linux-zen-desktop/drivers/gpu/drm/i915/gem/i915_gem_ttm_move.c

748 lines
21 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include <drm/ttm/ttm_tt.h>
#include "i915_deps.h"
#include "i915_drv.h"
#include "intel_memory_region.h"
#include "intel_region_ttm.h"
#include "gem/i915_gem_object.h"
#include "gem/i915_gem_region.h"
#include "gem/i915_gem_ttm.h"
#include "gem/i915_gem_ttm_move.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt.h"
#include "gt/intel_migrate.h"
/**
* DOC: Selftest failure modes for failsafe migration:
*
* For fail_gpu_migration, the gpu blit scheduled is always a clear blit
* rather than a copy blit, and then we force the failure paths as if
* the blit fence returned an error.
*
* For fail_work_allocation we fail the kmalloc of the async worker, we
* sync the gpu blit. If it then fails, or fail_gpu_migration is set to
* true, then a memcpy operation is performed sync.
*/
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
static bool fail_gpu_migration;
static bool fail_work_allocation;
static bool ban_memcpy;
void i915_ttm_migrate_set_failure_modes(bool gpu_migration,
bool work_allocation)
{
fail_gpu_migration = gpu_migration;
fail_work_allocation = work_allocation;
}
void i915_ttm_migrate_set_ban_memcpy(bool ban)
{
ban_memcpy = ban;
}
#endif
static enum i915_cache_level
i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res,
struct ttm_tt *ttm)
{
return ((HAS_LLC(i915) || HAS_SNOOP(i915)) &&
!i915_ttm_gtt_binds_lmem(res) &&
ttm->caching == ttm_cached) ? I915_CACHE_LLC :
I915_CACHE_NONE;
}
static struct intel_memory_region *
i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type)
{
struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
/* There's some room for optimization here... */
GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM &&
ttm_mem_type < I915_PL_LMEM0);
if (ttm_mem_type == I915_PL_SYSTEM)
return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM,
0);
return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL,
ttm_mem_type - I915_PL_LMEM0);
}
/**
* i915_ttm_adjust_domains_after_move - Adjust the GEM domains after a
* TTM move
* @obj: The gem object
*/
void i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
if (i915_ttm_cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) {
obj->write_domain = I915_GEM_DOMAIN_WC;
obj->read_domains = I915_GEM_DOMAIN_WC;
} else {
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
}
}
/**
* i915_ttm_adjust_gem_after_move - Adjust the GEM state after a TTM move
* @obj: The gem object
*
* Adjusts the GEM object's region, mem_flags and cache coherency after a
* TTM move.
*/
void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
unsigned int cache_level;
unsigned int mem_flags;
unsigned int i;
int mem_type;
/*
* We might have been purged (or swapped out) if the resource is NULL,
* in which case the SYSTEM placement is the closest match to describe
* the current domain. If the object is ever used in this state then we
* will require moving it again.
*/
if (!bo->resource) {
mem_flags = I915_BO_FLAG_STRUCT_PAGE;
mem_type = I915_PL_SYSTEM;
cache_level = I915_CACHE_NONE;
} else {
mem_flags = i915_ttm_cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM :
I915_BO_FLAG_STRUCT_PAGE;
mem_type = bo->resource->mem_type;
cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource,
bo->ttm);
}
/*
* If object was moved to an allowable region, update the object
* region to consider it migrated. Note that if it's currently not
* in an allowable region, it's evicted and we don't update the
* object region.
*/
if (intel_region_to_ttm_type(obj->mm.region) != mem_type) {
for (i = 0; i < obj->mm.n_placements; ++i) {
struct intel_memory_region *mr = obj->mm.placements[i];
if (intel_region_to_ttm_type(mr) == mem_type &&
mr != obj->mm.region) {
i915_gem_object_release_memory_region(obj);
i915_gem_object_init_memory_region(obj, mr);
break;
}
}
}
obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM);
obj->mem_flags |= mem_flags;
i915_gem_object_set_cache_coherency(obj, cache_level);
}
/**
* i915_ttm_move_notify - Prepare an object for move
* @bo: The ttm buffer object.
