linux-zen-desktop/drivers/accel/habanalabs/common/irq.c

586 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2022 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include <linux/slab.h>
/**
* struct hl_eqe_work - This structure is used to schedule work of EQ
* entry and cpucp_reset event
*
* @eq_work: workqueue object to run when EQ entry is received
* @hdev: pointer to device structure
* @eq_entry: copy of the EQ entry
*/
struct hl_eqe_work {
struct work_struct eq_work;
struct hl_device *hdev;
struct hl_eq_entry eq_entry;
};
/**
* hl_cq_inc_ptr - increment ci or pi of cq
*
* @ptr: the current ci or pi value of the completion queue
*
* Increment ptr by 1. If it reaches the number of completion queue
* entries, set it to 0
*/
inline u32 hl_cq_inc_ptr(u32 ptr)
{
ptr++;
if (unlikely(ptr == HL_CQ_LENGTH))
ptr = 0;
return ptr;
}
/**
* hl_eq_inc_ptr - increment ci of eq
*
* @ptr: the current ci value of the event queue
*
* Increment ptr by 1. If it reaches the number of event queue
* entries, set it to 0
*/
static inline u32 hl_eq_inc_ptr(u32 ptr)
{
ptr++;
if (unlikely(ptr == HL_EQ_LENGTH))
ptr = 0;
return ptr;
}
static void irq_handle_eqe(struct work_struct *work)
{
struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work,
eq_work);
struct hl_device *hdev = eqe_work->hdev;
hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry);
kfree(eqe_work);
}
/**
* job_finish - queue job finish work
*
* @hdev: pointer to device structure
* @cs_seq: command submission sequence
* @cq: completion queue
* @timestamp: interrupt timestamp
*
*/
static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq, ktime_t timestamp)
{
struct hl_hw_queue *queue;
struct hl_cs_job *job;
queue = &hdev->kernel_queues[cq->hw_queue_id];
job = queue->shadow_queue[hl_pi_2_offset(cs_seq)];
job->timestamp = timestamp;
queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work);
atomic_inc(&queue->ci);
}
/**
* cs_finish - queue all cs jobs finish work
*
* @hdev: pointer to device structure
* @cs_seq: command submission sequence
* @timestamp: interrupt timestamp
*
*/
static void cs_finish(struct hl_device *hdev, u16 cs_seq, ktime_t timestamp)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_hw_queue *queue;
struct hl_cs *cs;
struct hl_cs_job *job;
cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)];
if (!cs) {
dev_warn(hdev->dev,
"No pointer to CS in shadow array at index %d\n",
cs_seq);
return;
}
list_for_each_entry(job, &cs->job_list, cs_node) {
queue = &hdev->kernel_queues[job->hw_queue_id];
atomic_inc(&queue->ci);
}
cs->completion_timestamp = timestamp;
queue_work(hdev->cs_cmplt_wq, &cs->finish_work);
}
/**
* hl_irq_handler_cq - irq handler for completion queue
*
* @irq: irq number
* @arg: pointer to completion queue structure
*
*/
irqreturn_t hl_irq_handler_cq(int irq, void *arg)
{
struct hl_cq *cq = arg;
struct hl_device *hdev = cq->hdev;
bool shadow_index_valid, entry_ready;
u16 shadow_index;
struct hl_cq_entry *cq_entry, *cq_base;
ktime_t timestamp = ktime_get();
if (hdev->disabled) {
dev_dbg(hdev->dev,
"Device disabled but received IRQ %d for CQ %d\n",
irq, cq->hw_queue_id);
return IRQ_HANDLED;
}
cq_base = cq->kernel_address;
while (1) {
cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci];
entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK,
le32_to_cpu(cq_entry->data));
if (!entry_ready)
break;
/* Make sure we read CQ entry contents after we've
* checked the ownership bit.
*/
dma_rmb();
shadow_index_valid =
!!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK,
le32_to_cpu(cq_entry->data));
shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK,
le32_to_cpu(cq_entry->data));
/*
* CQ interrupt handler has 2 modes of operation:
* 1. Interrupt per CS completion: (Single CQ for all queues)
* CQ entry represents a completed CS
*
* 2. Interrupt per CS job completion in queue: (CQ per queue)
* CQ entry represents a completed job in a certain queue
*/
if (shadow_index_valid && !hdev->disabled) {
if (hdev->asic_prop.completion_mode ==
HL_COMPLETION_MODE_CS)
cs_finish(hdev, shadow_index, timestamp);
else
job_finish(hdev, shadow_index, cq, timestamp);
}
/* Clear CQ entry ready bit */
cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) &
~CQ_ENTRY_READY_MASK);
cq->ci = hl_cq_inc_ptr(cq->ci);
/* Increment free slots */
atomic_inc(&cq->free_slots_cnt);
}
return IRQ_HANDLED;
}
/*
* hl_ts_free_objects - handler of the free objects workqueue.
* This function should put refcount to objects that the registration node
* took refcount to them.
