linux-zen-desktop/drivers/accel/habanalabs/common/device.c

2578 lines
69 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2022 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#define pr_fmt(fmt) "habanalabs: " fmt
#include <uapi/drm/habanalabs_accel.h>
#include "habanalabs.h"
#include <linux/pci.h>
#include <linux/hwmon.h>
#include <linux/vmalloc.h>
#include <trace/events/habanalabs.h>
#define HL_RESET_DELAY_USEC 10000 /* 10ms */
#define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC 5
enum dma_alloc_type {
DMA_ALLOC_COHERENT,
DMA_ALLOC_CPU_ACCESSIBLE,
DMA_ALLOC_POOL,
};
#define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788
/*
* hl_set_dram_bar- sets the bar to allow later access to address
*
* @hdev: pointer to habanalabs device structure.
* @addr: the address the caller wants to access.
* @region: the PCI region.
* @new_bar_region_base: the new BAR region base address.
*
* @return: the old BAR base address on success, U64_MAX for failure.
* The caller should set it back to the old address after use.
*
* In case the bar space does not cover the whole address space,
* the bar base address should be set to allow access to a given address.
* This function can be called also if the bar doesn't need to be set,
* in that case it just won't change the base.
*/
static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
u64 *new_bar_region_base)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 bar_base_addr, old_base;
if (is_power_of_2(prop->dram_pci_bar_size))
bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
else
bar_base_addr = DIV_ROUND_DOWN_ULL(addr, prop->dram_pci_bar_size) *
prop->dram_pci_bar_size;
old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
/* in case of success we need to update the new BAR base */
if ((old_base != U64_MAX) && new_bar_region_base)
*new_bar_region_base = bar_base_addr;
return old_base;
}
int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
{
struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
u64 old_base = 0, rc, bar_region_base = region->region_base;
void __iomem *acc_addr;
if (set_dram_bar) {
old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base);
if (old_base == U64_MAX)
return -EIO;
}
acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
(addr - bar_region_base);
switch (acc_type) {
case DEBUGFS_READ8:
*val = readb(acc_addr);
break;
case DEBUGFS_WRITE8:
writeb(*val, acc_addr);
break;
case DEBUGFS_READ32:
*val = readl(acc_addr);
break;
case DEBUGFS_WRITE32:
writel(*val, acc_addr);
break;
case DEBUGFS_READ64:
*val = readq(acc_addr);
break;
case DEBUGFS_WRITE64:
writeq(*val, acc_addr);
break;
}
if (set_dram_bar) {
rc = hl_set_dram_bar(hdev, old_base, region, NULL);
if (rc == U64_MAX)
return -EIO;
}
return 0;
}
static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
gfp_t flag, enum dma_alloc_type alloc_type,
const char *caller)
{
void *ptr = NULL;
switch (alloc_type) {
case DMA_ALLOC_COHERENT:
ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
break;
case DMA_ALLOC_CPU_ACCESSIBLE:
ptr = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
break;
case DMA_ALLOC_POOL:
ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
break;
}
if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
caller);
return ptr;
}
static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
const char *caller)
{
/* this is needed to avoid warning on using freed pointer */
u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;
switch (alloc_type) {
case DMA_ALLOC_COHERENT:
hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
break;
case DMA_ALLOC_CPU_ACCESSIBLE:
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, cpu_addr);
break;
case DMA_ALLOC_POOL:
hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
break;
}
trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller);
}
void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
gfp_t flag, const char *caller)
{
return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
}
void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
dma_addr_t dma_handle, const char *caller)
{
hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
}
void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, const char *caller)
{
return hl_dma_alloc_common(hdev, size, dma_handle, 0, DMA_ALLOC_CPU_ACCESSIBLE, caller);
}
void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
const char *caller)
{
hl_asic_dma_free_common(hdev, size, vaddr, 0, DMA_ALLOC_CPU_ACCESSIBLE, caller);
}
void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
dma_addr_t *dma_handle, const char *caller)
{
return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
}
void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
const char *caller)
{
hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
}
int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct scatterlist *sg;
int rc, i;
rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
if (rc)
return rc;
/* Shift to the device's base physical address of host memory if necessary */
if (prop->device_dma_offset_for_host_access)
for_each_sgtable_dma_sg(sgt, sg, i)
sg->dma_address += prop->device_dma_offset_for_host_access;
return 0;
}
void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct scatterlist *sg;
int i;
/* Cancel the device's base physical address of host memory if necessary */
if (prop->device_dma_offset_for_host_access)
for_each_sgtable_dma_sg(sgt, sg, i)
sg->dma_address -= prop->device_dma_offset_for_host_access;
dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
}
/*
* hl_access_cfg_region - access the config region
*
* @hdev: pointer to habanalabs device structure
* @addr: the address to access
* @val: the value to write from or read to
* @acc_type: the type of access (read/write 64/32)
*/
int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
enum debugfs_access_type acc_type)
{
struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
u32 val_h, val_l;
if (!IS_ALIGNED(addr, sizeof(u32))) {
dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
return -EINVAL;
}
switch (acc_type) {
case DEBUGFS_READ32:
*val = RREG32(addr - cfg_region->region_base);
break;
case DEBUGFS_WRITE32:
WREG32(addr - cfg_region->region_base, *val);
break;
case DEBUGFS_READ64:
val_l = RREG32(addr - cfg_region->region_base);
val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
*val = (((u64) val_h) << 32) | val_l;
break;
case DEBUGFS_WRITE64:
WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
break;
default:
dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
return -EOPNOTSUPP;
}
return 0;
}
/*
* hl_access_dev_mem - access device memory
*
* @hdev: pointer to habanalabs device structure
* @region_type: the type of the region the address belongs to
* @addr: the address to access
* @val: the value to write from or read to
* @acc_type: the type of access (r/w, 32/64)
*/
int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
u64 addr, u64 *val, enum debugfs_access_type acc_type)
{
switch (region_type) {
case PCI_REGION_CFG:
return hl_access_cfg_region(hdev, addr, val, acc_type);
case PCI_REGION_SRAM:
case PCI_REGION_DRAM:
return hl_access_sram_dram_region(hdev, addr, val, acc_type,
region_type, (region_type == PCI_REGION_DRAM));
default:
return -EFAULT;
}
return 0;
}
void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
{
va_list args;
int str_size;
va_start(args, fmt);
/* Calculate formatted string length. Assuming each string is null terminated, hence
* increment result by 1
*/
str_size = vsnprintf(NULL, 0, fmt, args) + 1;
va_end(args);
if ((e->actual_size + str_size) < e->allocated_buf_size) {
va_start(args, fmt);
vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
va_end(args);
}
/* Need to update the size even when not updating destination buffer to get the exact size
* of all input strings
*/
e->actual_size += str_size;
}
enum hl_device_status hl_device_status(struct hl_device *hdev)
{
enum hl_device_status status;
if (hdev->reset_info.in_reset) {
if (hdev->reset_info.in_compute_reset)
status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
else
status = HL_DEVICE_STATUS_IN_RESET;
} else if (hdev->reset_info.needs_reset) {
status = HL_DEVICE_STATUS_NEEDS_RESET;
} else if (hdev->disabled) {
status = HL_DEVICE_STATUS_MALFUNCTION;
} else if (!hdev->init_done) {
status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
} else {
status = HL_DEVICE_STATUS_OPERATIONAL;
}
return status;
}
bool hl_device_operational(struct hl_device *hdev,
enum hl_device_status *status)
{
enum hl_device_status current_status;
current_status = hl_device_status(hdev);
if (status)
*status = current_status;
switch (current_status) {
case HL_DEVICE_STATUS_IN_RESET:
case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
case HL_DEVICE_STATUS_MALFUNCTION:
case HL_DEVICE_STATUS_NEEDS_RESET:
return false;
case HL_DEVICE_STATUS_OPERATIONAL:
case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
default:
return true;
}
}
bool hl_ctrl_device_operational(struct hl_device *hdev,
enum hl_device_status *status)
{
enum hl_device_status current_status;
current_status = hl_device_status(hdev);
if (status)
*status = current_status;
switch (current_status) {
case HL_DEVICE_STATUS_MALFUNCTION:
return false;
case HL_DEVICE_STATUS_IN_RESET:
case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
case HL_DEVICE_STATUS_NEEDS_RESET:
case HL_DEVICE_STATUS_OPERATIONAL:
case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
default:
return true;
}
}
static void print_idle_status_mask(struct hl_device *hdev, const char *message,
u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])
{
u32 pad_width[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {};
BUILD_BUG_ON(HL_BUSY_ENGINES_MASK_EXT_SIZE != 4);
pad_width[3] = idle_mask[3] ? 16 : 0;
pad_width[2] = idle_mask[2] || pad_width[3] ? 16 : 0;
pad_width[1] = idle_mask[1] || pad_width[2] ? 16 : 0;
pad_width[0] = idle_mask[0] || pad_width[1] ? 16 : 0;
dev_err(hdev->dev, "%s (mask %0*llx_%0*llx_%0*llx_%0*llx)\n",
message, pad_width[3], idle_mask[3], pad_width[2], idle_mask[2],
pad_width[1], idle_mask[1], pad_width[0], idle_mask[0]);
}
static void hpriv_release(struct kref *ref)
{
u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
bool reset_device, device_is_idle = true;
struct hl_fpriv *hpriv;
struct hl_device *hdev;
hpriv = container_of(ref, struct hl_fpriv, refcount);
hdev = hpriv->hdev;
hdev->asic_funcs->send_device_activity(hdev, false);
put_pid(hpriv->taskpid);
hl_debugfs_remove_file(hpriv);
mutex_destroy(&hpriv->ctx_lock);
mutex_destroy(&hpriv->restore_phase_mutex);
/* There should be no memory buffers at this point and handles IDR can be destroyed */
hl_mem_mgr_idr_destroy(&hpriv->mem_mgr);
/* Device should be reset if reset-upon-device-release is enabled, or if there is a pending
* reset that waits for device release.
