto out;
}
/*
* If there is an event in the counter we are going to use then
* make sure it is disabled.
*/
event->hw.idx = idx;
mipsxx_pmu_disable_event(idx);
cpuc->events[idx] = event;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
if (flags & PERF_EF_START)
mipspmu_start(event, PERF_EF_RELOAD);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
out:
perf_pmu_enable(event->pmu);
return err;
}
static void mipspmu_del(struct perf_event *event, int flags)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
mipspmu_stop(event, PERF_EF_UPDATE);
cpuc->events[idx] = NULL;
clear_bit(idx, cpuc->used_mask);
perf_event_update_userpage(event);
}
static void mipspmu_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* Don't read disabled counters! */
if (hwc->idx < 0)
return;
mipspmu_event_update(event, hwc, hwc->idx);
}
static void mipspmu_enable(struct pmu *pmu)
{
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
write_unlock(&pmuint_rwlock);
#endif
resume_local_counters();
}
/*
* MIPS performance counters can be per-TC. The control registers can
* not be directly accessed across CPUs. Hence if we want to do global
* control, we need cross CPU calls. on_each_cpu() can help us, but we
* can not make sure this function is called with interrupts enabled. So
* here we pause local counters and then grab a rwlock and leave the
* counters on other CPUs alone. If any counter interrupt raises while
* we own the write lock, simply pause local counters on that CPU and
* spin in the handler. Also we know we won't be switched to another
* CPU after pausing local counters and before grabbing the lock.
*/
static void mipspmu_disable(struct pmu *pmu)
{
pause_local_counters();
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
write_lock(&pmuint_rwlock);
#endif
}
static atomic_t active_events = ATOMIC_INIT(0);
static DEFINE_MUTEX(pmu_reserve_mutex);
static int (*save_perf_irq)(void);
static int mipspmu_get_irq(void)
{
int err;
if (mipspmu.irq >= 0) {
/* Request my own irq handler. */
err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
IRQF_PERCPU | IRQF_NOBALANCING |
IRQF_NO_THREAD | IRQF_NO_SUSPEND |
IRQF_SHARED,
"mips_perf_pmu", &mipspmu);
if (err) {
pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
mipspmu.irq);
}
} else if (cp0_perfcount_irq < 0) {
/*
* We are sharing the irq number with the timer interrupt.
*/
save_perf_irq = perf_irq;
perf_irq = mipsxx_pmu_handle_shared_irq;
err = 0;
} else {
pr_warn("The platform hasn't properly defined its interrupt controller\n");
err = -ENOENT;
}
return err;
}
static void mipspmu_free_irq(void)
{
if (mipspmu.irq >= 0)
free_irq(mipspmu.irq, &mipspmu);
else if (cp0_perfcount_irq < 0)
perf_irq = save_perf_irq;
}
/*
* mipsxx/rm9000/loongson2 have different performance counters, they have
* specific low-level init routines.
*/
static void reset_counters(void *arg);
static int __hw_perf_event_init(struct perf_event *event);
static void hw_perf_event_destroy(struct perf_event *event)
{
if (atomic_dec_and_mutex_lock(&active_events,
&pmu_reserve_mutex)) {
/*
* We must not call the destroy function with interrupts
* disabled.
*/
on_each_cpu(reset_counters,
(void *)(long)mipspmu.num_counters, 1);
mipspmu_free_irq();
mutex_unlock(&pmu_reserve_mutex);
}
}
static int mipspmu_event_init(struct perf_event *event)
{
int err = 0;
/* does not support taken branch sampling */
if (has_branch_stack(event))
return -EOPNOTSUPP;
switch (event->attr.type) {
case PERF_TYPE_RAW:
case PERF_TYPE_HARDWARE:
case PERF_TYPE_HW_CACHE:
break;
default:
return -ENOENT;
}
if (event->cpu >= 0 && !cpu_online(event->cpu))
return -ENODEV;
if (!atomic_inc_not_zero(&active_events)) {
mutex_lock(&pmu_reserve_mutex);
if (atomic_read(&active_events) == 0)
err = mipspmu_get_irq();
if (!err)
atomic_inc(&active_events);
mutex_unlock(&pmu_reserve_mutex);
}
if (err)
return err;
return __hw_perf_event_init(event);
}
static struct pmu pmu = {
.pmu_enable = mipspmu_enable,
.pmu_disable = mipspmu_disable,
.event_init = mipspmu_event_init,
.add = mipspmu_add,
.del = mipspmu_del,
.start = mipspmu_start,
.stop = mipspmu_stop,
.read = mipspmu_read,
};
static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
{
/*
* Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
* event_id.