*
* This function prepares an object for move by removing all GPU bindings,
* removing all CPU mapings and finally releasing the pages sg-table.
*
* Return: 0 if successful, negative error code on error.
*/
int i915_ttm_move_notify(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
int ret;
/*
* Note: The async unbinding here will actually transform the
* blocking wait for unbind into a wait before finally submitting
* evict / migration blit and thus stall the migration timeline
* which may not be good for overall throughput. We should make
* sure we await the unbind fences *after* the migration blit
* instead of *before* as we currently do.
*/
ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE |
I915_GEM_OBJECT_UNBIND_ASYNC);
if (ret)
return ret;
ret = __i915_gem_object_put_pages(obj);
if (ret)
return ret;
return 0;
}
static struct dma_fence *i915_ttm_accel_move(struct ttm_buffer_object *bo,
bool clear,
struct ttm_resource *dst_mem,
struct ttm_tt *dst_ttm,
struct sg_table *dst_st,
const struct i915_deps *deps)
{
struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
bdev);
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct i915_request *rq;
struct ttm_tt *src_ttm = bo->ttm;
enum i915_cache_level src_level, dst_level;
int ret;
if (!to_gt(i915)->migrate.context || intel_gt_is_wedged(to_gt(i915)))
return ERR_PTR(-EINVAL);
/* With fail_gpu_migration, we always perform a GPU clear. */
if (I915_SELFTEST_ONLY(fail_gpu_migration))
clear = true;
dst_level = i915_ttm_cache_level(i915, dst_mem, dst_ttm);
if (clear) {
if (bo->type == ttm_bo_type_kernel &&
!I915_SELFTEST_ONLY(fail_gpu_migration))
return ERR_PTR(-EINVAL);
intel_engine_pm_get(to_gt(i915)->migrate.context->engine);
ret = intel_context_migrate_clear(to_gt(i915)->migrate.context, deps,
dst_st->sgl, dst_level,
i915_ttm_gtt_binds_lmem(dst_mem),
0, &rq);
} else {
struct i915_refct_sgt *src_rsgt =
i915_ttm_resource_get_st(obj, bo->resource);
if (IS_ERR(src_rsgt))
return ERR_CAST(src_rsgt);
src_level = i915_ttm_cache_level(i915, bo->resource, src_ttm);
intel_engine_pm_get(to_gt(i915)->migrate.context->engine);
ret = intel_context_migrate_copy(to_gt(i915)->migrate.context,
deps, src_rsgt->table.sgl,
src_level,
i915_ttm_gtt_binds_lmem(bo->resource),
dst_st->sgl, dst_level,
i915_ttm_gtt_binds_lmem(dst_mem),
&rq);
i915_refct_sgt_put(src_rsgt);
}
intel_engine_pm_put(to_gt(i915)->migrate.context->engine);
if (ret && rq) {
i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
i915_request_put(rq);
}
return ret ? ERR_PTR(ret) : &rq->fence;
}
/**
* struct i915_ttm_memcpy_arg - argument for the bo memcpy functionality.
* @_dst_iter: Storage space for the destination kmap iterator.
* @_src_iter: Storage space for the source kmap iterator.
* @dst_iter: Pointer to the destination kmap iterator.
* @src_iter: Pointer to the source kmap iterator.
* @clear: Whether to clear instead of copy.
* @src_rsgt: Refcounted scatter-gather list of source memory.
* @dst_rsgt: Refcounted scatter-gather list of destination memory.
*/
struct i915_ttm_memcpy_arg {
union {
struct ttm_kmap_iter_tt tt;
struct ttm_kmap_iter_iomap io;
} _dst_iter,
_src_iter;
struct ttm_kmap_iter *dst_iter;
struct ttm_kmap_iter *src_iter;
unsigned long num_pages;
bool clear;
struct i915_refct_sgt *src_rsgt;
struct i915_refct_sgt *dst_rsgt;
};
/**
* struct i915_ttm_memcpy_work - Async memcpy worker under a dma-fence.
* @fence: The dma-fence.
* @work: The work struct use for the memcpy work.
