500 lines
14 KiB
C
500 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2021 Intel Corporation. */
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <asm/sgx.h>
|
|
|
|
#include "cpuid.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "nested.h"
|
|
#include "sgx.h"
|
|
#include "vmx.h"
|
|
#include "x86.h"
|
|
|
|
bool __read_mostly enable_sgx = 1;
|
|
module_param_named(sgx, enable_sgx, bool, 0444);
|
|
|
|
/* Initial value of guest's virtual SGX_LEPUBKEYHASHn MSRs */
|
|
static u64 sgx_pubkey_hash[4] __ro_after_init;
|
|
|
|
/*
|
|
* ENCLS's memory operands use a fixed segment (DS) and a fixed
|
|
* address size based on the mode. Related prefixes are ignored.
|
|
*/
|
|
static int sgx_get_encls_gva(struct kvm_vcpu *vcpu, unsigned long offset,
|
|
int size, int alignment, gva_t *gva)
|
|
{
|
|
struct kvm_segment s;
|
|
bool fault;
|
|
|
|
/* Skip vmcs.GUEST_DS retrieval for 64-bit mode to avoid VMREADs. */
|
|
*gva = offset;
|
|
if (!is_long_mode(vcpu)) {
|
|
vmx_get_segment(vcpu, &s, VCPU_SREG_DS);
|
|
*gva += s.base;
|
|
}
|
|
|
|
if (!IS_ALIGNED(*gva, alignment)) {
|
|
fault = true;
|
|
} else if (likely(is_long_mode(vcpu))) {
|
|
fault = is_noncanonical_address(*gva, vcpu);
|
|
} else {
|
|
*gva &= 0xffffffff;
|
|
fault = (s.unusable) ||
|
|
(s.type != 2 && s.type != 3) ||
|
|
(*gva > s.limit) ||
|
|
((s.base != 0 || s.limit != 0xffffffff) &&
|
|
(((u64)*gva + size - 1) > s.limit + 1));
|
|
}
|
|
if (fault)
|
|
kvm_inject_gp(vcpu, 0);
|
|
return fault ? -EINVAL : 0;
|
|
}
|
|
|
|
static void sgx_handle_emulation_failure(struct kvm_vcpu *vcpu, u64 addr,
|
|
unsigned int size)
|
|
{
|
|
uint64_t data[2] = { addr, size };
|
|
|
|
__kvm_prepare_emulation_failure_exit(vcpu, data, ARRAY_SIZE(data));
|
|
}
|
|
|
|
static int sgx_read_hva(struct kvm_vcpu *vcpu, unsigned long hva, void *data,
|
|
unsigned int size)
|
|
{
|
|
if (__copy_from_user(data, (void __user *)hva, size)) {
|
|
sgx_handle_emulation_failure(vcpu, hva, size);
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sgx_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t gva, bool write,
|
|
gpa_t *gpa)
|
|
{
|
|
struct x86_exception ex;
|
|
|
|
if (write)
|
|
*gpa = kvm_mmu_gva_to_gpa_write(vcpu, gva, &ex);
|
|
else
|
|
*gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, &ex);
|
|
|
|
if (*gpa == INVALID_GPA) {
|
|
kvm_inject_emulated_page_fault(vcpu, &ex);
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sgx_gpa_to_hva(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned long *hva)
|
|
{
|
|
*hva = kvm_vcpu_gfn_to_hva(vcpu, PFN_DOWN(gpa));
|
|
if (kvm_is_error_hva(*hva)) {
|
|
sgx_handle_emulation_failure(vcpu, gpa, 1);
|
|
return -EFAULT;
|
|
}
|
|
|
|
*hva |= gpa & ~PAGE_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sgx_inject_fault(struct kvm_vcpu *vcpu, gva_t gva, int trapnr)
|
|
{
|
|
struct x86_exception ex;
|
|
|
|
/*
|
|
* A non-EPCM #PF indicates a bad userspace HVA. This *should* check
|
|
* for PFEC.SGX and not assume any #PF on SGX2 originated in the EPC,
|
|
* but the error code isn't (yet) plumbed through the ENCLS helpers.
