linux-zen-desktop/drivers/gpu/ipu-v3/ipu-dc.c

427 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2010 Sascha Hauer <s.hauer@pengutronix.de>
* Copyright (C) 2005-2009 Freescale Semiconductor, Inc.
*/
#include <linux/export.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <video/imx-ipu-v3.h>
#include "ipu-prv.h"
#define DC_MAP_CONF_PTR(n) (0x108 + ((n) & ~0x1) * 2)
#define DC_MAP_CONF_VAL(n) (0x144 + ((n) & ~0x1) * 2)
#define DC_EVT_NF 0
#define DC_EVT_NL 1
#define DC_EVT_EOF 2
#define DC_EVT_NFIELD 3
#define DC_EVT_EOL 4
#define DC_EVT_EOFIELD 5
#define DC_EVT_NEW_ADDR 6
#define DC_EVT_NEW_CHAN 7
#define DC_EVT_NEW_DATA 8
#define DC_EVT_NEW_ADDR_W_0 0
#define DC_EVT_NEW_ADDR_W_1 1
#define DC_EVT_NEW_CHAN_W_0 2
#define DC_EVT_NEW_CHAN_W_1 3
#define DC_EVT_NEW_DATA_W_0 4
#define DC_EVT_NEW_DATA_W_1 5
#define DC_EVT_NEW_ADDR_R_0 6
#define DC_EVT_NEW_ADDR_R_1 7
#define DC_EVT_NEW_CHAN_R_0 8
#define DC_EVT_NEW_CHAN_R_1 9
#define DC_EVT_NEW_DATA_R_0 10
#define DC_EVT_NEW_DATA_R_1 11
#define DC_WR_CH_CONF 0x0
#define DC_WR_CH_ADDR 0x4
#define DC_RL_CH(evt) (8 + ((evt) & ~0x1) * 2)
#define DC_GEN 0xd4
#define DC_DISP_CONF1(disp) (0xd8 + (disp) * 4)
#define DC_DISP_CONF2(disp) (0xe8 + (disp) * 4)
#define DC_STAT 0x1c8
#define WROD(lf) (0x18 | ((lf) << 1))
#define WRG 0x01
#define WCLK 0xc9
#define SYNC_WAVE 0
#define NULL_WAVE (-1)
#define DC_GEN_SYNC_1_6_SYNC (2 << 1)
#define DC_GEN_SYNC_PRIORITY_1 (1 << 7)
#define DC_WR_CH_CONF_WORD_SIZE_8 (0 << 0)
#define DC_WR_CH_CONF_WORD_SIZE_16 (1 << 0)
#define DC_WR_CH_CONF_WORD_SIZE_24 (2 << 0)
#define DC_WR_CH_CONF_WORD_SIZE_32 (3 << 0)
#define DC_WR_CH_CONF_DISP_ID_PARALLEL(i) (((i) & 0x1) << 3)
#define DC_WR_CH_CONF_DISP_ID_SERIAL (2 << 3)
#define DC_WR_CH_CONF_DISP_ID_ASYNC (3 << 4)
#define DC_WR_CH_CONF_FIELD_MODE (1 << 9)
#define DC_WR_CH_CONF_PROG_TYPE_NORMAL (4 << 5)
#define DC_WR_CH_CONF_PROG_TYPE_MASK (7 << 5)
#define DC_WR_CH_CONF_PROG_DI_ID (1 << 2)
#define DC_WR_CH_CONF_PROG_DISP_ID(i) (((i) & 0x1) << 3)
#define IPU_DC_NUM_CHANNELS 10
struct ipu_dc_priv;
enum ipu_dc_map {
IPU_DC_MAP_RGB24,
IPU_DC_MAP_RGB565,
IPU_DC_MAP_GBR24, /* TVEv2 */
IPU_DC_MAP_BGR666,
IPU_DC_MAP_LVDS666,
IPU_DC_MAP_BGR24,
};
struct ipu_dc {
/* The display interface number assigned to this dc channel */
unsigned int di;