* @lock: The fence lock. Not used to protect anything else ATM.
* @irq_work: Low latency worker to signal the fence since it can't be done
* from the callback for lockdep reasons.
* @cb: Callback for the accelerated migration fence.
* @arg: The argument for the memcpy functionality.
* @i915: The i915 pointer.
* @obj: The GEM object.
* @memcpy_allowed: Instead of processing the @arg, and falling back to memcpy
* or memset, we wedge the device and set the @obj unknown_state, to prevent
* further access to the object with the CPU or GPU. On some devices we might
* only be permitted to use the blitter engine for such operations.
*/
struct i915_ttm_memcpy_work {
struct dma_fence fence;
struct work_struct work;
spinlock_t lock;
struct irq_work irq_work;
struct dma_fence_cb cb;
struct i915_ttm_memcpy_arg arg;
struct drm_i915_private *i915;
struct drm_i915_gem_object *obj;
bool memcpy_allowed;
};
static void i915_ttm_move_memcpy(struct i915_ttm_memcpy_arg *arg)
{
ttm_move_memcpy(arg->clear, arg->num_pages,
arg->dst_iter, arg->src_iter);
}
static void i915_ttm_memcpy_init(struct i915_ttm_memcpy_arg *arg,
struct ttm_buffer_object *bo, bool clear,
struct ttm_resource *dst_mem,
struct ttm_tt *dst_ttm,
struct i915_refct_sgt *dst_rsgt)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct intel_memory_region *dst_reg, *src_reg;
dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type);
src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type);
GEM_BUG_ON(!dst_reg || !src_reg);
arg->dst_iter = !i915_ttm_cpu_maps_iomem(dst_mem) ?
ttm_kmap_iter_tt_init(&arg->_dst_iter.tt, dst_ttm) :
ttm_kmap_iter_iomap_init(&arg->_dst_iter.io, &dst_reg->iomap,
&dst_rsgt->table, dst_reg->region.start);
arg->src_iter = !i915_ttm_cpu_maps_iomem(bo->resource) ?
ttm_kmap_iter_tt_init(&arg->_src_iter.tt, bo->ttm) :
ttm_kmap_iter_iomap_init(&arg->_src_iter.io, &src_reg->iomap,
&obj->ttm.cached_io_rsgt->table,
src_reg->region.start);
arg->clear = clear;
arg->num_pages = bo->base.size >> PAGE_SHIFT;
arg->dst_rsgt = i915_refct_sgt_get(dst_rsgt);
arg->src_rsgt = clear ? NULL :
i915_ttm_resource_get_st(obj, bo->resource);
}
static void i915_ttm_memcpy_release(struct i915_ttm_memcpy_arg *arg)
{
i915_refct_sgt_put(arg->src_rsgt);
i915_refct_sgt_put(arg->dst_rsgt);
}
static void __memcpy_work(struct work_struct *work)
{
struct i915_ttm_memcpy_work *copy_work =
container_of(work, typeof(*copy_work), work);
struct i915_ttm_memcpy_arg *arg = &copy_work->arg;
bool cookie;
/*
* FIXME: We need to take a closer look here. We should be able to plonk
* this into the fence critical section.
*/
if (!copy_work->memcpy_allowed) {
struct intel_gt *gt;
unsigned int id;
for_each_gt(gt, copy_work->i915, id)
intel_gt_set_wedged(gt);
}
cookie = dma_fence_begin_signalling();
if (copy_work->memcpy_allowed) {
i915_ttm_move_memcpy(arg);
} else {
/*
* Prevent further use of the object. Any future GTT binding or
* CPU access is not allowed once we signal the fence. Outside
* of the fence critical section, we then also then wedge the gpu
* to indicate the device is not functional.
*
* The below dma_fence_signal() is our write-memory-barrier.