*/
#ifdef CONFIG_MIPS_MT_SMP
if (num_possible_cpus() > 1)
return ((unsigned int)pev->range << 24) |
(pev->cntr_mask & 0xffff00) |
(pev->event_id & 0xff);
else
#endif /* CONFIG_MIPS_MT_SMP */
{
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
return (pev->cntr_mask & 0xfffc00) |
(pev->event_id & 0x3ff);
else
return (pev->cntr_mask & 0xffff00) |
(pev->event_id & 0xff);
}
}
static const struct mips_perf_event *mipspmu_map_general_event(int idx)
{
if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
return ERR_PTR(-EOPNOTSUPP);
return &(*mipspmu.general_event_map)[idx];
}
static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
{
unsigned int cache_type, cache_op, cache_result;
const struct mips_perf_event *pev;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return ERR_PTR(-EINVAL);
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return ERR_PTR(-EINVAL);
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return ERR_PTR(-EINVAL);
pev = &((*mipspmu.cache_event_map)
[cache_type]
[cache_op]
[cache_result]);
if (pev->cntr_mask == 0)
return ERR_PTR(-EOPNOTSUPP);
return pev;
}
static int validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct cpu_hw_events fake_cpuc;
memset(&fake_cpuc, 0, sizeof(fake_cpuc));
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
return -EINVAL;
for_each_sibling_event(sibling, leader) {
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
return -EINVAL;
}
if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
return -EINVAL;
return 0;
}
/* This is needed by specific irq handlers in perf_event_*.c */
static void handle_associated_event(struct cpu_hw_events *cpuc,
int idx, struct perf_sample_data *data,
struct pt_regs *regs)
{
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc = &event->hw;
mipspmu_event_update(event, hwc, idx);
data->period = event->hw.last_period;
if (!mipspmu_event_set_period(event, hwc, idx))
return;
if (perf_event_overflow(event, data, regs))
mipsxx_pmu_disable_event(idx);
}
static int __n_counters(void)
{
if (!cpu_has_perf)
return 0;
if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
return 1;
if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
return 2;
if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
return 3;
return 4;
}
static int n_counters(void)
{
int counters;
switch (current_cpu_type()) {
case CPU_R10000:
counters = 2;
break;
case CPU_R12000:
case CPU_R14000:
case CPU_R16000:
counters = 4;
break;
default:
counters = __n_counters();
}
return counters;
}
static void loongson3_reset_counters(void *arg)
{
int counters = (int)(long)arg;
switch (counters) {
case 4:
mipsxx_pmu_write_control(3, 0);
mipspmu.write_counter(3, 0);
mipsxx_pmu_write_control(3, 127<<5);
mipspmu.write_counter(3, 0);
mipsxx_pmu_write_control(3, 191<<5);
mipspmu.write_counter(3, 0);
mipsxx_pmu_write_control(3, 255<<5);
mipspmu.write_counter(3, 0);
mipsxx_pmu_write_control(3, 319<<5);
mipspmu.write_counter(3, 0);
mipsxx_pmu_write_control(3, 383<<5);
mipspmu.write_counter(3, 0);
mipsxx_pmu_write_control(3, 575<<5);
mipspmu.write_counter(3, 0);
fallthrough;
case 3:
mipsxx_pmu_write_control(2, 0);
mipspmu.write_counter(2, 0);
mipsxx_pmu_write_control(2, 127<<5);
mipspmu.write_counter(2, 0);
mipsxx_pmu_write_control(2, 191<<5);
mipspmu.write_counter(2, 0);
mipsxx_pmu_write_control(2, 255<<5);
mipspmu.write_counter(2, 0);
mipsxx_pmu_write_control(2, 319<<5);
mipspmu.write_counter(2, 0);
mipsxx_pmu_write_control(2, 383<<5);
mipspmu.write_counter(2, 0);
mipsxx_pmu_write_control(2, 575<<5);