*/
reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active;
/* Check the device idle status and reset if not idle.
* Skip it if already in reset, or if device is going to be reset in any case.
*/
if (!hdev->reset_info.in_reset && !reset_device && hdev->pdev && !hdev->pldm)
device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
if (!device_is_idle) {
print_idle_status_mask(hdev, "device is not idle after user context is closed",
idle_mask);
reset_device = true;
}
/* We need to remove the user from the list to make sure the reset process won't
* try to kill the user process. Because, if we got here, it means there are no
* more driver/device resources that the user process is occupying so there is
* no need to kill it
*
* However, we can't set the compute_ctx to NULL at this stage. This is to prevent
* a race between the release and opening the device again. We don't want to let
* a user open the device while there a reset is about to happen.
*/
mutex_lock(&hdev->fpriv_list_lock);
list_del(&hpriv->dev_node);
mutex_unlock(&hdev->fpriv_list_lock);
if (reset_device) {
hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
} else {
/* Scrubbing is handled within hl_device_reset(), so here need to do it directly */
int rc = hdev->asic_funcs->scrub_device_mem(hdev);
if (rc)
dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
}
/* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
* thread, we don't care because the in_reset is marked so if a user will try to open
* the device it will fail on that, even if compute_ctx is false.
*/
mutex_lock(&hdev->fpriv_list_lock);
hdev->is_compute_ctx_active = false;
mutex_unlock(&hdev->fpriv_list_lock);
hdev->compute_ctx_in_release = 0;
/* release the eventfd */
if (hpriv->notifier_event.eventfd)
eventfd_ctx_put(hpriv->notifier_event.eventfd);
mutex_destroy(&hpriv->notifier_event.lock);
kfree(hpriv);
}
void hl_hpriv_get(struct hl_fpriv *hpriv)
{
kref_get(&hpriv->refcount);
}
int hl_hpriv_put(struct hl_fpriv *hpriv)
{
return kref_put(&hpriv->refcount, hpriv_release);
}
/*
* hl_device_release - release function for habanalabs device
*
* @inode: pointer to inode structure
* @filp: pointer to file structure
*
* Called when process closes an habanalabs device
*/
static int hl_device_release(struct inode *inode, struct file *filp)
{
struct hl_fpriv *hpriv = filp->private_data;
struct hl_device *hdev = hpriv->hdev;
filp->private_data = NULL;
if (!hdev) {
pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
put_pid(hpriv->taskpid);
return 0;
}
hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
/* Memory buffers might be still in use at this point and thus the handles IDR destruction
* is postponed to hpriv_release().
*/
hl_mem_mgr_fini(&hpriv->mem_mgr);
hdev->compute_ctx_in_release = 1;
if (!hl_hpriv_put(hpriv)) {
dev_notice(hdev->dev, "User process closed FD but device still in use\n");
hl_device_reset(hdev, HL_DRV_RESET_HARD);
}
hdev->last_open_session_duration_jif =
jiffies - hdev->last_successful_open_jif;
return 0;
}
static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
{
struct hl_fpriv *hpriv = filp->private_data;
struct hl_device *hdev = hpriv->hdev;
filp->private_data = NULL;
if (!hdev) {
pr_err("Closing FD after device was removed\n");
goto out;
}
mutex_lock(&hdev->fpriv_ctrl_list_lock);
list_del(&hpriv->dev_node);
mutex_unlock(&hdev->fpriv_ctrl_list_lock);
out:
/* release the eventfd */
if (hpriv->notifier_event.eventfd)
eventfd_ctx_put(hpriv->notifier_event.eventfd);
mutex_destroy(&hpriv->notifier_event.lock);
put_pid(hpriv->taskpid);
kfree(hpriv);
return 0;
}
/*
* hl_mmap - mmap function for habanalabs device
*
* @*filp: pointer to file structure
* @*vma: pointer to vm_area_struct of the process
*
* Called when process does an mmap on habanalabs device. Call the relevant mmap
* function at the end of the common code.
*/
static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct hl_fpriv *hpriv = filp->private_data;
struct hl_device *hdev = hpriv->hdev;
unsigned long vm_pgoff;
if (!hdev) {
pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
return -ENODEV;
}
vm_pgoff = vma->vm_pgoff;
switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
case HL_MMAP_TYPE_BLOCK:
vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
return hl_hw_block_mmap(hpriv, vma);
case HL_MMAP_TYPE_CB:
case HL_MMAP_TYPE_TS_BUFF:
return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
}
return -EINVAL;
}
static const struct file_operations hl_ops = {
.owner = THIS_MODULE,
.open = hl_device_open,
.release = hl_device_release,
.mmap = hl_mmap,
.unlocked_ioctl = hl_ioctl,
.compat_ioctl = hl_ioctl
};
static const struct file_operations hl_ctrl_ops = {
.owner = THIS_MODULE,
.open = hl_device_open_ctrl,
.release = hl_device_release_ctrl,
.unlocked_ioctl = hl_ioctl_control,
.compat_ioctl = hl_ioctl_control
};
static void device_release_func(struct device *dev)
{
kfree(dev);
}
/*
* device_init_cdev - Initialize cdev and device for habanalabs device
*
* @hdev: pointer to habanalabs device structure
* @hclass: pointer to the class object of the device
* @minor: minor number of the specific device
* @fpos: file operations to install for this device
* @name: name of the device as it will appear in the filesystem
* @cdev: pointer to the char device object that will be initialized
* @dev: pointer to the device object that will be initialized
*
* Initialize a cdev and a Linux device for habanalabs's device.