*/
copy_work->obj->mm.unknown_state = true;
}
dma_fence_end_signalling(cookie);
dma_fence_signal(&copy_work->fence);
i915_ttm_memcpy_release(arg);
i915_gem_object_put(copy_work->obj);
dma_fence_put(&copy_work->fence);
}
static void __memcpy_irq_work(struct irq_work *irq_work)
{
struct i915_ttm_memcpy_work *copy_work =
container_of(irq_work, typeof(*copy_work), irq_work);
struct i915_ttm_memcpy_arg *arg = &copy_work->arg;
dma_fence_signal(&copy_work->fence);
i915_ttm_memcpy_release(arg);
i915_gem_object_put(copy_work->obj);
dma_fence_put(&copy_work->fence);
}
static void __memcpy_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
{
struct i915_ttm_memcpy_work *copy_work =
container_of(cb, typeof(*copy_work), cb);
if (unlikely(fence->error || I915_SELFTEST_ONLY(fail_gpu_migration))) {
INIT_WORK(&copy_work->work, __memcpy_work);
queue_work(system_unbound_wq, &copy_work->work);
} else {
init_irq_work(&copy_work->irq_work, __memcpy_irq_work);
irq_work_queue(&copy_work->irq_work);
}
}
static const char *get_driver_name(struct dma_fence *fence)
{
return "i915_ttm_memcpy_work";
}
static const char *get_timeline_name(struct dma_fence *fence)
{
return "unbound";
}
static const struct dma_fence_ops dma_fence_memcpy_ops = {
.get_driver_name = get_driver_name,
.get_timeline_name = get_timeline_name,
};
static struct dma_fence *
i915_ttm_memcpy_work_arm(struct i915_ttm_memcpy_work *work,
struct dma_fence *dep)
{
int ret;
spin_lock_init(&work->lock);
dma_fence_init(&work->fence, &dma_fence_memcpy_ops, &work->lock, 0, 0);
dma_fence_get(&work->fence);
ret = dma_fence_add_callback(dep, &work->cb, __memcpy_cb);
if (ret) {
if (ret != -ENOENT)
dma_fence_wait(dep, false);
return ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ? -EINVAL :
dep->error);
}
return &work->fence;
}
static bool i915_ttm_memcpy_allowed(struct ttm_buffer_object *bo,
struct ttm_resource *dst_mem)
{
if (i915_gem_object_needs_ccs_pages(i915_ttm_to_gem(bo)))
return false;
if (!(i915_ttm_resource_mappable(bo->resource) &&
i915_ttm_resource_mappable(dst_mem)))
return false;
return I915_SELFTEST_ONLY(ban_memcpy) ? false : true;
}
static struct dma_fence *
__i915_ttm_move(struct ttm_buffer_object *bo,
const struct ttm_operation_ctx *ctx, bool clear,
struct ttm_resource *dst_mem, struct ttm_tt *dst_ttm,
struct i915_refct_sgt *dst_rsgt, bool allow_accel,
const struct i915_deps *move_deps)
{
const bool memcpy_allowed = i915_ttm_memcpy_allowed(bo, dst_mem);
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct drm_i915_private *i915 = to_i915(bo->base.dev);
struct i915_ttm_memcpy_work *copy_work = NULL;
struct i915_ttm_memcpy_arg _arg, *arg = &_arg;
struct dma_fence *fence = ERR_PTR(-EINVAL);
if (allow_accel) {
fence = i915_ttm_accel_move(bo, clear, dst_mem, dst_ttm,
&dst_rsgt->table, move_deps);
/*
* We only need to intercept the error when moving to lmem.
* When moving to system, TTM or shmem will provide us with
* cleared pages.
*/
if (!IS_ERR(fence) && !i915_ttm_gtt_binds_lmem(dst_mem) &&
!I915_SELFTEST_ONLY(fail_gpu_migration ||
fail_work_allocation))
goto out;
}
/* If we've scheduled gpu migration. Try to arm error intercept. */
if (!IS_ERR(fence)) {
struct dma_fence *dep = fence;
if (!I915_SELFTEST_ONLY(fail_work_allocation))
copy_work = kzalloc(sizeof(*copy_work), GFP_KERNEL);
if (copy_work) {
copy_work->i915 = i915;
copy_work->memcpy_allowed = memcpy_allowed;
copy_work->obj = i915_gem_object_get(obj);
arg = &copy_work->arg;
if (memcpy_allowed)
i915_ttm_memcpy_init(arg, bo, clear, dst_mem,
dst_ttm, dst_rsgt);
fence = i915_ttm_memcpy_work_arm(copy_work, dep);
} else {
dma_fence_wait(dep, false);
fence = ERR_PTR(I915_SELFTEST_ONLY(fail_gpu_migration) ?