mipspmu.write_counter(2, 0);
fallthrough;
case 2:
mipsxx_pmu_write_control(1, 0);
mipspmu.write_counter(1, 0);
mipsxx_pmu_write_control(1, 127<<5);
mipspmu.write_counter(1, 0);
mipsxx_pmu_write_control(1, 191<<5);
mipspmu.write_counter(1, 0);
mipsxx_pmu_write_control(1, 255<<5);
mipspmu.write_counter(1, 0);
mipsxx_pmu_write_control(1, 319<<5);
mipspmu.write_counter(1, 0);
mipsxx_pmu_write_control(1, 383<<5);
mipspmu.write_counter(1, 0);
mipsxx_pmu_write_control(1, 575<<5);
mipspmu.write_counter(1, 0);
fallthrough;
case 1:
mipsxx_pmu_write_control(0, 0);
mipspmu.write_counter(0, 0);
mipsxx_pmu_write_control(0, 127<<5);
mipspmu.write_counter(0, 0);
mipsxx_pmu_write_control(0, 191<<5);
mipspmu.write_counter(0, 0);
mipsxx_pmu_write_control(0, 255<<5);
mipspmu.write_counter(0, 0);
mipsxx_pmu_write_control(0, 319<<5);
mipspmu.write_counter(0, 0);
mipsxx_pmu_write_control(0, 383<<5);
mipspmu.write_counter(0, 0);
mipsxx_pmu_write_control(0, 575<<5);
mipspmu.write_counter(0, 0);
break;
}
}
static void reset_counters(void *arg)
{
int counters = (int)(long)arg;
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
loongson3_reset_counters(arg);
return;
}
switch (counters) {
case 4:
mipsxx_pmu_write_control(3, 0);
mipspmu.write_counter(3, 0);
fallthrough;
case 3:
mipsxx_pmu_write_control(2, 0);
mipspmu.write_counter(2, 0);
fallthrough;
case 2:
mipsxx_pmu_write_control(1, 0);
mipspmu.write_counter(1, 0);
fallthrough;
case 1:
mipsxx_pmu_write_control(0, 0);
mipspmu.write_counter(0, 0);
break;
}
}
/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
static const struct mips_perf_event mipsxxcore_event_map
[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
};
/* 74K/proAptiv core has different branch event code. */
static const struct mips_perf_event mipsxxcore_event_map2
[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
};
static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD },
/* These only count dcache, not icache */
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD },
[PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD },
};
static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
};
static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
[PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
};
static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
[PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
};
static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
};
static const struct mips_perf_event bmips5000_event_map
[PERF_COUNT_HW_MAX] = {
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
};
/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
static const struct mips_perf_event mipsxxcore_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
/*
* Note that MIPS has only "hit" events countable for
* the prefetch operation.
*/
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
},
};
/* 74K/proAptiv core has completely different cache event map. */
static const struct mips_perf_event mipsxxcore_cache_map2
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
[C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
/*
* Note that MIPS has only "hit" events countable for
* the prefetch operation.
*/
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
[C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
},
},
/*
* 74K core does not have specific DTLB events. proAptiv core has
* "speculative" DTLB events which are numbered 0x63 (even/odd) and
* not included here. One can use raw events if really needed.