|
|
*/
|
|
if (trapnr == PF_VECTOR && !boot_cpu_has(X86_FEATURE_SGX2)) {
|
|
kvm_prepare_emulation_failure_exit(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the guest thinks it's running on SGX2 hardware, inject an SGX
|
|
* #PF if the fault matches an EPCM fault signature (#GP on SGX1,
|
|
* #PF on SGX2). The assumption is that EPCM faults are much more
|
|
* likely than a bad userspace address.
|
|
*/
|
|
if ((trapnr == PF_VECTOR || !boot_cpu_has(X86_FEATURE_SGX2)) &&
|
|
guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) {
|
|
memset(&ex, 0, sizeof(ex));
|
|
ex.vector = PF_VECTOR;
|
|
ex.error_code = PFERR_PRESENT_MASK | PFERR_WRITE_MASK |
|
|
PFERR_SGX_MASK;
|
|
ex.address = gva;
|
|
ex.error_code_valid = true;
|
|
ex.nested_page_fault = false;
|
|
kvm_inject_emulated_page_fault(vcpu, &ex);
|
|
} else {
|
|
kvm_inject_gp(vcpu, 0);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int __handle_encls_ecreate(struct kvm_vcpu *vcpu,
|
|
struct sgx_pageinfo *pageinfo,
|
|
unsigned long secs_hva,
|
|
gva_t secs_gva)
|
|
{
|
|
struct sgx_secs *contents = (struct sgx_secs *)pageinfo->contents;
|
|
struct kvm_cpuid_entry2 *sgx_12_0, *sgx_12_1;
|
|
u64 attributes, xfrm, size;
|
|
u32 miscselect;
|
|
u8 max_size_log2;
|
|
int trapnr, ret;
|
|
|
|
sgx_12_0 = kvm_find_cpuid_entry_index(vcpu, 0x12, 0);
|
|
sgx_12_1 = kvm_find_cpuid_entry_index(vcpu, 0x12, 1);
|
|
if (!sgx_12_0 || !sgx_12_1) {
|
|
kvm_prepare_emulation_failure_exit(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
miscselect = contents->miscselect;
|
|
attributes = contents->attributes;
|
|
xfrm = contents->xfrm;
|
|
size = contents->size;
|
|
|
|
/* Enforce restriction of access to the PROVISIONKEY. */
|
|
if (!vcpu->kvm->arch.sgx_provisioning_allowed &&
|
|
(attributes & SGX_ATTR_PROVISIONKEY)) {
|
|
if (sgx_12_1->eax & SGX_ATTR_PROVISIONKEY)
|
|
pr_warn_once("SGX PROVISIONKEY advertised but not allowed\n");
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
/* Enforce CPUID restrictions on MISCSELECT, ATTRIBUTES and XFRM. */
|
|
if ((u32)miscselect & ~sgx_12_0->ebx ||
|
|
(u32)attributes & ~sgx_12_1->eax ||
|
|
(u32)(attributes >> 32) & ~sgx_12_1->ebx ||
|
|
(u32)xfrm & ~sgx_12_1->ecx ||
|
|
(u32)(xfrm >> 32) & ~sgx_12_1->edx) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
/* Enforce CPUID restriction on max enclave size. */
|
|
max_size_log2 = (attributes & SGX_ATTR_MODE64BIT) ? sgx_12_0->edx >> 8 :
|
|
sgx_12_0->edx;
|
|
if (size >= BIT_ULL(max_size_log2)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* sgx_virt_ecreate() returns:
|
|
* 1) 0: ECREATE was successful
|
|
* 2) -EFAULT: ECREATE was run but faulted, and trapnr was set to the
|
|
* exception number.
|
|
* 3) -EINVAL: access_ok() on @secs_hva failed. This should never
|
|
* happen as KVM checks host addresses at memslot creation.
|
|
* sgx_virt_ecreate() has already warned in this case.
|
|
*/
|
|
ret = sgx_virt_ecreate(pageinfo, (void __user *)secs_hva, &trapnr);
|
|
if (!ret)
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
if (ret == -EFAULT)
|
|
return sgx_inject_fault(vcpu, secs_gva, trapnr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int handle_encls_ecreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
gva_t pageinfo_gva, secs_gva;
|
|
gva_t metadata_gva, contents_gva;
|
|
gpa_t metadata_gpa, contents_gpa, secs_gpa;
|
|
unsigned long metadata_hva, contents_hva, secs_hva;
|
|
struct sgx_pageinfo pageinfo;
|
|
struct sgx_secs *contents;
|
|
struct x86_exception ex;
|
|
int r;
|
|
|
|
if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 32, 32, &pageinfo_gva) ||
|
|
sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva))
|
|
return 1;
|
|
|
|
/*
|
|
* Copy the PAGEINFO to local memory, its pointers need to be
|
|
* translated, i.e. we need to do a deep copy/translate.