-EINVAL : fence->error);
}
dma_fence_put(dep);
if (!IS_ERR(fence))
goto out;
} else {
int err = PTR_ERR(fence);
if (err == -EINTR || err == -ERESTARTSYS || err == -EAGAIN)
return fence;
if (move_deps) {
err = i915_deps_sync(move_deps, ctx);
if (err)
return ERR_PTR(err);
}
}
/* Error intercept failed or no accelerated migration to start with */
if (memcpy_allowed) {
if (!copy_work)
i915_ttm_memcpy_init(arg, bo, clear, dst_mem, dst_ttm,
dst_rsgt);
i915_ttm_move_memcpy(arg);
i915_ttm_memcpy_release(arg);
}
if (copy_work)
i915_gem_object_put(copy_work->obj);
kfree(copy_work);
return memcpy_allowed ? NULL : ERR_PTR(-EIO);
out:
if (!fence && copy_work) {
i915_ttm_memcpy_release(arg);
i915_gem_object_put(copy_work->obj);
kfree(copy_work);
}
return fence;
}
/**
* i915_ttm_move - The TTM move callback used by i915.
* @bo: The buffer object.
* @evict: Whether this is an eviction.
* @dst_mem: The destination ttm resource.
* @hop: If we need multihop, what temporary memory type to move to.
*
* Return: 0 if successful, negative error code otherwise.
*/
int i915_ttm_move(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_resource *dst_mem,
struct ttm_place *hop)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct ttm_resource_manager *dst_man =
ttm_manager_type(bo->bdev, dst_mem->mem_type);
struct dma_fence *migration_fence = NULL;
struct ttm_tt *ttm = bo->ttm;
struct i915_refct_sgt *dst_rsgt;
bool clear;
int ret;
if (GEM_WARN_ON(i915_ttm_is_ghost_object(bo))) {
ttm_bo_move_null(bo, dst_mem);
return 0;
}
if (!bo->resource) {
if (dst_mem->mem_type != TTM_PL_SYSTEM) {
hop->mem_type = TTM_PL_SYSTEM;
hop->flags = TTM_PL_FLAG_TEMPORARY;
return -EMULTIHOP;
}
/*
* This is only reached when first creating the object, or if
* the object was purged or swapped out (pipeline-gutting). For
* the former we can safely skip all of the below since we are
* only using a dummy SYSTEM placement here. And with the latter
* we will always re-enter here with bo->resource set correctly
* (as per the above), since this is part of a multi-hop
* sequence, where at the end we can do the move for real.
*
* The special case here is when the dst_mem is TTM_PL_SYSTEM,
* which doens't require any kind of move, so it should be safe
* to skip all the below and call ttm_bo_move_null() here, where
* the caller in __i915_ttm_get_pages() will take care of the
* rest, since we should have a valid ttm_tt.