void __iomem *base;
struct ipu_dc_priv *priv;
int chno;
bool in_use;
};
struct ipu_dc_priv {
void __iomem *dc_reg;
void __iomem *dc_tmpl_reg;
struct ipu_soc *ipu;
struct device *dev;
struct ipu_dc channels[IPU_DC_NUM_CHANNELS];
struct mutex mutex;
struct completion comp;
int use_count;
};
static void dc_link_event(struct ipu_dc *dc, int event, int addr, int priority)
{
u32 reg;
reg = readl(dc->base + DC_RL_CH(event));
reg &= ~(0xffff << (16 * (event & 0x1)));
reg |= ((addr << 8) | priority) << (16 * (event & 0x1));
writel(reg, dc->base + DC_RL_CH(event));
}
static void dc_write_tmpl(struct ipu_dc *dc, int word, u32 opcode, u32 operand,
int map, int wave, int glue, int sync, int stop)
{
struct ipu_dc_priv *priv = dc->priv;
u32 reg1, reg2;
if (opcode == WCLK) {
reg1 = (operand << 20) & 0xfff00000;
reg2 = operand >> 12 | opcode << 1 | stop << 9;
} else if (opcode == WRG) {
reg1 = sync | glue << 4 | ++wave << 11 | ((operand << 15) & 0xffff8000);
reg2 = operand >> 17 | opcode << 7 | stop << 9;
} else {
reg1 = sync | glue << 4 | ++wave << 11 | ++map << 15 | ((operand << 20) & 0xfff00000);
reg2 = operand >> 12 | opcode << 4 | stop << 9;
}
writel(reg1, priv->dc_tmpl_reg + word * 8);
writel(reg2, priv->dc_tmpl_reg + word * 8 + 4);
}
static int ipu_bus_format_to_map(u32 fmt)
{
switch (fmt) {
default:
WARN_ON(1);
fallthrough;
case MEDIA_BUS_FMT_RGB888_1X24:
return IPU_DC_MAP_RGB24;
case MEDIA_BUS_FMT_RGB565_1X16:
return IPU_DC_MAP_RGB565;
case MEDIA_BUS_FMT_GBR888_1X24:
return IPU_DC_MAP_GBR24;
case MEDIA_BUS_FMT_RGB666_1X18:
return IPU_DC_MAP_BGR666;
case MEDIA_BUS_FMT_RGB666_1X24_CPADHI:
return IPU_DC_MAP_LVDS666;
case MEDIA_BUS_FMT_BGR888_1X24:
return IPU_DC_MAP_BGR24;
}
}
int ipu_dc_init_sync(struct ipu_dc *dc, struct ipu_di *di, bool interlaced,
u32 bus_format, u32 width)
{
struct ipu_dc_priv *priv = dc->priv;
int addr, sync;
u32 reg = 0;
int map;
dc->di = ipu_di_get_num(di);
if (!IS_ALIGNED(width, 8)) {
dev_warn(priv->dev,
"%s: hactive does not align to 8 byte\n", __func__);
}
map = ipu_bus_format_to_map(bus_format);
/*
* In interlaced mode we need more counters to create the asymmetric
* per-field VSYNC signals. The pixel active signal synchronising DC
* to DI moves to signal generator #6 (see ipu-di.c). In progressive
* mode counter #5 is used.