|
|
*/
|
|
r = kvm_read_guest_virt(vcpu, pageinfo_gva, &pageinfo,
|
|
sizeof(pageinfo), &ex);
|
|
if (r == X86EMUL_PROPAGATE_FAULT) {
|
|
kvm_inject_emulated_page_fault(vcpu, &ex);
|
|
return 1;
|
|
} else if (r != X86EMUL_CONTINUE) {
|
|
sgx_handle_emulation_failure(vcpu, pageinfo_gva,
|
|
sizeof(pageinfo));
|
|
return 0;
|
|
}
|
|
|
|
if (sgx_get_encls_gva(vcpu, pageinfo.metadata, 64, 64, &metadata_gva) ||
|
|
sgx_get_encls_gva(vcpu, pageinfo.contents, 4096, 4096,
|
|
&contents_gva))
|
|
return 1;
|
|
|
|
/*
|
|
* Translate the SECINFO, SOURCE and SECS pointers from GVA to GPA.
|
|
* Resume the guest on failure to inject a #PF.
|
|
*/
|
|
if (sgx_gva_to_gpa(vcpu, metadata_gva, false, &metadata_gpa) ||
|
|
sgx_gva_to_gpa(vcpu, contents_gva, false, &contents_gpa) ||
|
|
sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa))
|
|
return 1;
|
|
|
|
/*
|
|
* ...and then to HVA. The order of accesses isn't architectural, i.e.
|
|
* KVM doesn't have to fully process one address at a time. Exit to
|
|
* userspace if a GPA is invalid.
|
|
*/
|
|
if (sgx_gpa_to_hva(vcpu, metadata_gpa, &metadata_hva) ||
|
|
sgx_gpa_to_hva(vcpu, contents_gpa, &contents_hva) ||
|
|
sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva))
|
|
return 0;
|
|
|
|
/*
|
|
* Copy contents into kernel memory to prevent TOCTOU attack. E.g. the
|
|
* guest could do ECREATE w/ SECS.SGX_ATTR_PROVISIONKEY=0, and
|
|
* simultaneously set SGX_ATTR_PROVISIONKEY to bypass the check to
|
|
* enforce restriction of access to the PROVISIONKEY.
|
|
*/
|
|
contents = (struct sgx_secs *)__get_free_page(GFP_KERNEL_ACCOUNT);
|
|
if (!contents)
|
|
return -ENOMEM;
|
|
|
|
/* Exit to userspace if copying from a host userspace address fails. */
|
|
if (sgx_read_hva(vcpu, contents_hva, (void *)contents, PAGE_SIZE)) {
|
|
free_page((unsigned long)contents);
|
|
return 0;
|
|
}
|
|
|
|
pageinfo.metadata = metadata_hva;
|
|
pageinfo.contents = (u64)contents;
|
|
|
|
r = __handle_encls_ecreate(vcpu, &pageinfo, secs_hva, secs_gva);
|
|
|
|
free_page((unsigned long)contents);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int handle_encls_einit(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long sig_hva, secs_hva, token_hva, rflags;
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
gva_t sig_gva, secs_gva, token_gva;
|
|
gpa_t sig_gpa, secs_gpa, token_gpa;
|
|
int ret, trapnr;
|
|
|
|
if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 1808, 4096, &sig_gva) ||
|
|
sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva) ||
|
|
sgx_get_encls_gva(vcpu, kvm_rdx_read(vcpu), 304, 512, &token_gva))
|
|
return 1;
|
|
|
|
/*
|
|
* Translate the SIGSTRUCT, SECS and TOKEN pointers from GVA to GPA.
|
|
* Resume the guest on failure to inject a #PF.