*/
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
},
},
};
static const struct mips_perf_event i6x00_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD },
[C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD },
[C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD },
[C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD },
},
},
[C(DTLB)] = {
/* Can't distinguish read & write */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
[C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
[C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
},
},
[C(BPU)] = {
/* Conditional branches / mispredicted */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD },
[C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD },
},
},
};
static const struct mips_perf_event loongson3_cache_map1
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x04, CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x04, CNTR_ODD },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x09, CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x09, CNTR_ODD },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN },
[C(RESULT_MISS)] = { 0x01, CNTR_ODD },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN },
[C(RESULT_MISS)] = { 0x01, CNTR_ODD },
},
},
};
static const struct mips_perf_event loongson3_cache_map2
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x156, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x155, CNTR_ALL },
[C(RESULT_MISS)] = { 0x153, CNTR_ALL },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x18, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x18, CNTR_ALL },
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x1b6, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x1b7, CNTR_ALL },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x1bf, CNTR_ALL },
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x92, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x92, CNTR_ALL },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x94, CNTR_ALL },
[C(RESULT_MISS)] = { 0x9c, CNTR_ALL },
},
},
};
static const struct mips_perf_event loongson3_cache_map3
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x1e, CNTR_ALL },
[C(RESULT_MISS)] = { 0x1f, CNTR_ALL },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0xaa, CNTR_ALL },
[C(RESULT_MISS)] = { 0xa9, CNTR_ALL },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x1c, CNTR_ALL },
[C(RESULT_MISS)] = { 0x1d, CNTR_ALL },
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x2e, CNTR_ALL },
[C(RESULT_MISS)] = { 0x2f, CNTR_ALL },
},
},
[C(DTLB)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x14, CNTR_ALL },
[C(RESULT_MISS)] = { 0x1b, CNTR_ALL },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x02, CNTR_ALL },
[C(RESULT_MISS)] = { 0x08, CNTR_ALL },
},
},
};
/* BMIPS5000 */
static const struct mips_perf_event bmips5000_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
/*
* Like some other architectures (e.g. ARM), the performance
* counters don't differentiate between read and write
* accesses/misses, so this isn't strictly correct, but it's the
* best we can do. Writes and reads get combined.
*/
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 12, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 12, CNTR_ODD, T },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 10, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
[C(RESULT_MISS)] = { 10, CNTR_ODD, T },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
/*
* Note that MIPS has only "hit" events countable for
* the prefetch operation.
*/
},
},
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
[C(RESULT_MISS)] = { 28, CNTR_ODD, P },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
[C(RESULT_MISS)] = { 28, CNTR_ODD, P },
},
},
[C(BPU)] = {
/* Using the same code for *HW_BRANCH* */
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
},
},
};
static const struct mips_perf_event octeon_cache_map
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
[C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
},
},
[C(L1I)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
},
},
[C(DTLB)] = {
/*
* Only general DTLB misses are counted use the same event for
* read and write.
*/
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x35, CNTR_ALL },
},
[C(OP_WRITE)] = {
[C(RESULT_MISS)] = { 0x35, CNTR_ALL },
},
},
[C(ITLB)] = {
[C(OP_READ)] = {
[C(RESULT_MISS)] = { 0x37, CNTR_ALL },
},
},
};
static int __hw_perf_event_init(struct perf_event *event)
{
struct perf_event_attr *attr = &event->attr;
struct hw_perf_event *hwc = &event->hw;
const struct mips_perf_event *pev;
int err;
/* Returning MIPS event descriptor for generic perf event. */
if (PERF_TYPE_HARDWARE == event->attr.type) {
if (event->attr.config >= PERF_COUNT_HW_MAX)
return -EINVAL;
pev = mipspmu_map_general_event(event->attr.config);
} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
pev = mipspmu_map_cache_event(event->attr.config);
} else if (PERF_TYPE_RAW == event->attr.type) {
/* We are working on the global raw event. */
mutex_lock(&raw_event_mutex);
pev = mipspmu.map_raw_event(event->attr.config);
} else {
/* The event type is not (yet) supported. */
return -EOPNOTSUPP;
}
if (IS_ERR(pev)) {
if (PERF_TYPE_RAW == event->attr.type)
mutex_unlock(&raw_event_mutex);
return PTR_ERR(pev);
}
/*
* We allow max flexibility on how each individual counter shared
* by the single CPU operates (the mode exclusion and the range).
