linux-zen-desktop/drivers/gpu/drm/msm/adreno/a6xx_gmu.c

1655 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
#include <linux/clk.h>
#include <linux/interconnect.h>
#include <linux/pm_domain.h>
#include <linux/pm_opp.h>
#include <soc/qcom/cmd-db.h>
#include <drm/drm_gem.h>
#include "a6xx_gpu.h"
#include "a6xx_gmu.xml.h"
#include "msm_gem.h"
#include "msm_gpu_trace.h"
#include "msm_mmu.h"
static void a6xx_gmu_fault(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
/* FIXME: add a banner here */
gmu->hung = true;
/* Turn off the hangcheck timer while we are resetting */
del_timer(&gpu->hangcheck_timer);
/* Queue the GPU handler because we need to treat this as a recovery */
kthread_queue_work(gpu->worker, &gpu->recover_work);
}
static irqreturn_t a6xx_gmu_irq(int irq, void *data)
{
struct a6xx_gmu *gmu = data;
u32 status;
status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS);
gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status);
if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) {
dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n");
a6xx_gmu_fault(gmu);
}
if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR)
dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n");
if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n",
gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS));
return IRQ_HANDLED;
}
static irqreturn_t a6xx_hfi_irq(int irq, void *data)
{
struct a6xx_gmu *gmu = data;
u32 status;
status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO);
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status);
if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) {
dev_err_ratelimited(gmu->dev, "GMU firmware fault\n");
a6xx_gmu_fault(gmu);
}
return IRQ_HANDLED;
}
bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu)
{
u32 val;
/* This can be called from gpu state code so make sure GMU is valid */
if (!gmu->initialized)
return false;
val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
return !(val &
(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SPTPRAC_GDSC_POWER_OFF |
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SP_CLOCK_OFF));
}
/* Check to see if the GX rail is still powered */
bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu)
{
u32 val;
/* This can be called from gpu state code so make sure GMU is valid */
if (!gmu->initialized)
return false;
val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
return !(val &
(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF |
A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF));
}
void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
bool suspended)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
u32 perf_index;
unsigned long gpu_freq;
int ret = 0;
gpu_freq = dev_pm_opp_get_freq(opp);
if (gpu_freq == gmu->freq)
return;
for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++)
if (gpu_freq == gmu->gpu_freqs[perf_index])
break;
gmu->current_perf_index = perf_index;
gmu->freq = gmu->gpu_freqs[perf_index];
trace_msm_gmu_freq_change(gmu->freq, perf_index);
/*
* This can get called from devfreq while the hardware is idle. Don't
* bring up the power if it isn't already active. All we're doing here
* is updating the frequency so that when we come back online we're at
* the right rate.
*/
if (suspended)
return;
if (!gmu->legacy) {
a6xx_hfi_set_freq(gmu, perf_index);
dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
return;
}
gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0);
gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING,
((3 & 0xf) << 28) | perf_index);
/*
* Send an invalid index as a vote for the bus bandwidth and let the
* firmware decide on the right vote
*/
gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff);
/* Set and clear the OOB for DCVS to trigger the GMU */
a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET);
a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET);
ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN);
if (ret)
dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret);
dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
}
unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
return gmu->freq;
}
static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu)
{
u32 val;
int local = gmu->idle_level;
/* SPTP and IFPC both report as IFPC */
if (gmu->idle_level == GMU_IDLE_STATE_SPTP)
local = GMU_IDLE_STATE_IFPC;
val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
if (val == local) {
if (gmu->idle_level != GMU_IDLE_STATE_IFPC ||
!a6xx_gmu_gx_is_on(gmu))
return true;
}
return false;
}
/* Wait for the GMU to get to its most idle state */
int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu)
{
return spin_until(a6xx_gmu_check_idle_level(gmu));
}
static int a6xx_gmu_start(struct a6xx_gmu *gmu)
{
int ret;
u32 val;
u32 mask, reset_val;
val = gmu_read(gmu, REG_A6XX_GMU_CM3_DTCM_START + 0xff8);
if (val <= 0x20010004) {
mask = 0xffffffff;
reset_val = 0xbabeface;
} else {
mask = 0x1ff;
reset_val = 0x100;
}
gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
/* Set the log wptr index
* note: downstream saves the value in poweroff and restores it here
*/
gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_RESP, 0);
gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0);
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val,
(val & mask) == reset_val, 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev, "GMU firmware initialization timed out\n");
return ret;
}
static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu)
{
u32 val;
int ret;
gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1);
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val,
val & 1, 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev, "Unable to start the HFI queues\n");
return ret;
}
struct a6xx_gmu_oob_bits {
int set, ack, set_new, ack_new, clear, clear_new;
const char *name;
};
/* These are the interrupt / ack bits for each OOB request that are set
* in a6xx_gmu_set_oob and a6xx_clear_oob
*/
static const struct a6xx_gmu_oob_bits a6xx_gmu_oob_bits[] = {
[GMU_OOB_GPU_SET] = {
.name = "GPU_SET",
.set = 16,
.ack = 24,
.set_new = 30,
.ack_new = 31,
.clear = 24,
.clear_new = 31,
},
[GMU_OOB_PERFCOUNTER_SET] = {
.name = "PERFCOUNTER",
.set = 17,
.ack = 25,
.set_new = 28,
.ack_new = 30,
.clear = 25,
.clear_new = 29,
},
[GMU_OOB_BOOT_SLUMBER] = {
.name = "BOOT_SLUMBER",
.set = 22,
.ack = 30,
.clear = 30,
},
[GMU_OOB_DCVS_SET] = {
.name = "GPU_DCVS",
.set = 23,
.ack = 31,
.clear = 31,
},
};
/* Trigger a OOB (out of band) request to the GMU */
int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
{
int ret;
u32 val;
int request, ack;
WARN_ON_ONCE(!mutex_is_locked(&gmu->lock));
if (state >= ARRAY_SIZE(a6xx_gmu_oob_bits))
return -EINVAL;
if (gmu->legacy) {
request = a6xx_gmu_oob_bits[state].set;
ack = a6xx_gmu_oob_bits[state].ack;
} else {
request = a6xx_gmu_oob_bits[state].set_new;
ack = a6xx_gmu_oob_bits[state].ack_new;
if (!request || !ack) {
DRM_DEV_ERROR(gmu->dev,
"Invalid non-legacy GMU request %s\n",
a6xx_gmu_oob_bits[state].name);
return -EINVAL;
}
}
/* Trigger the equested OOB operation */
gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request);
/* Wait for the acknowledge interrupt */
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
val & (1 << ack), 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev,
"Timeout waiting for GMU OOB set %s: 0x%x\n",
a6xx_gmu_oob_bits[state].name,
gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO));
/* Clear the acknowledge interrupt */
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack);
return ret;
}
/* Clear a pending OOB state in the GMU */
void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
{
int bit;
WARN_ON_ONCE(!mutex_is_locked(&gmu->lock));
if (state >= ARRAY_SIZE(a6xx_gmu_oob_bits))
return;
if (gmu->legacy)
bit = a6xx_gmu_oob_bits[state].clear;
else
bit = a6xx_gmu_oob_bits[state].clear_new;
gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << bit);
}
/* Enable CPU control of SPTP power power collapse */
static int a6xx_sptprac_enable(struct a6xx_gmu *gmu)
{
int ret;
u32 val;
if (!gmu->legacy)
return 0;
gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000);
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
(val & 0x38) == 0x28, 1, 100);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n",
gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
}
return 0;
}
/* Disable CPU control of SPTP power power collapse */
static void a6xx_sptprac_disable(struct a6xx_gmu *gmu)
{
u32 val;
int ret;
if (!gmu->legacy)
return;
/* Make sure retention is on */
gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11));
gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001);
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
(val & 0x04), 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev, "failed to power off SPTPRAC: 0x%x\n",
gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
}
/* Let the GMU know we are starting a boot sequence */
static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu)
{
u32 vote;
/* Let the GMU know we are getting ready for boot */
gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0);
/* Choose the "default" power level as the highest available */
vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1];
gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff);
gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff);
/* Let the GMU know the boot sequence has started */
return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
}
/* Let the GMU know that we are about to go into slumber */
static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu)
{
int ret;
/* Disable the power counter so the GMU isn't busy */
gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
/* Disable SPTP_PC if the CPU is responsible for it */
if (gmu->idle_level < GMU_IDLE_STATE_SPTP)
a6xx_sptprac_disable(gmu);
if (!gmu->legacy) {
ret = a6xx_hfi_send_prep_slumber(gmu);
goto out;
}
/* Tell the GMU to get ready to slumber */
gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1);
ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
if (!ret) {
/* Check to see if the GMU really did slumber */
if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE)
!= 0x0f) {
DRM_DEV_ERROR(gmu->dev, "The GMU did not go into slumber\n");
ret = -ETIMEDOUT;
}
}
out:
/* Put fence into allow mode */
gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
return ret;
}
static int a6xx_rpmh_start(struct a6xx_gmu *gmu)
{
int ret;
u32 val;
gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1);
/* Wait for the register to finish posting */
wmb();
ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val,
val & (1 << 1), 100, 10000);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "Unable to power on the GPU RSC\n");
return ret;
}
ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val,
!val, 100, 10000);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n");
return ret;
}
gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
/* Set up CX GMU counter 0 to count busy ticks */
gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, 0x20);
/* Enable the power counter */
gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
return 0;
}
static void a6xx_rpmh_stop(struct a6xx_gmu *gmu)
{
int ret;
u32 val;
gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1);
ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0,
val, val & (1 << 16), 100, 10000);
if (ret)
DRM_DEV_ERROR(gmu->dev, "Unable to power off the GPU RSC\n");
gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
}
static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value)
{
msm_writel(value, ptr + (offset << 2));
}
static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
const char *name);
static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct platform_device *pdev = to_platform_device(gmu->dev);
void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc");
void __iomem *seqptr = NULL;
uint32_t pdc_address_offset;
bool pdc_in_aop = false;
if (IS_ERR(pdcptr))
goto err;
if (adreno_is_a650(adreno_gpu) || adreno_is_a660_family(adreno_gpu))
pdc_in_aop = true;
else if (adreno_is_a618(adreno_gpu) || adreno_is_a640_family(adreno_gpu))
pdc_address_offset = 0x30090;
else if (adreno_is_a619(adreno_gpu))
pdc_address_offset = 0x300a0;
else
pdc_address_offset = 0x30080;
if (!pdc_in_aop) {
seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq");
if (IS_ERR(seqptr))
goto err;
}
/* Disable SDE clock gating */
gmu_write_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24));
/* Setup RSC PDC handshake for sleep and wakeup */
gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1);
gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0);
gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0);
gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0);
gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0);
gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000);
gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0);
gmu_write_rscc(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0);
gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520);
gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510);
gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514);
/* Load RSC sequencer uCode for sleep and wakeup */
if (adreno_is_a650_family(adreno_gpu)) {
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xeaaae5a0);
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xe1a1ebab);
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e0a581);
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xecac82e2);
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020edad);
} else {
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0);
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7);
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1);
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2);
gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8);
}
if (pdc_in_aop)
goto setup_pdc;
/* Load PDC sequencer uCode for power up and power down sequence */
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1);
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2);
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0);
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284);
pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc);
/* Set TCS commands used by PDC sequence for low power modes */
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, pdc_address_offset);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000);
if (adreno_is_a618(adreno_gpu) || adreno_is_a619(adreno_gpu) ||
adreno_is_a650_family(adreno_gpu))
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x2);
else
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, pdc_address_offset);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3);
/* Setup GPU PDC */
setup_pdc:
pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0);
pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001);
/* ensure no writes happen before the uCode is fully written */
wmb();
err:
if (!IS_ERR_OR_NULL(pdcptr))
iounmap(pdcptr);
if (!IS_ERR_OR_NULL(seqptr))
iounmap(seqptr);
}
/*
* The lowest 16 bits of this value are the number of XO clock cycles for main
* hysteresis which is set at 0x1680 cycles (300 us). The higher 16 bits are
* for the shorter hysteresis that happens after main - this is 0xa (.5 us)
*/
#define GMU_PWR_COL_HYST 0x000a1680
/* Set up the idle state for the GMU */
static void a6xx_gmu_power_config(struct a6xx_gmu *gmu)
{