|
|
*/
|
|
if (sgx_gva_to_gpa(vcpu, sig_gva, false, &sig_gpa) ||
|
|
sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa) ||
|
|
sgx_gva_to_gpa(vcpu, token_gva, false, &token_gpa))
|
|
return 1;
|
|
|
|
/*
|
|
* ...and then to HVA. The order of accesses isn't architectural, i.e.
|
|
* KVM doesn't have to fully process one address at a time. Exit to
|
|
* userspace if a GPA is invalid. Note, all structures are aligned and
|
|
* cannot split pages.
|
|
*/
|
|
if (sgx_gpa_to_hva(vcpu, sig_gpa, &sig_hva) ||
|
|
sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva) ||
|
|
sgx_gpa_to_hva(vcpu, token_gpa, &token_hva))
|
|
return 0;
|
|
|
|
ret = sgx_virt_einit((void __user *)sig_hva, (void __user *)token_hva,
|
|
(void __user *)secs_hva,
|
|
vmx->msr_ia32_sgxlepubkeyhash, &trapnr);
|
|
|
|
if (ret == -EFAULT)
|
|
return sgx_inject_fault(vcpu, secs_gva, trapnr);
|
|
|
|
/*
|
|
* sgx_virt_einit() returns -EINVAL when access_ok() fails on @sig_hva,
|
|
* @token_hva or @secs_hva. This should never happen as KVM checks host
|
|
* addresses at memslot creation. sgx_virt_einit() has already warned
|
|
* in this case, so just return.
|
|
*/
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
rflags = vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF |
|
|
X86_EFLAGS_AF | X86_EFLAGS_SF |
|
|
X86_EFLAGS_OF);
|
|
if (ret)
|
|
rflags |= X86_EFLAGS_ZF;
|
|
else
|
|
rflags &= ~X86_EFLAGS_ZF;
|
|
vmx_set_rflags(vcpu, rflags);
|
|
|
|
kvm_rax_write(vcpu, ret);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static inline bool encls_leaf_enabled_in_guest(struct kvm_vcpu *vcpu, u32 leaf)
|
|
{
|
|
if (!enable_sgx || !guest_cpuid_has(vcpu, X86_FEATURE_SGX))
|
|
return false;
|
|
|
|
if (leaf >= ECREATE && leaf <= ETRACK)
|
|
return guest_cpuid_has(vcpu, X86_FEATURE_SGX1);
|
|
|
|
if (leaf >= EAUG && leaf <= EMODT)
|
|
return guest_cpuid_has(vcpu, X86_FEATURE_SGX2);
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool sgx_enabled_in_guest_bios(struct kvm_vcpu *vcpu)
|
|
{
|
|
const u64 bits = FEAT_CTL_SGX_ENABLED | FEAT_CTL_LOCKED;
|
|
|
|
return (to_vmx(vcpu)->msr_ia32_feature_control & bits) == bits;
|
|
}
|
|
|
|
int handle_encls(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 leaf = (u32)kvm_rax_read(vcpu);
|
|
|
|
if (!encls_leaf_enabled_in_guest(vcpu, leaf)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
} else if (!sgx_enabled_in_guest_bios(vcpu)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
} else {
|
|
if (leaf == ECREATE)
|
|
return handle_encls_ecreate(vcpu);
|
|
if (leaf == EINIT)
|
|
return handle_encls_einit(vcpu);
|
|
WARN_ONCE(1, "unexpected exit on ENCLS[%u]", leaf);
|
|
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_ENCLS;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void setup_default_sgx_lepubkeyhash(void)
|
|
{
|
|
/*
|
|
* Use Intel's default value for Skylake hardware if Launch Control is
|
|
* not supported, i.e. Intel's hash is hardcoded into silicon, or if
|
|
* Launch Control is supported and enabled, i.e. mimic the reset value
|
|
* and let the guest write the MSRs at will. If Launch Control is
|
|
* supported but disabled, then use the current MSR values as the hash
|
|
* MSRs exist but are read-only (locked and not writable).