* @work: workqueue object pointer
*/
static void hl_ts_free_objects(struct work_struct *work)
{
struct timestamp_reg_work_obj *job =
container_of(work, struct timestamp_reg_work_obj, free_obj);
struct timestamp_reg_free_node *free_obj, *temp_free_obj;
struct list_head *free_list_head = job->free_obj_head;
struct hl_device *hdev = job->hdev;
list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) {
dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n",
free_obj->buf,
free_obj->cq_cb);
hl_mmap_mem_buf_put(free_obj->buf);
hl_cb_put(free_obj->cq_cb);
kfree(free_obj);
}
kfree(free_list_head);
kfree(job);
}
/*
* This function called with spin_lock of wait_list_lock taken
* This function will set timestamp and delete the registration node from the
* wait_list_lock.
* and since we're protected with spin_lock here, so we cannot just put the refcount
* for the objects here, since the release function may be called and it's also a long
* logic (which might sleep also) that cannot be handled in irq context.
* so here we'll be filling a list with nodes of "put" jobs and then will send this
* list to a dedicated workqueue to do the actual put.
*/
static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend,
struct list_head **free_list, ktime_t now)
{
struct timestamp_reg_free_node *free_node;
u64 timestamp;
if (!(*free_list)) {
/* Alloc/Init the timestamp registration free objects list */
*free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
if (!(*free_list))
return -ENOMEM;
INIT_LIST_HEAD(*free_list);
}
free_node = kmalloc(sizeof(*free_node), GFP_ATOMIC);
if (!free_node)
return -ENOMEM;
timestamp = ktime_to_ns(now);
*pend->ts_reg_info.timestamp_kernel_addr = timestamp;
dev_dbg(hdev->dev, "Timestamp is set to ts cb address (%p), ts: 0x%llx\n",
pend->ts_reg_info.timestamp_kernel_addr,
*(u64 *)pend->ts_reg_info.timestamp_kernel_addr);
list_del(&pend->wait_list_node);
/* Mark kernel CB node as free */
pend->ts_reg_info.in_use = 0;
/* Putting the refcount for ts_buff and cq_cb objects will be handled
* in workqueue context, just add job to free_list.
*/
free_node->buf = pend->ts_reg_info.buf;
free_node->cq_cb = pend->ts_reg_info.cq_cb;
list_add(&free_node->free_objects_node, *free_list);
return 0;
}
static void handle_user_interrupt(struct hl_device *hdev, struct hl_user_interrupt *intr)
{
struct hl_user_pending_interrupt *pend, *temp_pend;
struct list_head *ts_reg_free_list_head = NULL;
struct timestamp_reg_work_obj *job;
bool reg_node_handle_fail = false;
ktime_t now = ktime_get();
int rc;
/* For registration nodes:
* As part of handling the registration nodes, we should put refcount to
* some objects. the problem is that we cannot do that under spinlock
* or in irq handler context at all (since release functions are long and
* might sleep), so we will need to handle that part in workqueue context.
* To avoid handling kmalloc failure which compels us rolling back actions
* and move nodes hanged on the free list back to the interrupt wait list
* we always alloc the job of the WQ at the beginning.
*/
job = kmalloc(sizeof(*job), GFP_ATOMIC);
if (!job)
return;
spin_lock(&intr->wait_list_lock);
list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, wait_list_node) {
if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
!pend->cq_kernel_addr) {
if (pend->ts_reg_info.buf) {
if (!reg_node_handle_fail) {
rc = handle_registration_node(hdev, pend,
&ts_reg_free_list_head, now);
if (rc)
reg_node_handle_fail = true;
}
} else {
/* Handle wait target value node */
pend->fence.timestamp = now;
complete_all(&pend->fence.completion);
}
}
}
spin_unlock(&intr->wait_list_lock);
if (ts_reg_free_list_head) {
INIT_WORK(&job->free_obj, hl_ts_free_objects);
job->free_obj_head = ts_reg_free_list_head;
job->hdev = hdev;
queue_work(hdev->ts_free_obj_wq, &job->free_obj);
} else {
kfree(job);
}
}
/**
* hl_irq_handler_user_interrupt - irq handler for user interrupts
*
* @irq: irq number
* @arg: pointer to user interrupt structure
*
*/
irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg)
{
struct hl_user_interrupt *user_int = arg;
struct hl_device *hdev = user_int->hdev;
switch (user_int->type) {
case HL_USR_INTERRUPT_CQ:
handle_user_interrupt(hdev, &hdev->common_user_cq_interrupt);
/* Handle user cq interrupt registered on this specific irq */
handle_user_interrupt(hdev, user_int);
break;
case HL_USR_INTERRUPT_DECODER:
handle_user_interrupt(hdev, &hdev->common_decoder_interrupt);
/* Handle decoder interrupt registered on this specific irq */
handle_user_interrupt(hdev, user_int);
break;
default:
break;
}
return IRQ_HANDLED;
}
/**
* hl_irq_handler_default - default irq handler
*
* @irq: irq number
* @arg: pointer to user interrupt structure
*
*/
irqreturn_t hl_irq_handler_default(int irq, void *arg)
{
struct hl_user_interrupt *user_interrupt = arg;
struct hl_device *hdev = user_interrupt->hdev;