/* Disable GMU WB/RB buffer */
gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1);
gmu_write(gmu, REG_A6XX_GMU_ICACHE_CONFIG, 0x1);
gmu_write(gmu, REG_A6XX_GMU_DCACHE_CONFIG, 0x1);
gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400);
switch (gmu->idle_level) {
case GMU_IDLE_STATE_IFPC:
gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
GMU_PWR_COL_HYST);
gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE);
fallthrough;
case GMU_IDLE_STATE_SPTP:
gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST,
GMU_PWR_COL_HYST);
gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE);
}
/* Enable RPMh GPU client */
gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0,
A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE |
A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE |
A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE |
A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE |
A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE |
A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE);
}
struct block_header {
u32 addr;
u32 size;
u32 type;
u32 value;
u32 data[];
};
/* this should be a general kernel helper */
static int in_range(u32 addr, u32 start, u32 size)
{
return addr >= start && addr < start + size;
}
static bool fw_block_mem(struct a6xx_gmu_bo *bo, const struct block_header *blk)
{
if (!in_range(blk->addr, bo->iova, bo->size))
return false;
memcpy(bo->virt + blk->addr - bo->iova, blk->data, blk->size);
return true;
}
static int a6xx_gmu_fw_load(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
const struct firmware *fw_image = adreno_gpu->fw[ADRENO_FW_GMU];
const struct block_header *blk;
u32 reg_offset;
u32 itcm_base = 0x00000000;
u32 dtcm_base = 0x00040000;
if (adreno_is_a650_family(adreno_gpu))
dtcm_base = 0x10004000;
if (gmu->legacy) {
/* Sanity check the size of the firmware that was loaded */
if (fw_image->size > 0x8000) {
DRM_DEV_ERROR(gmu->dev,
"GMU firmware is bigger than the available region\n");
return -EINVAL;
}
gmu_write_bulk(gmu, REG_A6XX_GMU_CM3_ITCM_START,
(u32*) fw_image->data, fw_image->size);
return 0;
}
for (blk = (const struct block_header *) fw_image->data;
(const u8*) blk < fw_image->data + fw_image->size;
blk = (const struct block_header *) &blk->data[blk->size >> 2]) {
if (blk->size == 0)
continue;
if (in_range(blk->addr, itcm_base, SZ_16K)) {
reg_offset = (blk->addr - itcm_base) >> 2;
gmu_write_bulk(gmu,
REG_A6XX_GMU_CM3_ITCM_START + reg_offset,
blk->data, blk->size);
} else if (in_range(blk->addr, dtcm_base, SZ_16K)) {
reg_offset = (blk->addr - dtcm_base) >> 2;
gmu_write_bulk(gmu,
REG_A6XX_GMU_CM3_DTCM_START + reg_offset,
blk->data, blk->size);
} else if (!fw_block_mem(&gmu->icache, blk) &&
!fw_block_mem(&gmu->dcache, blk) &&
!fw_block_mem(&gmu->dummy, blk)) {
DRM_DEV_ERROR(gmu->dev,
"failed to match fw block (addr=%.8x size=%d data[0]=%.8x)\n",
blk->addr, blk->size, blk->data[0]);
}
}
return 0;
}
static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state)
{
static bool rpmh_init;
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
int ret;
u32 chipid;
if (adreno_is_a650_family(adreno_gpu)) {
gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FALNEXT_INTF, 1);
gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FAL_INTF, 1);
}
if (state == GMU_WARM_BOOT) {
ret = a6xx_rpmh_start(gmu);
if (ret)
return ret;
} else {
if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU],
"GMU firmware is not loaded\n"))
return -ENOENT;
/* Turn on register retention */
gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1);
/* We only need to load the RPMh microcode once */
if (!rpmh_init) {
a6xx_gmu_rpmh_init(gmu);
rpmh_init = true;
} else {
ret = a6xx_rpmh_start(gmu);
if (ret)
return ret;
}
ret = a6xx_gmu_fw_load(gmu);
if (ret)
return ret;
}
gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0);
gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02);
/* Write the iova of the HFI table */
gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi.iova);
gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1);
gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0,
(1 << 31) | (0xa << 18) | (0xa0));
chipid = adreno_gpu->rev.core << 24;
chipid |= adreno_gpu->rev.major << 16;
chipid |= adreno_gpu->rev.minor << 12;
chipid |= adreno_gpu->rev.patchid << 8;
gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid);
gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_MSG,
gmu->log.iova | (gmu->log.size / SZ_4K - 1));
/* Set up the lowest idle level on the GMU */
a6xx_gmu_power_config(gmu);
ret = a6xx_gmu_start(gmu);
if (ret)
return ret;
if (gmu->legacy) {
ret = a6xx_gmu_gfx_rail_on(gmu);
if (ret)
return ret;
}
/* Enable SPTP_PC if the CPU is responsible for it */
if (gmu->idle_level < GMU_IDLE_STATE_SPTP) {
ret = a6xx_sptprac_enable(gmu);
if (ret)
return ret;
}
ret = a6xx_gmu_hfi_start(gmu);
if (ret)
return ret;
/* FIXME: Do we need this wmb() here? */
wmb();
return 0;
}
#define A6XX_HFI_IRQ_MASK \
(A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT)
#define A6XX_GMU_IRQ_MASK \
(A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \
A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \
A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu)
{
disable_irq(gmu->gmu_irq);
disable_irq(gmu->hfi_irq);
gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0);
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0);
}
static void a6xx_gmu_rpmh_off(struct a6xx_gmu *gmu)
{
u32 val;
/* Make sure there are no outstanding RPMh votes */
gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val,
(val & 1), 100, 10000);
gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val,
(val & 1), 100, 10000);
gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val,
(val & 1), 100, 10000);
gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val,
(val & 1), 100, 1000);
}
#define GBIF_CLIENT_HALT_MASK BIT(0)
#define GBIF_ARB_HALT_MASK BIT(1)
static void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu,
bool gx_off)
{
struct msm_gpu *gpu = &adreno_gpu->base;
if (!a6xx_has_gbif(adreno_gpu)) {
gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0xf);
spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) &
0xf) == 0xf);
gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0);
return;
}
if (gx_off) {
/* Halt the gx side of GBIF */
gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1);
spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1);
}
/* Halt new client requests on GBIF */
gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK);
spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) &
(GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK);
/* Halt all AXI requests on GBIF */
gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK);
spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) &
(GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK);
/* The GBIF halt needs to be explicitly cleared */
gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0);
}
/* Force the GMU off in case it isn't responsive */
static void a6xx_gmu_force_off(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
/* Flush all the queues */
a6xx_hfi_stop(gmu);
/* Stop the interrupts */
a6xx_gmu_irq_disable(gmu);
/* Force off SPTP in case the GMU is managing it */
a6xx_sptprac_disable(gmu);
/* Make sure there are no outstanding RPMh votes */
a6xx_gmu_rpmh_off(gmu);
/* Halt the gmu cm3 core */
gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
a6xx_bus_clear_pending_transactions(adreno_gpu, true);
/* Reset GPU core blocks */
gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, 1);
udelay(100);
}
static void a6xx_gmu_set_initial_freq(struct msm_gpu *gpu, struct a6xx_gmu *gmu)
{
struct dev_pm_opp *gpu_opp;
unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index];
gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true);
if (IS_ERR(gpu_opp))
return;
gmu->freq = 0; /* so a6xx_gmu_set_freq() doesn't exit early */
a6xx_gmu_set_freq(gpu, gpu_opp, false);
dev_pm_opp_put(gpu_opp);
}
static void a6xx_gmu_set_initial_bw(struct msm_gpu *gpu, struct a6xx_gmu *gmu)
{
struct dev_pm_opp *gpu_opp;
unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index];
gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true);
if (IS_ERR(gpu_opp))
return;
dev_pm_opp_set_opp(&gpu->pdev->dev, gpu_opp);
dev_pm_opp_put(gpu_opp);
}
int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu)
{
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
int status, ret;
if (WARN(!gmu->initialized, "The GMU is not set up yet\n"))
return -EINVAL;
gmu->hung = false;
/* Turn on the resources */
pm_runtime_get_sync(gmu->dev);
/*
* "enable" the GX power domain which won't actually do anything but it
* will make sure that the refcounting is correct in case we need to
* bring down the GX after a GMU failure
*/
if (!IS_ERR_OR_NULL(gmu->gxpd))
pm_runtime_get_sync(gmu->gxpd);
/* Use a known rate to bring up the GMU */
clk_set_rate(gmu->core_clk, 200000000);
clk_set_rate(gmu->hub_clk, 150000000);
ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
if (ret) {
pm_runtime_put(gmu->gxpd);
pm_runtime_put(gmu->dev);
return ret;
}
/* Set the bus quota to a reasonable value for boot */
a6xx_gmu_set_initial_bw(gpu, gmu);
/* Enable the GMU interrupt */
gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0);
gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~A6XX_GMU_IRQ_MASK);
enable_irq(gmu->gmu_irq);
/* Check to see if we are doing a cold or warm boot */
status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ?
GMU_WARM_BOOT : GMU_COLD_BOOT;
/*
* Warm boot path does not work on newer GPUs
* Presumably this is because icache/dcache regions must be restored
*/
if (!gmu->legacy)
status = GMU_COLD_BOOT;
ret = a6xx_gmu_fw_start(gmu, status);
if (ret)
goto out;
ret = a6xx_hfi_start(gmu, status);
if (ret)
goto out;
/*
* Turn on the GMU firmware fault interrupt after we know the boot
* sequence is successful
*/
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0);
gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~A6XX_HFI_IRQ_MASK);
enable_irq(gmu->hfi_irq);
/* Set the GPU to the current freq */
a6xx_gmu_set_initial_freq(gpu, gmu);
out:
/* On failure, shut down the GMU to leave it in a good state */
if (ret) {
disable_irq(gmu->gmu_irq);
a6xx_rpmh_stop(gmu);
pm_runtime_put(gmu->gxpd);
pm_runtime_put(gmu->dev);
}
return ret;
}