*/
static int device_init_cdev(struct hl_device *hdev, struct class *hclass,
int minor, const struct file_operations *fops,
char *name, struct cdev *cdev,
struct device **dev)
{
cdev_init(cdev, fops);
cdev->owner = THIS_MODULE;
*dev = kzalloc(sizeof(**dev), GFP_KERNEL);
if (!*dev)
return -ENOMEM;
device_initialize(*dev);
(*dev)->devt = MKDEV(hdev->major, minor);
(*dev)->class = hclass;
(*dev)->release = device_release_func;
dev_set_drvdata(*dev, hdev);
dev_set_name(*dev, "%s", name);
return 0;
}
static int device_cdev_sysfs_add(struct hl_device *hdev)
{
int rc;
rc = cdev_device_add(&hdev->cdev, hdev->dev);
if (rc) {
dev_err(hdev->dev,
"failed to add a char device to the system\n");
return rc;
}
rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
if (rc) {
dev_err(hdev->dev,
"failed to add a control char device to the system\n");
goto delete_cdev_device;
}
/* hl_sysfs_init() must be done after adding the device to the system */
rc = hl_sysfs_init(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize sysfs\n");
goto delete_ctrl_cdev_device;
}
hdev->cdev_sysfs_created = true;
return 0;
delete_ctrl_cdev_device:
cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
delete_cdev_device:
cdev_device_del(&hdev->cdev, hdev->dev);
return rc;
}
static void device_cdev_sysfs_del(struct hl_device *hdev)
{
if (!hdev->cdev_sysfs_created)
goto put_devices;
hl_sysfs_fini(hdev);
cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
cdev_device_del(&hdev->cdev, hdev->dev);
put_devices:
put_device(hdev->dev);
put_device(hdev->dev_ctrl);
}
static void device_hard_reset_pending(struct work_struct *work)
{
struct hl_device_reset_work *device_reset_work =
container_of(work, struct hl_device_reset_work, reset_work.work);
struct hl_device *hdev = device_reset_work->hdev;
u32 flags;
int rc;
flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
rc = hl_device_reset(hdev, flags);
if ((rc == -EBUSY) && !hdev->device_fini_pending) {
struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
if (ctx) {
/* The read refcount value should subtracted by one, because the read is
* protected with hl_get_compute_ctx().
*/
dev_info(hdev->dev,
"Could not reset device (compute_ctx refcount %u). will try again in %u seconds",
kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC);
hl_ctx_put(ctx);
} else {
dev_info(hdev->dev, "Could not reset device. will try again in %u seconds",
HL_PENDING_RESET_PER_SEC);
}
queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
}
}
static void device_release_watchdog_func(struct work_struct *work)
{
struct hl_device_reset_work *device_release_watchdog_work =
container_of(work, struct hl_device_reset_work, reset_work.work);
struct hl_device *hdev = device_release_watchdog_work->hdev;
u32 flags;
dev_dbg(hdev->dev, "Device wasn't released in time. Initiate device reset.\n");
flags = device_release_watchdog_work->flags | HL_DRV_RESET_FROM_WD_THR;
hl_device_reset(hdev, flags);
}
/*
* device_early_init - do some early initialization for the habanalabs device
*
* @hdev: pointer to habanalabs device structure
*
* Install the relevant function pointers and call the early_init function,
* if such a function exists
*/
static int device_early_init(struct hl_device *hdev)
{
int i, rc;
char workq_name[32];
switch (hdev->asic_type) {
case ASIC_GOYA:
goya_set_asic_funcs(hdev);
strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
break;
case ASIC_GAUDI:
gaudi_set_asic_funcs(hdev);
strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
break;
case ASIC_GAUDI_SEC:
gaudi_set_asic_funcs(hdev);
strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
break;
case ASIC_GAUDI2:
gaudi2_set_asic_funcs(hdev);
strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
break;
case ASIC_GAUDI2B:
gaudi2_set_asic_funcs(hdev);
strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name));
break;
break;
default:
dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
hdev->asic_type);
return -EINVAL;
}
rc = hdev->asic_funcs->early_init(hdev);
if (rc)
return rc;
rc = hl_asid_init(hdev);
if (rc)
goto early_fini;
if (hdev->asic_prop.completion_queues_count) {
hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
sizeof(struct workqueue_struct *),
GFP_KERNEL);
if (!hdev->cq_wq) {
rc = -ENOMEM;
goto asid_fini;
}
}
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
snprintf(workq_name, 32, "hl-free-jobs-%u", (u32) i);
hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
if (hdev->cq_wq[i] == NULL) {
dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
rc = -ENOMEM;
goto free_cq_wq;
}
}
hdev->eq_wq = create_singlethread_workqueue("hl-events");
if (hdev->eq_wq == NULL) {
dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
rc = -ENOMEM;
goto free_cq_wq;
}
hdev->cs_cmplt_wq = alloc_workqueue("hl-cs-completions", WQ_UNBOUND, 0);
if (!hdev->cs_cmplt_wq) {
dev_err(hdev->dev,
"Failed to allocate CS completions workqueue\n");
rc = -ENOMEM;
goto free_eq_wq;
}
hdev->ts_free_obj_wq = alloc_workqueue("hl-ts-free-obj", WQ_UNBOUND, 0);
if (!hdev->ts_free_obj_wq) {
dev_err(hdev->dev,
"Failed to allocate Timestamp registration free workqueue\n");
rc = -ENOMEM;
goto free_cs_cmplt_wq;
}
hdev->prefetch_wq = alloc_workqueue("hl-prefetch", WQ_UNBOUND, 0);
if (!hdev->prefetch_wq) {
dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
rc = -ENOMEM;
goto free_ts_free_wq;
}
hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info),
GFP_KERNEL);
if (!hdev->hl_chip_info) {
rc = -ENOMEM;
goto free_prefetch_wq;
}
rc = hl_mmu_if_set_funcs(hdev);
if (rc)
goto free_chip_info;
hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
hdev->reset_wq = create_singlethread_workqueue("hl_device_reset");
if (!hdev->reset_wq) {
rc = -ENOMEM;
dev_err(hdev->dev, "Failed to create device reset WQ\n");
goto free_cb_mgr;
}
INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending);
hdev->device_reset_work.hdev = hdev;
hdev->device_fini_pending = 0;
INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work,
device_release_watchdog_func);
hdev->device_release_watchdog_work.hdev = hdev;
mutex_init(&hdev->send_cpu_message_lock);
mutex_init(&hdev->debug_lock);
INIT_LIST_HEAD(&hdev->cs_mirror_list);
spin_lock_init(&hdev->cs_mirror_lock);
spin_lock_init(&hdev->reset_info.lock);
INIT_LIST_HEAD(&hdev->fpriv_list);
INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
mutex_init(&hdev->fpriv_list_lock);
mutex_init(&hdev->fpriv_ctrl_list_lock);
mutex_init(&hdev->clk_throttling.lock);
return 0;
free_cb_mgr:
hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
free_chip_info:
kfree(hdev->hl_chip_info);
free_prefetch_wq:
destroy_workqueue(hdev->prefetch_wq);
free_ts_free_wq:
destroy_workqueue(hdev->ts_free_obj_wq);
free_cs_cmplt_wq:
destroy_workqueue(hdev->cs_cmplt_wq);
free_eq_wq:
destroy_workqueue(hdev->eq_wq);
free_cq_wq:
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
if (hdev->cq_wq[i])
destroy_workqueue(hdev->cq_wq[i]);
kfree(hdev->cq_wq);
asid_fini:
hl_asid_fini(hdev);
early_fini:
if (hdev->asic_funcs->early_fini)
hdev->asic_funcs->early_fini(hdev);
return rc;
}
/*
* device_early_fini - finalize all that was done in device_early_init
*
* @hdev: pointer to habanalabs device structure
*
*/
static void device_early_fini(struct hl_device *hdev)
{
int i;
mutex_destroy(&hdev->debug_lock);
mutex_destroy(&hdev->send_cpu_message_lock);
mutex_destroy(&hdev->fpriv_list_lock);
mutex_destroy(&hdev->fpriv_ctrl_list_lock);
mutex_destroy(&hdev->clk_throttling.lock);
hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
kfree(hdev->hl_chip_info);
destroy_workqueue(hdev->prefetch_wq);
destroy_workqueue(hdev->ts_free_obj_wq);
destroy_workqueue(hdev->cs_cmplt_wq);
destroy_workqueue(hdev->eq_wq);
destroy_workqueue(hdev->reset_wq);
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
destroy_workqueue(hdev->cq_wq[i]);
kfree(hdev->cq_wq);
hl_asid_fini(hdev);
if (hdev->asic_funcs->early_fini)
hdev->asic_funcs->early_fini(hdev);
}
static void hl_device_heartbeat(struct work_struct *work)
{
struct hl_device *hdev = container_of(work, struct hl_device,
work_heartbeat.work);
if (!hl_device_operational(hdev, NULL))
goto reschedule;
if (!hdev->asic_funcs->send_heartbeat(hdev))
goto reschedule;
if (hl_device_operational(hdev, NULL))
dev_err(hdev->dev, "Device heartbeat failed!\n");
hl_device_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT);
return;
reschedule:
/*
* prev_reset_trigger tracks consecutive fatal h/w errors until first
* heartbeat immediately post reset.