*/
ttm_bo_move_null(bo, dst_mem);
return 0;
}
ret = i915_ttm_move_notify(bo);
if (ret)
return ret;
if (obj->mm.madv != I915_MADV_WILLNEED) {
i915_ttm_purge(obj);
ttm_resource_free(bo, &dst_mem);
return 0;
}
/* Populate ttm with pages if needed. Typically system memory. */
if (ttm && (dst_man->use_tt || (ttm->page_flags & TTM_TT_FLAG_SWAPPED))) {
ret = ttm_tt_populate(bo->bdev, ttm, ctx);
if (ret)
return ret;
}
dst_rsgt = i915_ttm_resource_get_st(obj, dst_mem);
if (IS_ERR(dst_rsgt))
return PTR_ERR(dst_rsgt);
clear = !i915_ttm_cpu_maps_iomem(bo->resource) && (!ttm || !ttm_tt_is_populated(ttm));
if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) {
struct i915_deps deps;
i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
ret = i915_deps_add_resv(&deps, bo->base.resv, ctx);
if (ret) {
i915_refct_sgt_put(dst_rsgt);
return ret;
}
migration_fence = __i915_ttm_move(bo, ctx, clear, dst_mem, ttm,
dst_rsgt, true, &deps);
i915_deps_fini(&deps);
}
/* We can possibly get an -ERESTARTSYS here */
if (IS_ERR(migration_fence)) {
i915_refct_sgt_put(dst_rsgt);
return PTR_ERR(migration_fence);
}
if (migration_fence) {
if (I915_SELFTEST_ONLY(evict && fail_gpu_migration))
ret = -EIO; /* never feed non-migrate fences into ttm */
else
ret = ttm_bo_move_accel_cleanup(bo, migration_fence, evict,
true, dst_mem);
if (ret) {
dma_fence_wait(migration_fence, false);
ttm_bo_move_sync_cleanup(bo, dst_mem);
}
dma_fence_put(migration_fence);
} else {
ttm_bo_move_sync_cleanup(bo, dst_mem);
}
i915_ttm_adjust_domains_after_move(obj);
i915_ttm_free_cached_io_rsgt(obj);
if (i915_ttm_gtt_binds_lmem(dst_mem) || i915_ttm_cpu_maps_iomem(dst_mem)) {
obj->ttm.cached_io_rsgt = dst_rsgt;
obj->ttm.get_io_page.sg_pos = dst_rsgt->table.sgl;
obj->ttm.get_io_page.sg_idx = 0;
} else {
i915_refct_sgt_put(dst_rsgt);
}
i915_ttm_adjust_lru(obj);
i915_ttm_adjust_gem_after_move(obj);
return 0;
}
/**
* i915_gem_obj_copy_ttm - Copy the contents of one ttm-based gem object to
* another
* @dst: The destination object
* @src: The source object
* @allow_accel: Allow using the blitter. Otherwise TTM memcpy is used.
* @intr: Whether to perform waits interruptible:
*
* Note: The caller is responsible for assuring that the underlying
* TTM objects are populated if needed and locked.
*
* Return: Zero on success. Negative error code on error. If @intr == true,
* then it may return -ERESTARTSYS or -EINTR.
*/
int i915_gem_obj_copy_ttm(struct drm_i915_gem_object *dst,
struct drm_i915_gem_object *src,
bool allow_accel, bool intr)
{
struct ttm_buffer_object *dst_bo = i915_gem_to_ttm(dst);
struct ttm_buffer_object *src_bo = i915_gem_to_ttm(src);
struct ttm_operation_ctx ctx = {
.interruptible = intr,
};
struct i915_refct_sgt *dst_rsgt;
struct dma_fence *copy_fence;
struct i915_deps deps;
int ret;
assert_object_held(dst);
assert_object_held(src);
i915_deps_init(&deps, GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
ret = dma_resv_reserve_fences(src_bo->base.resv, 1);
if (ret)
return ret;
ret = dma_resv_reserve_fences(dst_bo->base.resv, 1);
if (ret)
return ret;
ret = i915_deps_add_resv(&deps, dst_bo->base.resv, &ctx);
if (ret)
return ret;
ret = i915_deps_add_resv(&deps, src_bo->base.resv, &ctx);
if (ret)
return ret;
dst_rsgt = i915_ttm_resource_get_st(dst, dst_bo->resource);
copy_fence = __i915_ttm_move(src_bo, &ctx, false, dst_bo->resource,
dst_bo->ttm, dst_rsgt, allow_accel,
&deps);
i915_deps_fini(&deps);
i915_refct_sgt_put(dst_rsgt);
if (IS_ERR_OR_NULL(copy_fence))
return PTR_ERR_OR_ZERO(copy_fence);
dma_resv_add_fence(dst_bo->base.resv, copy_fence, DMA_RESV_USAGE_WRITE);
dma_resv_add_fence(src_bo->base.resv, copy_fence, DMA_RESV_USAGE_READ);
dma_fence_put(copy_fence);
return 0;
}