bool a6xx_gmu_isidle(struct a6xx_gmu *gmu)
{
u32 reg;
if (!gmu->initialized)
return true;
reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS);
if (reg & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB)
return false;
return true;
}
/* Gracefully try to shut down the GMU and by extension the GPU */
static void a6xx_gmu_shutdown(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
u32 val;
/*
* The GMU may still be in slumber unless the GPU started so check and
* skip putting it back into slumber if so
*/
val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
if (val != 0xf) {
int ret = a6xx_gmu_wait_for_idle(gmu);
/* If the GMU isn't responding assume it is hung */
if (ret) {
a6xx_gmu_force_off(gmu);
return;
}
a6xx_bus_clear_pending_transactions(adreno_gpu, a6xx_gpu->hung);
/* tell the GMU we want to slumber */
ret = a6xx_gmu_notify_slumber(gmu);
if (ret) {
a6xx_gmu_force_off(gmu);
return;
}
ret = gmu_poll_timeout(gmu,
REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val,
!(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB),
100, 10000);
/*
* Let the user know we failed to slumber but don't worry too
* much because we are powering down anyway
*/
if (ret)
DRM_DEV_ERROR(gmu->dev,
"Unable to slumber GMU: status = 0%x/0%x\n",
gmu_read(gmu,
REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS),
gmu_read(gmu,
REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2));
}
/* Turn off HFI */
a6xx_hfi_stop(gmu);
/* Stop the interrupts and mask the hardware */
a6xx_gmu_irq_disable(gmu);
/* Tell RPMh to power off the GPU */
a6xx_rpmh_stop(gmu);
}
int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu)
{
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
struct msm_gpu *gpu = &a6xx_gpu->base.base;
if (!pm_runtime_active(gmu->dev))
return 0;
/*
* Force the GMU off if we detected a hang, otherwise try to shut it
* down gracefully
*/
if (gmu->hung)
a6xx_gmu_force_off(gmu);
else
a6xx_gmu_shutdown(gmu);
/* Remove the bus vote */
dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
/*
* Make sure the GX domain is off before turning off the GMU (CX)
* domain. Usually the GMU does this but only if the shutdown sequence
* was successful
*/
if (!IS_ERR_OR_NULL(gmu->gxpd))
pm_runtime_put_sync(gmu->gxpd);
clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
pm_runtime_put_sync(gmu->dev);
return 0;
}
static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu)
{
msm_gem_kernel_put(gmu->hfi.obj, gmu->aspace);
msm_gem_kernel_put(gmu->debug.obj, gmu->aspace);
msm_gem_kernel_put(gmu->icache.obj, gmu->aspace);
msm_gem_kernel_put(gmu->dcache.obj, gmu->aspace);
msm_gem_kernel_put(gmu->dummy.obj, gmu->aspace);
msm_gem_kernel_put(gmu->log.obj, gmu->aspace);
gmu->aspace->mmu->funcs->detach(gmu->aspace->mmu);
msm_gem_address_space_put(gmu->aspace);
}
static int a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo,
size_t size, u64 iova, const char *name)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct drm_device *dev = a6xx_gpu->base.base.dev;
uint32_t flags = MSM_BO_WC;
u64 range_start, range_end;
int ret;
size = PAGE_ALIGN(size);
if (!iova) {
/* no fixed address - use GMU's uncached range */
range_start = 0x60000000 + PAGE_SIZE; /* skip dummy page */
range_end = 0x80000000;
} else {
/* range for fixed address */
range_start = iova;
range_end = iova + size;
/* use IOMMU_PRIV for icache/dcache */
flags |= MSM_BO_MAP_PRIV;
}
bo->obj = msm_gem_new(dev, size, flags);
if (IS_ERR(bo->obj))
return PTR_ERR(bo->obj);
ret = msm_gem_get_and_pin_iova_range(bo->obj, gmu->aspace, &bo->iova,
range_start, range_end);
if (ret) {
drm_gem_object_put(bo->obj);
return ret;
}
bo->virt = msm_gem_get_vaddr(bo->obj);
bo->size = size;
msm_gem_object_set_name(bo->obj, name);
return 0;
}
static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu)
{
struct msm_mmu *mmu;
mmu = msm_iommu_new(gmu->dev, 0);
if (!mmu)
return -ENODEV;
if (IS_ERR(mmu))
return PTR_ERR(mmu);
gmu->aspace = msm_gem_address_space_create(mmu, "gmu", 0x0, 0x80000000);
if (IS_ERR(gmu->aspace))
return PTR_ERR(gmu->aspace);
return 0;
}
/* Return the 'arc-level' for the given frequency */
static unsigned int a6xx_gmu_get_arc_level(struct device *dev,
unsigned long freq)
{
struct dev_pm_opp *opp;
unsigned int val;
if (!freq)
return 0;
opp = dev_pm_opp_find_freq_exact(dev, freq, true);
if (IS_ERR(opp))
return 0;
val = dev_pm_opp_get_level(opp);
dev_pm_opp_put(opp);
return val;
}
static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes,
unsigned long *freqs, int freqs_count, const char *id)
{
int i, j;
const u16 *pri, *sec;
size_t pri_count, sec_count;
pri = cmd_db_read_aux_data(id, &pri_count);
if (IS_ERR(pri))
return PTR_ERR(pri);
/*
* The data comes back as an array of unsigned shorts so adjust the
* count accordingly
*/
pri_count >>= 1;
if (!pri_count)
return -EINVAL;
sec = cmd_db_read_aux_data("mx.lvl", &sec_count);
if (IS_ERR(sec))
return PTR_ERR(sec);
sec_count >>= 1;
if (!sec_count)
return -EINVAL;
/* Construct a vote for each frequency */
for (i = 0; i < freqs_count; i++) {
u8 pindex = 0, sindex = 0;
unsigned int level = a6xx_gmu_get_arc_level(dev, freqs[i]);
/* Get the primary index that matches the arc level */
for (j = 0; j < pri_count; j++) {