* If control reached here, then at least one heartbeat work has been
* scheduled since last reset/init cycle.
* So if the device is not already in reset cycle, reset the flag
* prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
* status for at least one heartbeat. From this point driver restarts
* tracking future consecutive fatal errors.
*/
if (!hdev->reset_info.in_reset)
hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
schedule_delayed_work(&hdev->work_heartbeat,
usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
}
/*
* device_late_init - do late stuff initialization for the habanalabs device
*
* @hdev: pointer to habanalabs device structure
*
* Do stuff that either needs the device H/W queues to be active or needs
* to happen after all the rest of the initialization is finished
*/
static int device_late_init(struct hl_device *hdev)
{
int rc;
if (hdev->asic_funcs->late_init) {
rc = hdev->asic_funcs->late_init(hdev);
if (rc) {
dev_err(hdev->dev,
"failed late initialization for the H/W\n");
return rc;
}
}
hdev->high_pll = hdev->asic_prop.high_pll;
if (hdev->heartbeat) {
INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
schedule_delayed_work(&hdev->work_heartbeat,
usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
}
hdev->late_init_done = true;
return 0;
}
/*
* device_late_fini - finalize all that was done in device_late_init
*
* @hdev: pointer to habanalabs device structure
*
*/
static void device_late_fini(struct hl_device *hdev)
{
if (!hdev->late_init_done)
return;
if (hdev->heartbeat)
cancel_delayed_work_sync(&hdev->work_heartbeat);
if (hdev->asic_funcs->late_fini)
hdev->asic_funcs->late_fini(hdev);
hdev->late_init_done = false;
}
int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
{
u64 max_power, curr_power, dc_power, dividend, divisor;
int rc;
max_power = hdev->max_power;
dc_power = hdev->asic_prop.dc_power_default;
divisor = max_power - dc_power;
if (!divisor) {
dev_warn(hdev->dev, "device utilization is not supported\n");
return -EOPNOTSUPP;
}
rc = hl_fw_cpucp_power_get(hdev, &curr_power);
if (rc)
return rc;
curr_power = clamp(curr_power, dc_power, max_power);
dividend = (curr_power - dc_power) * 100;
*utilization = (u32) div_u64(dividend, divisor);
return 0;
}
int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
{
int rc = 0;
mutex_lock(&hdev->debug_lock);
if (!enable) {
if (!hdev->in_debug) {
dev_err(hdev->dev,
"Failed to disable debug mode because device was not in debug mode\n");
rc = -EFAULT;
goto out;
}
if (!hdev->reset_info.hard_reset_pending)
hdev->asic_funcs->halt_coresight(hdev, ctx);
hdev->in_debug = 0;
goto out;
}
if (hdev->in_debug) {
dev_err(hdev->dev,
"Failed to enable debug mode because device is already in debug mode\n");
rc = -EFAULT;
goto out;
}
hdev->in_debug = 1;
out:
mutex_unlock(&hdev->debug_lock);
return rc;
}
static void take_release_locks(struct hl_device *hdev)
{
/* Flush anyone that is inside the critical section of enqueue
* jobs to the H/W
*/
hdev->asic_funcs->hw_queues_lock(hdev);
hdev->asic_funcs->hw_queues_unlock(hdev);
/* Flush processes that are sending message to CPU */
mutex_lock(&hdev->send_cpu_message_lock);
mutex_unlock(&hdev->send_cpu_message_lock);
/* Flush anyone that is inside device open */
mutex_lock(&hdev->fpriv_list_lock);
mutex_unlock(&hdev->fpriv_list_lock);
mutex_lock(&hdev->fpriv_ctrl_list_lock);
mutex_unlock(&hdev->fpriv_ctrl_list_lock);
}
static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
bool skip_wq_flush)
{
if (hard_reset)
device_late_fini(hdev);
/*
* Halt the engines and disable interrupts so we won't get any more
* completions from H/W and we won't have any accesses from the
* H/W to the host machine
*/
hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
/* Go over all the queues, release all CS and their jobs */
hl_cs_rollback_all(hdev, skip_wq_flush);
/* flush the MMU prefetch workqueue */
flush_workqueue(hdev->prefetch_wq);
/* Release all pending user interrupts, each pending user interrupt
* holds a reference to user context
*/
hl_release_pending_user_interrupts(hdev);
}
/*
* hl_device_suspend - initiate device suspend
*
* @hdev: pointer to habanalabs device structure
*
* Puts the hw in the suspend state (all asics).
* Returns 0 for success or an error on failure.
* Called at driver suspend.
*/
int hl_device_suspend(struct hl_device *hdev)
{
int rc;
pci_save_state(hdev->pdev);
/* Block future CS/VM/JOB completion operations */
spin_lock(&hdev->reset_info.lock);
if (hdev->reset_info.in_reset) {
spin_unlock(&hdev->reset_info.lock);
dev_err(hdev->dev, "Can't suspend while in reset\n");
return -EIO;
}
hdev->reset_info.in_reset = 1;
spin_unlock(&hdev->reset_info.lock);
/* This blocks all other stuff that is not blocked by in_reset */
hdev->disabled = true;
take_release_locks(hdev);
rc = hdev->asic_funcs->suspend(hdev);
if (rc)
dev_err(hdev->dev,
"Failed to disable PCI access of device CPU\n");
/* Shut down the device */
pci_disable_device(hdev->pdev);
pci_set_power_state(hdev->pdev, PCI_D3hot);
return 0;
}
/*
* hl_device_resume - initiate device resume
*
* @hdev: pointer to habanalabs device structure
*
* Bring the hw back to operating state (all asics).
* Returns 0 for success or an error on failure.
* Called at driver resume.
*/
int hl_device_resume(struct hl_device *hdev)
{
int rc;
pci_set_power_state(hdev->pdev, PCI_D0);
pci_restore_state(hdev->pdev);
rc = pci_enable_device_mem(hdev->pdev);
if (rc) {
dev_err(hdev->dev,
"Failed to enable PCI device in resume\n");
return rc;
}
pci_set_master(hdev->pdev);
rc = hdev->asic_funcs->resume(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to resume device after suspend\n");
goto disable_device;
}
/* 'in_reset' was set to true during suspend, now we must clear it in order
* for hard reset to be performed
*/
spin_lock(&hdev->reset_info.lock);
hdev->reset_info.in_reset = 0;
spin_unlock(&hdev->reset_info.lock);
rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
if (rc) {
dev_err(hdev->dev, "Failed to reset device during resume\n");
goto disable_device;
}
return 0;
disable_device:
pci_clear_master(hdev->pdev);
pci_disable_device(hdev->pdev);
return rc;
}
static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
{
struct task_struct *task = NULL;
struct list_head *fd_list;
struct hl_fpriv *hpriv;
struct mutex *fd_lock;
u32 pending_cnt;
fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
/* Giving time for user to close FD, and for processes that are inside
* hl_device_open to finish
*/
if (!list_empty(fd_list))
ssleep(1);
if (timeout) {
pending_cnt = timeout;
} else {
if (hdev->process_kill_trial_cnt) {
/* Processes have been already killed */
pending_cnt = 1;
goto wait_for_processes;
} else {
/* Wait a small period after process kill */
pending_cnt = HL_PENDING_RESET_PER_SEC;
}
}
mutex_lock(fd_lock);
/* This section must be protected because we are dereferencing
* pointers that are freed if the process exits
*/
list_for_each_entry(hpriv, fd_list, dev_node) {
task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
if (task) {
dev_info(hdev->dev, "Killing user process pid=%d\n",
task_pid_nr(task));
send_sig(SIGKILL, task, 1);
usleep_range(1000, 10000);
put_task_struct(task);
} else {
/*
* If we got here, it means that process was killed from outside the driver
* right after it started looping on fd_list and before get_pid_task, thus
* we don't need to kill it.