*/
sync = interlaced ? 6 : 5;
/* Reserve 5 microcode template words for each DI */
if (dc->di)
addr = 5;
else
addr = 0;
if (interlaced) {
dc_link_event(dc, DC_EVT_NL, addr, 3);
dc_link_event(dc, DC_EVT_EOL, addr, 2);
dc_link_event(dc, DC_EVT_NEW_DATA, addr, 1);
/* Init template microcode */
dc_write_tmpl(dc, addr, WROD(0), 0, map, SYNC_WAVE, 0, sync, 1);
} else {
dc_link_event(dc, DC_EVT_NL, addr + 2, 3);
dc_link_event(dc, DC_EVT_EOL, addr + 3, 2);
dc_link_event(dc, DC_EVT_NEW_DATA, addr + 1, 1);
/* Init template microcode */
dc_write_tmpl(dc, addr + 2, WROD(0), 0, map, SYNC_WAVE, 8, sync, 1);
dc_write_tmpl(dc, addr + 3, WROD(0), 0, map, SYNC_WAVE, 4, sync, 0);
dc_write_tmpl(dc, addr + 4, WRG, 0, map, NULL_WAVE, 0, 0, 1);
dc_write_tmpl(dc, addr + 1, WROD(0), 0, map, SYNC_WAVE, 0, sync, 1);
}
dc_link_event(dc, DC_EVT_NF, 0, 0);
dc_link_event(dc, DC_EVT_NFIELD, 0, 0);
dc_link_event(dc, DC_EVT_EOF, 0, 0);
dc_link_event(dc, DC_EVT_EOFIELD, 0, 0);
dc_link_event(dc, DC_EVT_NEW_CHAN, 0, 0);
dc_link_event(dc, DC_EVT_NEW_ADDR, 0, 0);
reg = readl(dc->base + DC_WR_CH_CONF);
if (interlaced)
reg |= DC_WR_CH_CONF_FIELD_MODE;
else
reg &= ~DC_WR_CH_CONF_FIELD_MODE;
writel(reg, dc->base + DC_WR_CH_CONF);
writel(0x0, dc->base + DC_WR_CH_ADDR);
writel(width, priv->dc_reg + DC_DISP_CONF2(dc->di));
return 0;
}
EXPORT_SYMBOL_GPL(ipu_dc_init_sync);
void ipu_dc_enable(struct ipu_soc *ipu)
{
struct ipu_dc_priv *priv = ipu->dc_priv;
mutex_lock(&priv->mutex);
if (!priv->use_count)
ipu_module_enable(priv->ipu, IPU_CONF_DC_EN);
priv->use_count++;
mutex_unlock(&priv->mutex);
}
EXPORT_SYMBOL_GPL(ipu_dc_enable);
void ipu_dc_enable_channel(struct ipu_dc *dc)
{
u32 reg;
reg = readl(dc->base + DC_WR_CH_CONF);
reg |= DC_WR_CH_CONF_PROG_TYPE_NORMAL;
writel(reg, dc->base + DC_WR_CH_CONF);
}
EXPORT_SYMBOL_GPL(ipu_dc_enable_channel);
void ipu_dc_disable_channel(struct ipu_dc *dc)
{
u32 val;
val = readl(dc->base + DC_WR_CH_CONF);
val &= ~DC_WR_CH_CONF_PROG_TYPE_MASK;
writel(val, dc->base + DC_WR_CH_CONF);
}
EXPORT_SYMBOL_GPL(ipu_dc_disable_channel);
void ipu_dc_disable(struct ipu_soc *ipu)
{
struct ipu_dc_priv *priv = ipu->dc_priv;
mutex_lock(&priv->mutex);
priv->use_count--;
if (!priv->use_count)
ipu_module_disable(priv->ipu, IPU_CONF_DC_EN);
if (priv->use_count < 0)
priv->use_count = 0;
mutex_unlock(&priv->mutex);
}
EXPORT_SYMBOL_GPL(ipu_dc_disable);
static void ipu_dc_map_config(struct ipu_dc_priv *priv, enum ipu_dc_map map,
int byte_num, int offset, int mask)
{
int ptr = map * 3 + byte_num;
u32 reg;
reg = readl(priv->dc_reg + DC_MAP_CONF_VAL(ptr));
reg &= ~(0xffff << (16 * (ptr & 0x1)));
reg |= ((offset << 8) | mask) << (16 * (ptr & 0x1));
writel(reg, priv->dc_reg + DC_MAP_CONF_VAL(ptr));
reg = readl(priv->dc_reg + DC_MAP_CONF_PTR(map));
reg &= ~(0x1f << ((16 * (map & 0x1)) + (5 * byte_num)));
reg |= ptr << ((16 * (map & 0x1)) + (5 * byte_num));
writel(reg, priv->dc_reg + DC_MAP_CONF_PTR(map));
}
static void ipu_dc_map_clear(struct ipu_dc_priv *priv, int map)
{
u32 reg = readl(priv->dc_reg + DC_MAP_CONF_PTR(map));
writel(reg & ~(0xffff << (16 * (map & 0x1))),
priv->dc_reg + DC_MAP_CONF_PTR(map));
}
struct ipu_dc *ipu_dc_get(struct ipu_soc *ipu, int channel)
{
struct ipu_dc_priv *priv = ipu->dc_priv;
struct ipu_dc *dc;
if (channel >= IPU_DC_NUM_CHANNELS)