*/
hwc->config_base = MIPS_PERFCTRL_IE;
hwc->event_base = mipspmu_perf_event_encode(pev);
if (PERF_TYPE_RAW == event->attr.type)
mutex_unlock(&raw_event_mutex);
if (!attr->exclude_user)
hwc->config_base |= MIPS_PERFCTRL_U;
if (!attr->exclude_kernel) {
hwc->config_base |= MIPS_PERFCTRL_K;
/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
hwc->config_base |= MIPS_PERFCTRL_EXL;
}
if (!attr->exclude_hv)
hwc->config_base |= MIPS_PERFCTRL_S;
hwc->config_base &= M_PERFCTL_CONFIG_MASK;
/*
* The event can belong to another cpu. We do not assign a local
* counter for it for now.
*/
hwc->idx = -1;
hwc->config = 0;
if (!hwc->sample_period) {
hwc->sample_period = mipspmu.max_period;
hwc->last_period = hwc->sample_period;
local64_set(&hwc->period_left, hwc->sample_period);
}
err = 0;
if (event->group_leader != event)
err = validate_group(event);
event->destroy = hw_perf_event_destroy;
if (err)
event->destroy(event);
return err;
}
static void pause_local_counters(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int ctr = mipspmu.num_counters;
unsigned long flags;
local_irq_save(flags);
do {
ctr--;
cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
~M_PERFCTL_COUNT_EVENT_WHENEVER);
} while (ctr > 0);
local_irq_restore(flags);
}
static void resume_local_counters(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int ctr = mipspmu.num_counters;
do {
ctr--;
mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
} while (ctr > 0);
}
static int mipsxx_pmu_handle_shared_irq(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct perf_sample_data data;
unsigned int counters = mipspmu.num_counters;
u64 counter;
int n, handled = IRQ_NONE;
struct pt_regs *regs;
if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
return handled;
/*
* First we pause the local counters, so that when we are locked
* here, the counters are all paused. When it gets locked due to
* perf_disable(), the timer interrupt handler will be delayed.
*
* See also mipsxx_pmu_start().
*/
pause_local_counters();
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
read_lock(&pmuint_rwlock);
#endif
regs = get_irq_regs();
perf_sample_data_init(&data, 0, 0);
for (n = counters - 1; n >= 0; n--) {
if (!test_bit(n, cpuc->used_mask))
continue;
counter = mipspmu.read_counter(n);
if (!(counter & mipspmu.overflow))
continue;
handle_associated_event(cpuc, n, &data, regs);
handled = IRQ_HANDLED;
}
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
read_unlock(&pmuint_rwlock);
#endif
resume_local_counters();
/*
* Do all the work for the pending perf events. We can do this
* in here because the performance counter interrupt is a regular
* interrupt, not NMI.
*/
if (handled == IRQ_HANDLED)
irq_work_run();
return handled;
}
static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
{
return mipsxx_pmu_handle_shared_irq();
}
/* 24K */
#define IS_BOTH_COUNTERS_24K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
/* 34K */
#define IS_BOTH_COUNTERS_34K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
#define IS_RANGE_P_34K_EVENT(r, b) \
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
(b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
(r) == 176 || ((b) >= 50 && (b) <= 55) || \
((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
#endif
/* 74K */
#define IS_BOTH_COUNTERS_74K_EVENT(b) \
((b) == 0 || (b) == 1)
/* proAptiv */
#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
((b) == 0 || (b) == 1)
/* P5600 */
#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
((b) == 0 || (b) == 1)
/* 1004K */
#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
#define IS_RANGE_P_1004K_EVENT(r, b) \
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
(b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
(r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
(r) == 188 || (b) == 61 || (b) == 62 || \
((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
#endif
/* interAptiv */
#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
(b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
(r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
(b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
#endif
/* BMIPS5000 */
#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
((b) == 0 || (b) == 1)
/*
* For most cores the user can use 0-255 raw events, where 0-127 for the events
* of even counters, and 128-255 for odd counters. Note that bit 7 is used to
* indicate the even/odd bank selector. So, for example, when user wants to take
* the Event Num of 15 for odd counters (by referring to the user manual), then
* 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
* to be used.