*/
dev_dbg(hdev->dev,
"Can't get task struct for user process, assuming process was killed from outside the driver\n");
}
}
mutex_unlock(fd_lock);
/*
* We killed the open users, but that doesn't mean they are closed.
* It could be that they are running a long cleanup phase in the driver
* e.g. MMU unmappings, or running other long teardown flow even before
* our cleanup.
* Therefore we need to wait again to make sure they are closed before
* continuing with the reset.
*/
wait_for_processes:
while ((!list_empty(fd_list)) && (pending_cnt)) {
dev_dbg(hdev->dev,
"Waiting for all unmap operations to finish before hard reset\n");
pending_cnt--;
ssleep(1);
}
/* All processes exited successfully */
if (list_empty(fd_list))
return 0;
/* Give up waiting for processes to exit */
if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
return -ETIME;
hdev->process_kill_trial_cnt++;
return -EBUSY;
}
static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
{
struct list_head *fd_list;
struct hl_fpriv *hpriv;
struct mutex *fd_lock;
fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
mutex_lock(fd_lock);
list_for_each_entry(hpriv, fd_list, dev_node)
hpriv->hdev = NULL;
mutex_unlock(fd_lock);
}
static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
{
u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
/* No consecutive mechanism when user context exists */
if (hdev->is_compute_ctx_active)
return;
/*
* 'reset cause' is being updated here, because getting here
* means that it's the 1st time and the last time we're here
* ('in_reset' makes sure of it). This makes sure that
* 'reset_cause' will continue holding its 1st recorded reason!
*/
if (flags & HL_DRV_RESET_HEARTBEAT) {
hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
} else if (flags & HL_DRV_RESET_TDR) {
hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
cur_reset_trigger = HL_DRV_RESET_TDR;
} else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
} else {
hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
}
/*
* If reset cause is same twice, then reset_trigger_repeated
* is set and if this reset is due to a fatal FW error
* device is set to an unstable state.
*/
if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
hdev->reset_info.reset_trigger_repeated = 0;
} else {
hdev->reset_info.reset_trigger_repeated = 1;
}
/* If reset is due to heartbeat, device CPU is no responsive in
* which case no point sending PCI disable message to it.
*
* If F/W is performing the reset, no need to send it a message to disable
* PCI access
*/
if ((flags & HL_DRV_RESET_HARD) &&
!(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
/* Disable PCI access from device F/W so he won't send
* us additional interrupts. We disable MSI/MSI-X at
* the halt_engines function and we can't have the F/W
* sending us interrupts after that. We need to disable
* the access here because if the device is marked
* disable, the message won't be send. Also, in case
* of heartbeat, the device CPU is marked as disable
* so this message won't be sent
*/
if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0))
dev_warn(hdev->dev,
"Failed to disable PCI access by F/W\n");
}
}
/*
* hl_device_reset - reset the device
*
* @hdev: pointer to habanalabs device structure
* @flags: reset flags.
*
* Block future CS and wait for pending CS to be enqueued
* Call ASIC H/W fini
* Flush all completions
* Re-initialize all internal data structures
* Call ASIC H/W init, late_init
* Test queues
* Enable device
*
* Returns 0 for success or an error on failure.
*/
int hl_device_reset(struct hl_device *hdev, u32 flags)
{
bool hard_reset, from_hard_reset_thread, fw_reset, hard_instead_soft = false,
reset_upon_device_release = false, schedule_hard_reset = false,
delay_reset, from_dev_release, from_watchdog_thread;
u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
struct hl_ctx *ctx;
int i, rc;
if (!hdev->init_done) {
dev_err(hdev->dev, "Can't reset before initialization is done\n");
return 0;
}
hard_reset = !!(flags & HL_DRV_RESET_HARD);
from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE);
delay_reset = !!(flags & HL_DRV_RESET_DELAY);
from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR);
if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) {
dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n");
return 0;
}
if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
hard_instead_soft = true;
hard_reset = true;
}
if (hdev->reset_upon_device_release && from_dev_release) {
if (hard_reset) {
dev_crit(hdev->dev,
"Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
return -EINVAL;
}
reset_upon_device_release = true;
goto do_reset;
}
if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
hard_instead_soft = true;
hard_reset = true;
}
if (hard_instead_soft)
dev_dbg(hdev->dev, "Doing hard-reset instead of compute reset\n");
do_reset:
/* Re-entry of reset thread */
if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
goto kill_processes;
/*
* Prevent concurrency in this function - only one reset should be
* done at any given time. Only need to perform this if we didn't
* get from the dedicated hard reset thread
*/
if (!from_hard_reset_thread) {
/* Block future CS/VM/JOB completion operations */
spin_lock(&hdev->reset_info.lock);
if (hdev->reset_info.in_reset) {
/* We only allow scheduling of a hard reset during compute reset */
if (hard_reset && hdev->reset_info.in_compute_reset)
hdev->reset_info.hard_reset_schedule_flags = flags;
spin_unlock(&hdev->reset_info.lock);
return 0;
}
/* This still allows the completion of some KDMA ops
* Update this before in_reset because in_compute_reset implies we are in reset
*/
hdev->reset_info.in_compute_reset = !hard_reset;
hdev->reset_info.in_reset = 1;
spin_unlock(&hdev->reset_info.lock);
/* Cancel the device release watchdog work if required.
* In case of reset-upon-device-release while the release watchdog work is
* scheduled, do hard-reset instead of compute-reset.
*/
if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) {
hdev->reset_info.watchdog_active = 0;
if (!from_watchdog_thread)
cancel_delayed_work_sync(
&hdev->device_release_watchdog_work.reset_work);
if (from_dev_release) {
hdev->reset_info.in_compute_reset = 0;
flags |= HL_DRV_RESET_HARD;
flags &= ~HL_DRV_RESET_DEV_RELEASE;
hard_reset = true;
}
}
if (delay_reset)
usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
handle_reset_trigger(hdev, flags);
/* This also blocks future CS/VM/JOB completion operations */
hdev->disabled = true;
take_release_locks(hdev);
if (hard_reset)
dev_info(hdev->dev, "Going to reset device\n");
else if (reset_upon_device_release)
dev_dbg(hdev->dev, "Going to reset device after release by user\n");
else
dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
}
again:
if ((hard_reset) && (!from_hard_reset_thread)) {
hdev->reset_info.hard_reset_pending = true;
hdev->process_kill_trial_cnt = 0;
hdev->device_reset_work.flags = flags;
/*
* Because the reset function can't run from heartbeat work,
* we need to call the reset function from a dedicated work.