if (pri[j] >= level) {
pindex = j;
break;
}
}
if (j == pri_count) {
DRM_DEV_ERROR(dev,
"Level %u not found in the RPMh list\n",
level);
DRM_DEV_ERROR(dev, "Available levels:\n");
for (j = 0; j < pri_count; j++)
DRM_DEV_ERROR(dev, " %u\n", pri[j]);
return -EINVAL;
}
/*
* Look for a level in in the secondary list that matches. If
* nothing fits, use the maximum non zero vote
*/
for (j = 0; j < sec_count; j++) {
if (sec[j] >= level) {
sindex = j;
break;
} else if (sec[j]) {
sindex = j;
}
}
/* Construct the vote */
votes[i] = ((pri[pindex] & 0xffff) << 16) |
(sindex << 8) | pindex;
}
return 0;
}
/*
* The GMU votes with the RPMh for itself and on behalf of the GPU but we need
* to construct the list of votes on the CPU and send it over. Query the RPMh
* voltage levels and build the votes
*/
static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
int ret;
/* Build the GX votes */
ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes,
gmu->gpu_freqs, gmu->nr_gpu_freqs, "gfx.lvl");
/* Build the CX votes */
ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes,
gmu->gmu_freqs, gmu->nr_gmu_freqs, "cx.lvl");
return ret;
}
static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs,
u32 size)
{
int count = dev_pm_opp_get_opp_count(dev);
struct dev_pm_opp *opp;
int i, index = 0;
unsigned long freq = 1;
/*
* The OPP table doesn't contain the "off" frequency level so we need to
* add 1 to the table size to account for it
*/
if (WARN(count + 1 > size,
"The GMU frequency table is being truncated\n"))
count = size - 1;
/* Set the "off" frequency */
freqs[index++] = 0;
for (i = 0; i < count; i++) {
opp = dev_pm_opp_find_freq_ceil(dev, &freq);
if (IS_ERR(opp))
break;
dev_pm_opp_put(opp);
freqs[index++] = freq++;
}
return index;
}
static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu)
{
struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
int ret = 0;
/*
* The GMU handles its own frequency switching so build a list of
* available frequencies to send during initialization
*/
ret = devm_pm_opp_of_add_table(gmu->dev);
if (ret) {
DRM_DEV_ERROR(gmu->dev, "Unable to set the OPP table for the GMU\n");
return ret;
}
gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev,
gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs));
/*
* The GMU also handles GPU frequency switching so build a list
* from the GPU OPP table
*/
gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev,
gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs));
gmu->current_perf_index = gmu->nr_gpu_freqs - 1;
/* Build the list of RPMh votes that we'll send to the GMU */
return a6xx_gmu_rpmh_votes_init(gmu);
}
static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu)
{
int ret = devm_clk_bulk_get_all(gmu->dev, &gmu->clocks);
if (ret < 1)
return ret;
gmu->nr_clocks = ret;
gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks,
gmu->nr_clocks, "gmu");
gmu->hub_clk = msm_clk_bulk_get_clock(gmu->clocks,
gmu->nr_clocks, "hub");
return 0;
}
static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
const char *name)
{
void __iomem *ret;
struct resource *res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, name);
if (!res) {
DRM_DEV_ERROR(&pdev->dev, "Unable to find the %s registers\n", name);
return ERR_PTR(-EINVAL);
}
ret = ioremap(res->start, resource_size(res));
if (!ret) {
DRM_DEV_ERROR(&pdev->dev, "Unable to map the %s registers\n", name);
return ERR_PTR(-EINVAL);
}
return ret;
}
static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev,
const char *name, irq_handler_t handler)
{
int irq, ret;
irq = platform_get_irq_byname(pdev, name);
ret = request_irq(irq, handler, IRQF_TRIGGER_HIGH, name, gmu);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "Unable to get interrupt %s %d\n",
name, ret);
return ret;
}
disable_irq(irq);
return irq;
}
void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu)
{
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
struct platform_device *pdev = to_platform_device(gmu->dev);
if (!gmu->initialized)
return;
pm_runtime_force_suspend(gmu->dev);
if (!IS_ERR_OR_NULL(gmu->gxpd)) {
pm_runtime_disable(gmu->gxpd);
dev_pm_domain_detach(gmu->gxpd, false);
}
iounmap(gmu->mmio);
if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc"))
iounmap(gmu->rscc);
gmu->mmio = NULL;
gmu->rscc = NULL;
a6xx_gmu_memory_free(gmu);
free_irq(gmu->gmu_irq, gmu);
free_irq(gmu->hfi_irq, gmu);
/* Drop reference taken in of_find_device_by_node */
put_device(gmu->dev);
gmu->initialized = false;
}
int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node)
{
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
struct platform_device *pdev = of_find_device_by_node(node);
int ret;
if (!pdev)
return -ENODEV;
gmu->dev = &pdev->dev;
of_dma_configure(gmu->dev, node, true);
/* Fow now, don't do anything fancy until we get our feet under us */
gmu->idle_level = GMU_IDLE_STATE_ACTIVE;
pm_runtime_enable(gmu->dev);
/* Get the list of clocks */
ret = a6xx_gmu_clocks_probe(gmu);
if (ret)
goto err_put_device;
ret = a6xx_gmu_memory_probe(gmu);
if (ret)
goto err_put_device;
/* A660 now requires handling "prealloc requests" in GMU firmware
* For now just hardcode allocations based on the known firmware.