|
|
*/
|
|
if (!enable_sgx || boot_cpu_has(X86_FEATURE_SGX_LC) ||
|
|
rdmsrl_safe(MSR_IA32_SGXLEPUBKEYHASH0, &sgx_pubkey_hash[0])) {
|
|
sgx_pubkey_hash[0] = 0xa6053e051270b7acULL;
|
|
sgx_pubkey_hash[1] = 0x6cfbe8ba8b3b413dULL;
|
|
sgx_pubkey_hash[2] = 0xc4916d99f2b3735dULL;
|
|
sgx_pubkey_hash[3] = 0xd4f8c05909f9bb3bULL;
|
|
} else {
|
|
/* MSR_IA32_SGXLEPUBKEYHASH0 is read above */
|
|
rdmsrl(MSR_IA32_SGXLEPUBKEYHASH1, sgx_pubkey_hash[1]);
|
|
rdmsrl(MSR_IA32_SGXLEPUBKEYHASH2, sgx_pubkey_hash[2]);
|
|
rdmsrl(MSR_IA32_SGXLEPUBKEYHASH3, sgx_pubkey_hash[3]);
|
|
}
|
|
}
|
|
|
|
void vcpu_setup_sgx_lepubkeyhash(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_vmx *vmx = to_vmx(vcpu);
|
|
|
|
memcpy(vmx->msr_ia32_sgxlepubkeyhash, sgx_pubkey_hash,
|
|
sizeof(sgx_pubkey_hash));
|
|
}
|
|
|
|
/*
|
|
* ECREATE must be intercepted to enforce MISCSELECT, ATTRIBUTES and XFRM
|
|
* restrictions if the guest's allowed-1 settings diverge from hardware.
|
|
*/
|
|
static bool sgx_intercept_encls_ecreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *guest_cpuid;
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (!vcpu->kvm->arch.sgx_provisioning_allowed)
|
|
return true;
|
|
|
|
guest_cpuid = kvm_find_cpuid_entry_index(vcpu, 0x12, 0);
|
|
if (!guest_cpuid)
|
|
return true;
|
|
|
|
cpuid_count(0x12, 0, &eax, &ebx, &ecx, &edx);
|
|
if (guest_cpuid->ebx != ebx || guest_cpuid->edx != edx)
|
|
return true;
|
|
|
|
guest_cpuid = kvm_find_cpuid_entry_index(vcpu, 0x12, 1);
|
|
if (!guest_cpuid)
|
|
return true;
|
|
|
|
cpuid_count(0x12, 1, &eax, &ebx, &ecx, &edx);
|
|
if (guest_cpuid->eax != eax || guest_cpuid->ebx != ebx ||
|
|
guest_cpuid->ecx != ecx || guest_cpuid->edx != edx)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void vmx_write_encls_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
|
|
{
|
|
/*
|
|
* There is no software enable bit for SGX that is virtualized by
|
|
* hardware, e.g. there's no CR4.SGXE, so when SGX is disabled in the
|
|
* guest (either by the host or by the guest's BIOS) but enabled in the
|
|
* host, trap all ENCLS leafs and inject #UD/#GP as needed to emulate
|
|
* the expected system behavior for ENCLS.
|
|
*/
|
|
u64 bitmap = -1ull;
|
|
|
|
/* Nothing to do if hardware doesn't support SGX */
|
|
if (!cpu_has_vmx_encls_vmexit())
|
|
return;
|
|
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX) &&
|
|
sgx_enabled_in_guest_bios(vcpu)) {
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX1)) {
|
|
bitmap &= ~GENMASK_ULL(ETRACK, ECREATE);
|
|
if (sgx_intercept_encls_ecreate(vcpu))
|
|
bitmap |= (1 << ECREATE);
|
|
}
|
|
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX2))
|
|
bitmap &= ~GENMASK_ULL(EMODT, EAUG);
|
|
|
|
/*
|
|
* Trap and execute EINIT if launch control is enabled in the
|
|
* host using the guest's values for launch control MSRs, even
|
|
* if the guest's values are fixed to hardware default values.
|
|
* The MSRs are not loaded/saved on VM-Enter/VM-Exit as writing
|
|
* the MSRs is extraordinarily expensive.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_SGX_LC))
|
|
bitmap |= (1 << EINIT);
|
|
|
|
if (!vmcs12 && is_guest_mode(vcpu))
|
|
vmcs12 = get_vmcs12(vcpu);
|
|
if (vmcs12 && nested_cpu_has_encls_exit(vmcs12))
|
|
bitmap |= vmcs12->encls_exiting_bitmap;
|
|
}
|
|
vmcs_write64(ENCLS_EXITING_BITMAP, bitmap);
|
|
}
|