*
* Some newer cores have even more events, in which case the user can use raw
* events 0-511, where 0-255 are for the events of even counters, and 256-511
* are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
*/
static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
{
/* currently most cores have 7-bit event numbers */
int pmu_type;
unsigned int raw_id = config & 0xff;
unsigned int base_id = raw_id & 0x7f;
switch (current_cpu_type()) {
case CPU_24K:
if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
/*
* This is actually doing nothing. Non-multithreading
* CPUs will not check and calculate the range.
*/
raw_event.range = P;
#endif
break;
case CPU_34K:
if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
raw_event.range = P;
else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
raw_event.range = V;
else
raw_event.range = T;
#endif
break;
case CPU_74K:
case CPU_1074K:
if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
raw_event.range = P;
#endif
break;
case CPU_PROAPTIV:
if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
raw_event.range = P;
#endif
break;
case CPU_P5600:
case CPU_P6600:
/* 8-bit event numbers */
raw_id = config & 0x1ff;
base_id = raw_id & 0xff;
if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
raw_event.range = P;
#endif
break;
case CPU_I6400:
case CPU_I6500:
/* 8-bit event numbers */
base_id = config & 0xff;
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
break;
case CPU_1004K:
if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
raw_event.range = P;
else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
raw_event.range = V;
else
raw_event.range = T;
#endif
break;
case CPU_INTERAPTIV:
if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
raw_event.range = P;
else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
raw_event.range = V;
else
raw_event.range = T;
#endif
break;
case CPU_BMIPS5000:
if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
else
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
break;
case CPU_LOONGSON64:
pmu_type = get_loongson3_pmu_type();
switch (pmu_type) {
case LOONGSON_PMU_TYPE1:
raw_event.cntr_mask =
raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
break;
case LOONGSON_PMU_TYPE2:
base_id = config & 0x3ff;
raw_event.cntr_mask = CNTR_ALL;
if ((base_id >= 1 && base_id < 28) ||
(base_id >= 64 && base_id < 90) ||
(base_id >= 128 && base_id < 164) ||
(base_id >= 192 && base_id < 200) ||
(base_id >= 256 && base_id < 275) ||
(base_id >= 320 && base_id < 361) ||
(base_id >= 384 && base_id < 574))
break;
return ERR_PTR(-EOPNOTSUPP);
case LOONGSON_PMU_TYPE3:
base_id = raw_id;
raw_event.cntr_mask = CNTR_ALL;
break;
}
break;
}
raw_event.event_id = base_id;
return &raw_event;
}
static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
{
unsigned int base_id = config & 0x7f;
unsigned int event_max;
raw_event.cntr_mask = CNTR_ALL;
raw_event.event_id = base_id;
if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
event_max = 0x5f;
else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
event_max = 0x42;
else
event_max = 0x3a;
if (base_id > event_max) {
return ERR_PTR(-EOPNOTSUPP);
}
switch (base_id) {
case 0x00:
case 0x0f:
case 0x1e:
case 0x1f:
case 0x2f:
case 0x34:
case 0x3e ... 0x3f:
return ERR_PTR(-EOPNOTSUPP);
default:
break;
}
return &raw_event;
}
static int __init
init_hw_perf_events(void)
{
int counters, irq, pmu_type;
pr_info("Performance counters: ");
counters = n_counters();
if (counters == 0) {
pr_cont("No available PMU.\n");
return -ENODEV;
}
#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
if (!cpu_has_mipsmt_pertccounters)
counters = counters_total_to_per_cpu(counters);
#endif
if (get_c0_perfcount_int)
irq = get_c0_perfcount_int();
else if (cp0_perfcount_irq >= 0)
irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