* note: there is no indication that these correspond to "dummy" or
* "debug" regions, but this "guess" allows reusing these BOs which
* are otherwise unused by a660.
*/
gmu->dummy.size = SZ_4K;
if (adreno_is_a660_family(adreno_gpu)) {
ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_4K * 7,
0x60400000, "debug");
if (ret)
goto err_memory;
gmu->dummy.size = SZ_8K;
}
/* Allocate memory for the GMU dummy page */
ret = a6xx_gmu_memory_alloc(gmu, &gmu->dummy, gmu->dummy.size,
0x60000000, "dummy");
if (ret)
goto err_memory;
/* Note that a650 family also includes a660 family: */
if (adreno_is_a650_family(adreno_gpu)) {
ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache,
SZ_16M - SZ_16K, 0x04000, "icache");
if (ret)
goto err_memory;
/*
* NOTE: when porting legacy ("pre-650-family") GPUs you may be tempted to add a condition
* to allocate icache/dcache here, as per downstream code flow, but it may not actually be
* necessary. If you omit this step and you don't get random pagefaults, you are likely
* good to go without this!
*/
} else if (adreno_is_a640_family(adreno_gpu)) {
ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache,
SZ_256K - SZ_16K, 0x04000, "icache");
if (ret)
goto err_memory;
ret = a6xx_gmu_memory_alloc(gmu, &gmu->dcache,
SZ_256K - SZ_16K, 0x44000, "dcache");
if (ret)
goto err_memory;
} else if (adreno_is_a630(adreno_gpu) || adreno_is_a615_family(adreno_gpu)) {
/* HFI v1, has sptprac */
gmu->legacy = true;
/* Allocate memory for the GMU debug region */
ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_16K, 0, "debug");
if (ret)
goto err_memory;
}
/* Allocate memory for for the HFI queues */
ret = a6xx_gmu_memory_alloc(gmu, &gmu->hfi, SZ_16K, 0, "hfi");
if (ret)
goto err_memory;
/* Allocate memory for the GMU log region */
ret = a6xx_gmu_memory_alloc(gmu, &gmu->log, SZ_4K, 0, "log");
if (ret)
goto err_memory;
/* Map the GMU registers */
gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu");
if (IS_ERR(gmu->mmio)) {
ret = PTR_ERR(gmu->mmio);
goto err_memory;
}
if (adreno_is_a650_family(adreno_gpu)) {
gmu->rscc = a6xx_gmu_get_mmio(pdev, "rscc");
if (IS_ERR(gmu->rscc))
goto err_mmio;
} else {
gmu->rscc = gmu->mmio + 0x23000;
}
/* Get the HFI and GMU interrupts */
gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq);
gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq);
if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0)
goto err_mmio;
/*
* Get a link to the GX power domain to reset the GPU in case of GMU
* crash
*/
gmu->gxpd = dev_pm_domain_attach_by_name(gmu->dev, "gx");
/* Get the power levels for the GMU and GPU */
a6xx_gmu_pwrlevels_probe(gmu);
/* Set up the HFI queues */
a6xx_hfi_init(gmu);
gmu->initialized = true;
return 0;
err_mmio:
iounmap(gmu->mmio);
if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc"))
iounmap(gmu->rscc);
free_irq(gmu->gmu_irq, gmu);
free_irq(gmu->hfi_irq, gmu);
ret = -ENODEV;
err_memory:
a6xx_gmu_memory_free(gmu);
err_put_device:
/* Drop reference taken in of_find_device_by_node */
put_device(gmu->dev);
return ret;
}