u32 interrupt_id = user_interrupt->interrupt_id;
dev_err(hdev->dev, "got invalid user interrupt %u", interrupt_id);
return IRQ_HANDLED;
}
/**
* hl_irq_handler_eq - irq handler for event queue
*
* @irq: irq number
* @arg: pointer to event queue structure
*
*/
irqreturn_t hl_irq_handler_eq(int irq, void *arg)
{
struct hl_eq *eq = arg;
struct hl_device *hdev = eq->hdev;
struct hl_eq_entry *eq_entry;
struct hl_eq_entry *eq_base;
struct hl_eqe_work *handle_eqe_work;
bool entry_ready;
u32 cur_eqe;
u16 cur_eqe_index;
eq_base = eq->kernel_address;
while (1) {
cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl);
entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe);
if (!entry_ready)
break;
cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe);
if ((hdev->event_queue.check_eqe_index) &&
(((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK)
!= cur_eqe_index)) {
dev_dbg(hdev->dev,
"EQE 0x%x in queue is ready but index does not match %d!=%d",
eq_base[eq->ci].hdr.ctl,
((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK),
cur_eqe_index);
break;
}
eq->prev_eqe_index++;
eq_entry = &eq_base[eq->ci];
/*
* Make sure we read EQ entry contents after we've
* checked the ownership bit.
*/
dma_rmb();
if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
dev_warn(hdev->dev, "Device disabled but received an EQ event\n");
goto skip_irq;
}
handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC);
if (handle_eqe_work) {
INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe);
handle_eqe_work->hdev = hdev;
memcpy(&handle_eqe_work->eq_entry, eq_entry,
sizeof(*eq_entry));
queue_work(hdev->eq_wq, &handle_eqe_work->eq_work);
}
skip_irq:
/* Clear EQ entry ready bit */
eq_entry->hdr.ctl =
cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) &
~EQ_CTL_READY_MASK);
eq->ci = hl_eq_inc_ptr(eq->ci);
hdev->asic_funcs->update_eq_ci(hdev, eq->ci);
}
return IRQ_HANDLED;
}
/**
* hl_irq_handler_dec_abnrm - Decoder error interrupt handler
* @irq: IRQ number
* @arg: pointer to decoder structure.
*/
irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg)
{
struct hl_dec *dec = arg;
schedule_work(&dec->completion_abnrm_work);
return IRQ_HANDLED;
}
/**
* hl_cq_init - main initialization function for an cq object
*
* @hdev: pointer to device structure
* @q: pointer to cq structure
* @hw_queue_id: The H/W queue ID this completion queue belongs to
* HL_INVALID_QUEUE if cq is not attached to any specific queue
*
* Allocate dma-able memory for the completion queue and initialize fields
* Returns 0 on success
*/
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id)
{
void *p;
p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address,
GFP_KERNEL | __GFP_ZERO);
if (!p)
return -ENOMEM;
q->hdev = hdev;
q->kernel_address = p;
q->hw_queue_id = hw_queue_id;
q->ci = 0;
q->pi = 0;
atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
return 0;
}
/**
* hl_cq_fini - destroy completion queue
*
* @hdev: pointer to device structure
* @q: pointer to cq structure
*
* Free the completion queue memory
*/
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q)
{
hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address);
}
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q)
{
q->ci = 0;
q->pi = 0;
atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
/*
* It's not enough to just reset the PI/CI because the H/W may have
* written valid completion entries before it was halted and therefore
* we need to clean the actual queues so we won't process old entries
* when the device is operational again
*/
memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES);
}
/**
* hl_eq_init - main initialization function for an event queue object
*
* @hdev: pointer to device structure
* @q: pointer to eq structure
*
* Allocate dma-able memory for the event queue and initialize fields
* Returns 0 on success
*/
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q)
{
void *p;
p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_EQ_SIZE_IN_BYTES, &q->bus_address);
if (!p)
return -ENOMEM;
q->hdev = hdev;
q->kernel_address = p;
q->ci = 0;
q->prev_eqe_index = 0;
return 0;
}
/**
* hl_eq_fini - destroy event queue
*
* @hdev: pointer to device structure
* @q: pointer to eq structure
*
* Free the event queue memory
*/
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q)
{
flush_workqueue(hdev->eq_wq);
hl_cpu_accessible_dma_pool_free(hdev, HL_EQ_SIZE_IN_BYTES, q->kernel_address);
}
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q)
{
q->ci = 0;
q->prev_eqe_index = 0;
/*
* It's not enough to just reset the PI/CI because the H/W may have
* written valid completion entries before it was halted and therefore
* we need to clean the actual queues so we won't process old entries
* when the device is operational again
*/
memset(q->kernel_address, 0, HL_EQ_SIZE_IN_BYTES);
}