*/
queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);
return 0;
}
cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release);
kill_processes:
if (hard_reset) {
/* Kill processes here after CS rollback. This is because the
* process can't really exit until all its CSs are done, which
* is what we do in cs rollback
*/
rc = device_kill_open_processes(hdev, 0, false);
if (rc == -EBUSY) {
if (hdev->device_fini_pending) {
dev_crit(hdev->dev,
"%s Failed to kill all open processes, stopping hard reset\n",
dev_name(&(hdev)->pdev->dev));
goto out_err;
}
/* signal reset thread to reschedule */
return rc;
}
if (rc) {
dev_crit(hdev->dev,
"%s Failed to kill all open processes, stopping hard reset\n",
dev_name(&(hdev)->pdev->dev));
goto out_err;
}
/* Flush the Event queue workers to make sure no other thread is
* reading or writing to registers during the reset
*/
flush_workqueue(hdev->eq_wq);
}
/* Reset the H/W. It will be in idle state after this returns */
hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
if (hard_reset) {
hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
/* Release kernel context */
if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
hdev->kernel_ctx = NULL;
hl_vm_fini(hdev);
hl_mmu_fini(hdev);
hl_eq_reset(hdev, &hdev->event_queue);
}
/* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
hl_hw_queue_reset(hdev, hard_reset);
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
hl_cq_reset(hdev, &hdev->completion_queue[i]);
/* Make sure the context switch phase will run again */
ctx = hl_get_compute_ctx(hdev);
if (ctx) {
atomic_set(&ctx->thread_ctx_switch_token, 1);
ctx->thread_ctx_switch_wait_token = 0;
hl_ctx_put(ctx);
}
/* Finished tear-down, starting to re-initialize */
if (hard_reset) {
hdev->device_cpu_disabled = false;
hdev->reset_info.hard_reset_pending = false;
if (hdev->reset_info.reset_trigger_repeated &&
(hdev->reset_info.prev_reset_trigger ==
HL_DRV_RESET_FW_FATAL_ERR)) {
/* if there 2 back to back resets from FW,
* ensure driver puts the driver in a unusable state
*/
dev_crit(hdev->dev,
"%s Consecutive FW fatal errors received, stopping hard reset\n",
dev_name(&(hdev)->pdev->dev));
rc = -EIO;
goto out_err;
}
if (hdev->kernel_ctx) {
dev_crit(hdev->dev,
"%s kernel ctx was alive during hard reset, something is terribly wrong\n",
dev_name(&(hdev)->pdev->dev));
rc = -EBUSY;
goto out_err;
}
rc = hl_mmu_init(hdev);
if (rc) {
dev_err(hdev->dev,
"Failed to initialize MMU S/W after hard reset\n");
goto out_err;
}
/* Allocate the kernel context */
hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
GFP_KERNEL);
if (!hdev->kernel_ctx) {
rc = -ENOMEM;
hl_mmu_fini(hdev);
goto out_err;
}
hdev->is_compute_ctx_active = false;
rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
if (rc) {
dev_err(hdev->dev,
"failed to init kernel ctx in hard reset\n");
kfree(hdev->kernel_ctx);
hdev->kernel_ctx = NULL;
hl_mmu_fini(hdev);
goto out_err;
}
}
/* Device is now enabled as part of the initialization requires
* communication with the device firmware to get information that
* is required for the initialization itself
*/
hdev->disabled = false;
/* F/W security enabled indication might be updated after hard-reset */
if (hard_reset) {
rc = hl_fw_read_preboot_status(hdev);
if (rc)
goto out_err;
}
rc = hdev->asic_funcs->hw_init(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
goto out_err;
}
/* If device is not idle fail the reset process */
if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
print_idle_status_mask(hdev, "device is not idle after reset", idle_mask);
rc = -EIO;
goto out_err;
}
/* Check that the communication with the device is working */
rc = hdev->asic_funcs->test_queues(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
goto out_err;
}
if (hard_reset) {
rc = device_late_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed late init after hard reset\n");
goto out_err;
}
rc = hl_vm_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
goto out_err;
}
if (!hdev->asic_prop.fw_security_enabled)
hl_fw_set_max_power(hdev);
} else {
rc = hdev->asic_funcs->compute_reset_late_init(hdev);
if (rc) {
if (reset_upon_device_release)
dev_err(hdev->dev,
"Failed late init in reset after device release\n");
else
dev_err(hdev->dev, "Failed late init after compute reset\n");
goto out_err;
}
}
rc = hdev->asic_funcs->scrub_device_mem(hdev);
if (rc) {
dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
goto out_err;
}
spin_lock(&hdev->reset_info.lock);
hdev->reset_info.in_compute_reset = 0;
/* Schedule hard reset only if requested and if not already in hard reset.
* We keep 'in_reset' enabled, so no other reset can go in during the hard
* reset schedule
*/
if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
schedule_hard_reset = true;
else
hdev->reset_info.in_reset = 0;
spin_unlock(&hdev->reset_info.lock);
hdev->reset_info.needs_reset = false;
if (hard_reset)
dev_info(hdev->dev,
"Successfully finished resetting the %s device\n",
dev_name(&(hdev)->pdev->dev));
else
dev_dbg(hdev->dev,
"Successfully finished resetting the %s device\n",
dev_name(&(hdev)->pdev->dev));
if (hard_reset) {
hdev->reset_info.hard_reset_cnt++;
/* After reset is done, we are ready to receive events from
* the F/W. We can't do it before because we will ignore events
* and if those events are fatal, we won't know about it and
* the device will be operational although it shouldn't be
*/
hdev->asic_funcs->enable_events_from_fw(hdev);
} else {
if (!reset_upon_device_release)
hdev->reset_info.compute_reset_cnt++;
if (schedule_hard_reset) {
dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
flags = hdev->reset_info.hard_reset_schedule_flags;
hdev->reset_info.hard_reset_schedule_flags = 0;
hdev->disabled = true;
hard_reset = true;
handle_reset_trigger(hdev, flags);
goto again;
}
}
return 0;
out_err:
hdev->disabled = true;
spin_lock(&hdev->reset_info.lock);
hdev->reset_info.in_compute_reset = 0;
if (hard_reset) {
dev_err(hdev->dev,
"%s Failed to reset! Device is NOT usable\n",
dev_name(&(hdev)->pdev->dev));
hdev->reset_info.hard_reset_cnt++;
} else if (reset_upon_device_release) {
spin_unlock(&hdev->reset_info.lock);
dev_err(hdev->dev, "Failed to reset device after user release\n");
flags |= HL_DRV_RESET_HARD;
flags &= ~HL_DRV_RESET_DEV_RELEASE;
hard_reset = true;
goto again;
} else {
spin_unlock(&hdev->reset_info.lock);
dev_err(hdev->dev, "Failed to do compute reset\n");
hdev->reset_info.compute_reset_cnt++;
flags |= HL_DRV_RESET_HARD;
hard_reset = true;
goto again;
}
hdev->reset_info.in_reset = 0;
spin_unlock(&hdev->reset_info.lock);
return rc;
}
/*
* hl_device_cond_reset() - conditionally reset the device.
* @hdev: pointer to habanalabs device structure.
* @reset_flags: reset flags.
* @event_mask: events to notify user about.
*
* Conditionally reset the device, or alternatively schedule a watchdog work to reset the device
* unless another reset precedes it.
*/
int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask)
{
struct hl_ctx *ctx = NULL;
/* Device release watchdog is only for hard reset */
if (!(flags & HL_DRV_RESET_HARD) && hdev->asic_prop.allow_inference_soft_reset)
goto device_reset;
/* F/W reset cannot be postponed */
if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW)
goto device_reset;
/* Device release watchdog is relevant only if user exists and gets a reset notification */
if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) {
dev_err(hdev->dev, "Resetting device without a reset indication to user\n");
goto device_reset;
}
ctx = hl_get_compute_ctx(hdev);
if (!ctx || !ctx->hpriv->notifier_event.eventfd)
goto device_reset;
/* Schedule the device release watchdog work unless reset is already in progress or if the
* work is already scheduled.
*/
spin_lock(&hdev->reset_info.lock);
if (hdev->reset_info.in_reset) {
spin_unlock(&hdev->reset_info.lock);
goto device_reset;
}
if (hdev->reset_info.watchdog_active)
goto out;
hdev->device_release_watchdog_work.flags = flags;
dev_dbg(hdev->dev, "Device is going to be reset in %u sec unless being released\n",
hdev->device_release_watchdog_timeout_sec);
schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work,
msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000));
hdev->reset_info.watchdog_active = 1;
out:
spin_unlock(&hdev->reset_info.lock);
hl_notifier_event_send_all(hdev, event_mask);
hl_ctx_put(ctx);
hl_abort_waitings_for_completion(hdev);
return 0;
device_reset:
if (event_mask)
hl_notifier_event_send_all(hdev, event_mask);
if (ctx)
hl_ctx_put(ctx);
return hl_device_reset(hdev, flags);
}
static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
{
mutex_lock(&notifier_event->lock);
notifier_event->events_mask |= event_mask;
if (notifier_event->eventfd)
eventfd_signal(notifier_event->eventfd, 1);
mutex_unlock(&notifier_event->lock);
}
/*
* hl_notifier_event_send_all - notify all user processes via eventfd
*
* @hdev: pointer to habanalabs device structure
* @event_mask: the occurred event/s
* Returns 0 for success or an error on failure.