return ERR_PTR(-ENODEV);
dc = &priv->channels[channel];
mutex_lock(&priv->mutex);
if (dc->in_use) {
mutex_unlock(&priv->mutex);
return ERR_PTR(-EBUSY);
}
dc->in_use = true;
mutex_unlock(&priv->mutex);
return dc;
}
EXPORT_SYMBOL_GPL(ipu_dc_get);
void ipu_dc_put(struct ipu_dc *dc)
{
struct ipu_dc_priv *priv = dc->priv;
mutex_lock(&priv->mutex);
dc->in_use = false;
mutex_unlock(&priv->mutex);
}
EXPORT_SYMBOL_GPL(ipu_dc_put);
int ipu_dc_init(struct ipu_soc *ipu, struct device *dev,
unsigned long base, unsigned long template_base)
{
struct ipu_dc_priv *priv;
static const int channel_offsets[] = {
0, 0x1c, 0x38, 0x54, 0x58, 0x5c, 0x78, 0, 0x94, 0xb4
};
int i;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_init(&priv->mutex);
priv->dev = dev;
priv->ipu = ipu;
priv->dc_reg = devm_ioremap(dev, base, PAGE_SIZE);
priv->dc_tmpl_reg = devm_ioremap(dev, template_base, PAGE_SIZE);
if (!priv->dc_reg || !priv->dc_tmpl_reg)
return -ENOMEM;
for (i = 0; i < IPU_DC_NUM_CHANNELS; i++) {
priv->channels[i].chno = i;
priv->channels[i].priv = priv;
priv->channels[i].base = priv->dc_reg + channel_offsets[i];
}
writel(DC_WR_CH_CONF_WORD_SIZE_24 | DC_WR_CH_CONF_DISP_ID_PARALLEL(1) |
DC_WR_CH_CONF_PROG_DI_ID,
priv->channels[1].base + DC_WR_CH_CONF);
writel(DC_WR_CH_CONF_WORD_SIZE_24 | DC_WR_CH_CONF_DISP_ID_PARALLEL(0),
priv->channels[5].base + DC_WR_CH_CONF);
writel(DC_GEN_SYNC_1_6_SYNC | DC_GEN_SYNC_PRIORITY_1,
priv->dc_reg + DC_GEN);
ipu->dc_priv = priv;
dev_dbg(dev, "DC base: 0x%08lx template base: 0x%08lx\n",
base, template_base);
/* rgb24 */
ipu_dc_map_clear(priv, IPU_DC_MAP_RGB24);
ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 0, 7, 0xff); /* blue */
ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 1, 15, 0xff); /* green */
ipu_dc_map_config(priv, IPU_DC_MAP_RGB24, 2, 23, 0xff); /* red */
/* rgb565 */
ipu_dc_map_clear(priv, IPU_DC_MAP_RGB565);
ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 0, 4, 0xf8); /* blue */
ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 1, 10, 0xfc); /* green */
ipu_dc_map_config(priv, IPU_DC_MAP_RGB565, 2, 15, 0xf8); /* red */
/* gbr24 */
ipu_dc_map_clear(priv, IPU_DC_MAP_GBR24);
ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 2, 15, 0xff); /* green */
ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 1, 7, 0xff); /* blue */
ipu_dc_map_config(priv, IPU_DC_MAP_GBR24, 0, 23, 0xff); /* red */
/* bgr666 */
ipu_dc_map_clear(priv, IPU_DC_MAP_BGR666);
ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 0, 5, 0xfc); /* blue */
ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 1, 11, 0xfc); /* green */
ipu_dc_map_config(priv, IPU_DC_MAP_BGR666, 2, 17, 0xfc); /* red */
/* lvds666 */
ipu_dc_map_clear(priv, IPU_DC_MAP_LVDS666);
ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 0, 5, 0xfc); /* blue */
ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 1, 13, 0xfc); /* green */
ipu_dc_map_config(priv, IPU_DC_MAP_LVDS666, 2, 21, 0xfc); /* red */
/* bgr24 */
ipu_dc_map_clear(priv, IPU_DC_MAP_BGR24);
ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 2, 7, 0xff); /* red */
ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 1, 15, 0xff); /* green */
ipu_dc_map_config(priv, IPU_DC_MAP_BGR24, 0, 23, 0xff); /* blue */
return 0;
}
void ipu_dc_exit(struct ipu_soc *ipu)
{
}