else
irq = -1;
mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
switch (current_cpu_type()) {
case CPU_24K:
mipspmu.name = "mips/24K";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_34K:
mipspmu.name = "mips/34K";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_74K:
mipspmu.name = "mips/74K";
mipspmu.general_event_map = &mipsxxcore_event_map2;
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
break;
case CPU_PROAPTIV:
mipspmu.name = "mips/proAptiv";
mipspmu.general_event_map = &mipsxxcore_event_map2;
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
break;
case CPU_P5600:
mipspmu.name = "mips/P5600";
mipspmu.general_event_map = &mipsxxcore_event_map2;
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
break;
case CPU_P6600:
mipspmu.name = "mips/P6600";
mipspmu.general_event_map = &mipsxxcore_event_map2;
mipspmu.cache_event_map = &mipsxxcore_cache_map2;
break;
case CPU_I6400:
mipspmu.name = "mips/I6400";
mipspmu.general_event_map = &i6x00_event_map;
mipspmu.cache_event_map = &i6x00_cache_map;
break;
case CPU_I6500:
mipspmu.name = "mips/I6500";
mipspmu.general_event_map = &i6x00_event_map;
mipspmu.cache_event_map = &i6x00_cache_map;
break;
case CPU_1004K:
mipspmu.name = "mips/1004K";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_1074K:
mipspmu.name = "mips/1074K";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_INTERAPTIV:
mipspmu.name = "mips/interAptiv";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_LOONGSON32:
mipspmu.name = "mips/loongson1";
mipspmu.general_event_map = &mipsxxcore_event_map;
mipspmu.cache_event_map = &mipsxxcore_cache_map;
break;
case CPU_LOONGSON64:
mipspmu.name = "mips/loongson3";
pmu_type = get_loongson3_pmu_type();
switch (pmu_type) {
case LOONGSON_PMU_TYPE1:
counters = 2;
mipspmu.general_event_map = &loongson3_event_map1;
mipspmu.cache_event_map = &loongson3_cache_map1;
break;
case LOONGSON_PMU_TYPE2:
counters = 4;
mipspmu.general_event_map = &loongson3_event_map2;
mipspmu.cache_event_map = &loongson3_cache_map2;
break;
case LOONGSON_PMU_TYPE3:
counters = 4;
mipspmu.general_event_map = &loongson3_event_map3;
mipspmu.cache_event_map = &loongson3_cache_map3;
break;
}
break;
case CPU_CAVIUM_OCTEON:
case CPU_CAVIUM_OCTEON_PLUS:
case CPU_CAVIUM_OCTEON2:
case CPU_CAVIUM_OCTEON3:
mipspmu.name = "octeon";
mipspmu.general_event_map = &octeon_event_map;
mipspmu.cache_event_map = &octeon_cache_map;
mipspmu.map_raw_event = octeon_pmu_map_raw_event;
break;
case CPU_BMIPS5000:
mipspmu.name = "BMIPS5000";
mipspmu.general_event_map = &bmips5000_event_map;
mipspmu.cache_event_map = &bmips5000_cache_map;
break;
default:
pr_cont("Either hardware does not support performance "
"counters, or not yet implemented.\n");
return -ENODEV;
}
mipspmu.num_counters = counters;
mipspmu.irq = irq;
if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
counter_bits = 48;
mipspmu.max_period = (1ULL << 47) - 1;
mipspmu.valid_count = (1ULL << 47) - 1;
mipspmu.overflow = 1ULL << 47;
} else {
counter_bits = 64;
mipspmu.max_period = (1ULL << 63) - 1;
mipspmu.valid_count = (1ULL << 63) - 1;
mipspmu.overflow = 1ULL << 63;
}
mipspmu.read_counter = mipsxx_pmu_read_counter_64;
mipspmu.write_counter = mipsxx_pmu_write_counter_64;
} else {
counter_bits = 32;
mipspmu.max_period = (1ULL << 31) - 1;
mipspmu.valid_count = (1ULL << 31) - 1;
mipspmu.overflow = 1ULL << 31;
mipspmu.read_counter = mipsxx_pmu_read_counter;
mipspmu.write_counter = mipsxx_pmu_write_counter;
}
on_each_cpu(reset_counters, (void *)(long)counters, 1);
pr_cont("%s PMU enabled, %d %d-bit counters available to each "
"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
irq < 0 ? " (share with timer interrupt)" : "");
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
return 0;
}
early_initcall(init_hw_perf_events);