*/
void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
{
struct hl_fpriv *hpriv;
if (!event_mask) {
dev_warn(hdev->dev, "Skip sending zero event");
return;
}
mutex_lock(&hdev->fpriv_list_lock);
list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
hl_notifier_event_send(&hpriv->notifier_event, event_mask);
mutex_unlock(&hdev->fpriv_list_lock);
/* control device */
mutex_lock(&hdev->fpriv_ctrl_list_lock);
list_for_each_entry(hpriv, &hdev->fpriv_ctrl_list, dev_node)
hl_notifier_event_send(&hpriv->notifier_event, event_mask);
mutex_unlock(&hdev->fpriv_ctrl_list_lock);
}
/*
* hl_device_init - main initialization function for habanalabs device
*
* @hdev: pointer to habanalabs device structure
*
* Allocate an id for the device, do early initialization and then call the
* ASIC specific initialization functions. Finally, create the cdev and the
* Linux device to expose it to the user
*/
int hl_device_init(struct hl_device *hdev, struct class *hclass)
{
int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
char *name;
bool add_cdev_sysfs_on_err = false;
hdev->cdev_idx = hdev->id / 2;
name = kasprintf(GFP_KERNEL, "hl%d", hdev->cdev_idx);
if (!name) {
rc = -ENOMEM;
goto out_disabled;
}
/* Initialize cdev and device structures */
rc = device_init_cdev(hdev, hclass, hdev->id, &hl_ops, name,
&hdev->cdev, &hdev->dev);
kfree(name);
if (rc)
goto out_disabled;
name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->cdev_idx);
if (!name) {
rc = -ENOMEM;
goto free_dev;
}
/* Initialize cdev and device structures for control device */
rc = device_init_cdev(hdev, hclass, hdev->id_control, &hl_ctrl_ops,
name, &hdev->cdev_ctrl, &hdev->dev_ctrl);
kfree(name);
if (rc)
goto free_dev;
/* Initialize ASIC function pointers and perform early init */
rc = device_early_init(hdev);
if (rc)
goto free_dev_ctrl;
user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
hdev->asic_prop.user_interrupt_count;
if (user_interrupt_cnt) {
hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
GFP_KERNEL);
if (!hdev->user_interrupt) {
rc = -ENOMEM;
goto early_fini;
}
}
/*
* Start calling ASIC initialization. First S/W then H/W and finally
* late init
*/
rc = hdev->asic_funcs->sw_init(hdev);
if (rc)
goto free_usr_intr_mem;
/* initialize completion structure for multi CS wait */
hl_multi_cs_completion_init(hdev);
/*
* Initialize the H/W queues. Must be done before hw_init, because
* there the addresses of the kernel queue are being written to the
* registers of the device
*/
rc = hl_hw_queues_create(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize kernel queues\n");
goto sw_fini;
}
cq_cnt = hdev->asic_prop.completion_queues_count;
/*
* Initialize the completion queues. Must be done before hw_init,
* because there the addresses of the completion queues are being
* passed as arguments to request_irq
*/
if (cq_cnt) {
hdev->completion_queue = kcalloc(cq_cnt,
sizeof(*hdev->completion_queue),
GFP_KERNEL);
if (!hdev->completion_queue) {
dev_err(hdev->dev,
"failed to allocate completion queues\n");
rc = -ENOMEM;
goto hw_queues_destroy;
}
}
for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
rc = hl_cq_init(hdev, &hdev->completion_queue[i],
hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
if (rc) {
dev_err(hdev->dev,
"failed to initialize completion queue\n");
goto cq_fini;
}
hdev->completion_queue[i].cq_idx = i;
}
hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
sizeof(struct hl_cs *), GFP_KERNEL);
if (!hdev->shadow_cs_queue) {
rc = -ENOMEM;
goto cq_fini;
}
/*
* Initialize the event queue. Must be done before hw_init,
* because there the address of the event queue is being
* passed as argument to request_irq
*/
rc = hl_eq_init(hdev, &hdev->event_queue);
if (rc) {
dev_err(hdev->dev, "failed to initialize event queue\n");
goto free_shadow_cs_queue;
}
/* MMU S/W must be initialized before kernel context is created */
rc = hl_mmu_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
goto eq_fini;
}
/* Allocate the kernel context */
hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
if (!hdev->kernel_ctx) {
rc = -ENOMEM;
goto mmu_fini;
}
hdev->is_compute_ctx_active = false;
hdev->asic_funcs->state_dump_init(hdev);
hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC;
hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
hl_debugfs_add_device(hdev);
/* debugfs nodes are created in hl_ctx_init so it must be called after
* hl_debugfs_add_device.
*/
rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
if (rc) {
dev_err(hdev->dev, "failed to initialize kernel context\n");
kfree(hdev->kernel_ctx);
goto remove_device_from_debugfs;
}
rc = hl_cb_pool_init(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize CB pool\n");
goto release_ctx;
}
rc = hl_dec_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to initialize the decoder module\n");
goto cb_pool_fini;
}
/*
* From this point, override rc (=0) in case of an error to allow
* debugging (by adding char devices and create sysfs nodes as part of
* the error flow).
*/
add_cdev_sysfs_on_err = true;
/* Device is now enabled as part of the initialization requires
* communication with the device firmware to get information that
* is required for the initialization itself
*/
hdev->disabled = false;
rc = hdev->asic_funcs->hw_init(hdev);
if (rc) {
dev_err(hdev->dev, "failed to initialize the H/W\n");
rc = 0;
goto out_disabled;
}
/* Check that the communication with the device is working */
rc = hdev->asic_funcs->test_queues(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to detect if device is alive\n");
rc = 0;
goto out_disabled;
}
rc = device_late_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed late initialization\n");
rc = 0;
goto out_disabled;
}
dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
hdev->asic_name,
hdev->asic_prop.dram_size / SZ_1G);
rc = hl_vm_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to initialize memory module\n");
rc = 0;
goto out_disabled;
}
/*
* Expose devices and sysfs nodes to user.
* From here there is no need to add char devices and create sysfs nodes
* in case of an error.
*/
add_cdev_sysfs_on_err = false;
rc = device_cdev_sysfs_add(hdev);
if (rc) {
dev_err(hdev->dev,
"Failed to add char devices and sysfs nodes\n");
rc = 0;
goto out_disabled;
}
/* Need to call this again because the max power might change,
* depending on card type for certain ASICs
*/
if (hdev->asic_prop.set_max_power_on_device_init &&
!hdev->asic_prop.fw_security_enabled)
hl_fw_set_max_power(hdev);
/*
* hl_hwmon_init() must be called after device_late_init(), because only
* there we get the information from the device about which
* hwmon-related sensors the device supports.
* Furthermore, it must be done after adding the device to the system.
*/
rc = hl_hwmon_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to initialize hwmon\n");
rc = 0;
goto out_disabled;
}
dev_notice(hdev->dev,
"Successfully added device %s to habanalabs driver\n",
dev_name(&(hdev)->pdev->dev));
hdev->init_done = true;
/* After initialization is done, we are ready to receive events from
* the F/W. We can't do it before because we will ignore events and if
* those events are fatal, we won't know about it and the device will
* be operational although it shouldn't be
*/
hdev->asic_funcs->enable_events_from_fw(hdev);
return 0;
cb_pool_fini:
hl_cb_pool_fini(hdev);
release_ctx:
if (hl_ctx_put(hdev->kernel_ctx) != 1)
dev_err(hdev->dev,
"kernel ctx is still alive on initialization failure\n");
remove_device_from_debugfs:
hl_debugfs_remove_device(hdev);
mmu_fini:
hl_mmu_fini(hdev);
eq_fini:
hl_eq_fini(hdev, &hdev->event_queue);
free_shadow_cs_queue:
kfree(hdev->shadow_cs_queue);
cq_fini:
for (i = 0 ; i < cq_ready_cnt ; i++)
hl_cq_fini(hdev, &hdev->completion_queue[i]);
kfree(hdev->completion_queue);
hw_queues_destroy:
hl_hw_queues_destroy(hdev);
sw_fini:
hdev->asic_funcs->sw_fini(hdev);
free_usr_intr_mem:
kfree(hdev->user_interrupt);
early_fini:
device_early_fini(hdev);
free_dev_ctrl:
put_device(hdev->dev_ctrl);
free_dev:
put_device(hdev->dev);
out_disabled:
hdev->disabled = true;
if (add_cdev_sysfs_on_err)
device_cdev_sysfs_add(hdev);
if (hdev->pdev)
dev_err(&hdev->pdev->dev,
"Failed to initialize hl%d. Device %s is NOT usable !\n",
hdev->cdev_idx, dev_name(&(hdev)->pdev->dev));
else
pr_err("Failed to initialize hl%d. Device %s is NOT usable !\n",
hdev->cdev_idx, dev_name(&(hdev)->pdev->dev));
return rc;
}
/*
* hl_device_fini - main tear-down function for habanalabs device
*
* @hdev: pointer to habanalabs device structure
*
* Destroy the device, call ASIC fini functions and release the id
*/
void hl_device_fini(struct hl_device *hdev)
{
bool device_in_reset;
ktime_t timeout;
u64 reset_sec;
int i, rc;
dev_info(hdev->dev, "Removing device\n");
hdev->device_fini_pending = 1;
flush_delayed_work(&hdev->device_reset_work.reset_work);
if (hdev->pldm)
reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
else
reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
/*
* This function is competing with the reset function, so try to
* take the reset atomic and if we are already in middle of reset,
* wait until reset function is finished. Reset function is designed
* to always finish. However, in Gaudi, because of all the network
* ports, the hard reset could take between 10-30 seconds
*/
timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
spin_lock(&hdev->reset_info.lock);
device_in_reset = !!hdev->reset_info.in_reset;
if (!device_in_reset)
hdev->reset_info.in_reset = 1;
spin_unlock(&hdev->reset_info.lock);
while (device_in_reset) {
usleep_range(50, 200);
spin_lock(&hdev->reset_info.lock);
device_in_reset = !!hdev->reset_info.in_reset;
if (!device_in_reset)
hdev->reset_info.in_reset = 1;
spin_unlock(&hdev->reset_info.lock);
if (ktime_compare(ktime_get(), timeout) > 0) {
dev_crit(hdev->dev,
"%s Failed to remove device because reset function did not finish\n",
dev_name(&(hdev)->pdev->dev));
return;
}
}
cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work);
/* Disable PCI access from device F/W so it won't send us additional
* interrupts. We disable MSI/MSI-X at the halt_engines function and we
* can't have the F/W sending us interrupts after that. We need to
* disable the access here because if the device is marked disable, the
* message won't be send. Also, in case of heartbeat, the device CPU is
* marked as disable so this message won't be sent
*/
hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
/* Mark device as disabled */
hdev->disabled = true;
take_release_locks(hdev);
hdev->reset_info.hard_reset_pending = true;
hl_hwmon_fini(hdev);
cleanup_resources(hdev, true, false, false);
/* Kill processes here after CS rollback. This is because the process
* can't really exit until all its CSs are done, which is what we
* do in cs rollback
*/
dev_info(hdev->dev,
"Waiting for all processes to exit (timeout of %u seconds)",
HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI);
hdev->process_kill_trial_cnt = 0;
rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false);
if (rc) {
dev_crit(hdev->dev, "Failed to kill all open processes\n");
device_disable_open_processes(hdev, false);
}
hdev->process_kill_trial_cnt = 0;
rc = device_kill_open_processes(hdev, 0, true);
if (rc) {
dev_crit(hdev->dev, "Failed to kill all control device open processes\n");
device_disable_open_processes(hdev, true);
}
hl_cb_pool_fini(hdev);
/* Reset the H/W. It will be in idle state after this returns */
hdev->asic_funcs->hw_fini(hdev, true, false);
hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
/* Release kernel context */
if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
dev_err(hdev->dev, "kernel ctx is still alive\n");
hl_debugfs_remove_device(hdev);
hl_dec_fini(hdev);
hl_vm_fini(hdev);
hl_mmu_fini(hdev);
vfree(hdev->captured_err_info.page_fault_info.user_mappings);
hl_eq_fini(hdev, &hdev->event_queue);
kfree(hdev->shadow_cs_queue);
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
hl_cq_fini(hdev, &hdev->completion_queue[i]);
kfree(hdev->completion_queue);
kfree(hdev->user_interrupt);
hl_hw_queues_destroy(hdev);
/* Call ASIC S/W finalize function */
hdev->asic_funcs->sw_fini(hdev);
device_early_fini(hdev);
/* Hide devices and sysfs nodes from user */
device_cdev_sysfs_del(hdev);
pr_info("removed device successfully\n");
}
/*
* MMIO register access helper functions.
*/
/*
* hl_rreg - Read an MMIO register
*
* @hdev: pointer to habanalabs device structure
* @reg: MMIO register offset (in bytes)
*
* Returns the value of the MMIO register we are asked to read
*
*/
inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
{
u32 val = readl(hdev->rmmio + reg);
if (unlikely(trace_habanalabs_rreg32_enabled()))
trace_habanalabs_rreg32(hdev->dev, reg, val);
return val;
}
/*
* hl_wreg - Write to an MMIO register
*
* @hdev: pointer to habanalabs device structure
* @reg: MMIO register offset (in bytes)
* @val: 32-bit value
*
* Writes the 32-bit value into the MMIO register
*
*/
inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
{
if (unlikely(trace_habanalabs_wreg32_enabled()))
trace_habanalabs_wreg32(hdev->dev, reg, val);
writel(val, hdev->rmmio + reg);
}
void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
u8 flags)
{
struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info;
if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
dev_err(hdev->dev,
"Number of possible razwi initiators (%u) exceeded limit (%u)\n",
num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
return;
}
/* In case it's the first razwi since the device was opened, capture its parameters */
if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1))
return;
razwi_info->razwi.timestamp = ktime_to_ns(ktime_get());
razwi_info->razwi.addr = addr;
razwi_info->razwi.num_of_possible_engines = num_of_engines;
memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0],
num_of_engines * sizeof(u16));
razwi_info->razwi.flags = flags;
razwi_info->razwi_info_available = true;
}
void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
u8 flags, u64 *event_mask)
{
hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags);
if (event_mask)
*event_mask |= HL_NOTIFIER_EVENT_RAZWI;
}
static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
{
struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
struct hl_vm_hash_node *hnode;
struct hl_userptr *userptr;
enum vm_type *vm_type;
struct hl_ctx *ctx;
u32 map_idx = 0;
int i;
/* Reset previous session count*/
pgf_info->num_of_user_mappings = 0;
ctx = hl_get_compute_ctx(hdev);
if (!ctx) {
dev_err(hdev->dev, "Can't get user context for user mappings\n");
return;
}
mutex_lock(&ctx->mem_hash_lock);
hash_for_each(ctx->mem_hash, i, hnode, node) {
vm_type = hnode->ptr;
if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
pgf_info->num_of_user_mappings++;
}
if (!pgf_info->num_of_user_mappings)
goto finish;
/* In case we already allocated in previous session, need to release it before
* allocating new buffer.
*/
vfree(pgf_info->user_mappings);
pgf_info->user_mappings =
vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
if (!pgf_info->user_mappings) {
pgf_info->num_of_user_mappings = 0;
goto finish;
}
hash_for_each(ctx->mem_hash, i, hnode, node) {
vm_type = hnode->ptr;
if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
userptr = hnode->ptr;
pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
pgf_info->user_mappings[map_idx].size = userptr->size;
map_idx++;
} else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
phys_pg_pack = hnode->ptr;
pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
map_idx++;
}
}
finish:
mutex_unlock(&ctx->mem_hash_lock);
hl_ctx_put(ctx);
}
void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
{
struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
/* Capture only the first page fault */
if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1))
return;
pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get());
pgf_info->page_fault.addr = addr;
pgf_info->page_fault.engine_id = eng_id;
hl_capture_user_mappings(hdev, is_pmmu);
pgf_info->page_fault_info_available = true;
}
void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
u64 *event_mask)
{
hl_capture_page_fault(hdev, addr, eng_id, is_pmmu);
if (event_mask)
*event_mask |= HL_NOTIFIER_EVENT_PAGE_FAULT;
}