linux-zen-desktop/drivers/hwtracing/coresight/coresight-etm4x-cfg.c

183 lines
6.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright(C) 2020 Linaro Limited. All rights reserved.
* Author: Mike Leach <mike.leach@linaro.org>
*/
#include "coresight-etm4x.h"
#include "coresight-etm4x-cfg.h"
#include "coresight-priv.h"
#include "coresight-syscfg.h"
/* defines to associate register IDs with driver data locations */
#define CHECKREG(cval, elem) \
{ \
if (offset == cval) { \
reg_csdev->driver_regval = &drvcfg->elem; \
err = 0; \
break; \
} \
}
#define CHECKREGIDX(cval, elem, off_idx, mask) \
{ \
if (mask == cval) { \
reg_csdev->driver_regval = &drvcfg->elem[off_idx]; \
err = 0; \
break; \
} \
}
/**
* etm4_cfg_map_reg_offset - validate and map the register offset into a
* location in the driver config struct.
*
* Limits the number of registers that can be accessed and programmed in
* features, to those which are used to control the trace capture parameters.
*
* Omits or limits access to those which the driver must use exclusively.
*
* Invalid offsets will result in fail code return and feature load failure.
*
* @drvdata: driver data to map into.
* @reg: register to map.
* @offset: device offset for the register
*/
static int etm4_cfg_map_reg_offset(struct etmv4_drvdata *drvdata,
struct cscfg_regval_csdev *reg_csdev, u32 offset)
{
int err = -EINVAL, idx;
struct etmv4_config *drvcfg = &drvdata->config;
u32 off_mask;
if (((offset >= TRCEVENTCTL0R) && (offset <= TRCVIPCSSCTLR)) ||
((offset >= TRCSEQRSTEVR) && (offset <= TRCEXTINSELR)) ||
((offset >= TRCCIDCCTLR0) && (offset <= TRCVMIDCCTLR1))) {
do {
CHECKREG(TRCEVENTCTL0R, eventctrl0);
CHECKREG(TRCEVENTCTL1R, eventctrl1);
CHECKREG(TRCSTALLCTLR, stall_ctrl);
CHECKREG(TRCTSCTLR, ts_ctrl);
CHECKREG(TRCSYNCPR, syncfreq);
CHECKREG(TRCCCCTLR, ccctlr);
CHECKREG(TRCBBCTLR, bb_ctrl);
CHECKREG(TRCVICTLR, vinst_ctrl);
CHECKREG(TRCVIIECTLR, viiectlr);
CHECKREG(TRCVISSCTLR, vissctlr);
CHECKREG(TRCVIPCSSCTLR, vipcssctlr);
CHECKREG(TRCSEQRSTEVR, seq_rst);
CHECKREG(TRCSEQSTR, seq_state);
CHECKREG(TRCEXTINSELR, ext_inp);
CHECKREG(TRCCIDCCTLR0, ctxid_mask0);
CHECKREG(TRCCIDCCTLR1, ctxid_mask1);
CHECKREG(TRCVMIDCCTLR0, vmid_mask0);
CHECKREG(TRCVMIDCCTLR1, vmid_mask1);
} while (0);
} else if ((offset & GENMASK(11, 4)) == TRCSEQEVRn(0)) {
/* sequencer state control registers */
idx = (offset & GENMASK(3, 0)) / 4;
if (idx < ETM_MAX_SEQ_STATES) {
reg_csdev->driver_regval = &drvcfg->seq_ctrl[idx];
err = 0;
}
} else if ((offset >= TRCSSCCRn(0)) && (offset <= TRCSSPCICRn(7))) {
/* 32 bit, 8 off indexed register sets */
idx = (offset & GENMASK(4, 0)) / 4;
off_mask = (offset & GENMASK(11, 5));
do {
CHECKREGIDX(TRCSSCCRn(0), ss_ctrl, idx, off_mask);
CHECKREGIDX(TRCSSCSRn(0), ss_status, idx, off_mask);
CHECKREGIDX(TRCSSPCICRn(0), ss_pe_cmp, idx, off_mask);
} while (0);
} else if ((offset >= TRCCIDCVRn(0)) && (offset <= TRCVMIDCVRn(7))) {
/* 64 bit, 8 off indexed register sets */
idx = (offset & GENMASK(5, 0)) / 8;
off_mask = (offset & GENMASK(11, 6));
do {
CHECKREGIDX(TRCCIDCVRn(0), ctxid_pid, idx, off_mask);
CHECKREGIDX(TRCVMIDCVRn(0), vmid_val, idx, off_mask);
} while (0);
} else if ((offset >= TRCRSCTLRn(2)) &&
(offset <= TRCRSCTLRn((ETM_MAX_RES_SEL - 1)))) {
/* 32 bit resource selection regs, 32 off, skip fixed 0,1 */
idx = (offset & GENMASK(6, 0)) / 4;
if (idx < ETM_MAX_RES_SEL) {
reg_csdev->driver_regval = &drvcfg->res_ctrl[idx];
err = 0;
}
} else if ((offset >= TRCACVRn(0)) &&
(offset <= TRCACATRn((ETM_MAX_SINGLE_ADDR_CMP - 1)))) {
/* 64 bit addr cmp regs, 16 off */
idx = (offset & GENMASK(6, 0)) / 8;
off_mask = offset & GENMASK(11, 7);
do {
CHECKREGIDX(TRCACVRn(0), addr_val, idx, off_mask);
CHECKREGIDX(TRCACATRn(0), addr_acc, idx, off_mask);
} while (0);
} else if ((offset >= TRCCNTRLDVRn(0)) &&
(offset <= TRCCNTVRn((ETMv4_MAX_CNTR - 1)))) {
/* 32 bit counter regs, 4 off (ETMv4_MAX_CNTR - 1) */
idx = (offset & GENMASK(3, 0)) / 4;
off_mask = offset & GENMASK(11, 4);
do {
CHECKREGIDX(TRCCNTRLDVRn(0), cntrldvr, idx, off_mask);
CHECKREGIDX(TRCCNTCTLRn(0), cntr_ctrl, idx, off_mask);
CHECKREGIDX(TRCCNTVRn(0), cntr_val, idx, off_mask);
} while (0);
}
return err;
}
/**
* etm4_cfg_load_feature - load a feature into a device instance.
*
* @csdev: An ETMv4 CoreSight device.
* @feat: The feature to be loaded.
*
* The function will load a feature instance into the device, checking that
* the register definitions are valid for the device.
*
* Parameter and register definitions will be converted into internal
* structures that are used to set the values in the driver when the
* feature is enabled for the device.
*
* The feature spinlock pointer is initialised to the same spinlock
* that the driver uses to protect the internal register values.
*/
static int etm4_cfg_load_feature(struct coresight_device *csdev,
struct cscfg_feature_csdev *feat_csdev)
{
struct device *dev = csdev->dev.parent;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev);
const struct cscfg_feature_desc *feat_desc = feat_csdev->feat_desc;
u32 offset;
int i = 0, err = 0;
/*
* essential we set the device spinlock - this is used in the generic
* programming routines when copying values into the drvdata structures
* via the pointers setup in etm4_cfg_map_reg_offset().
*/
feat_csdev->drv_spinlock = &drvdata->spinlock;
/* process the register descriptions */
for (i = 0; i < feat_csdev->nr_regs && !err; i++) {
offset = feat_desc->regs_desc[i].offset;
err = etm4_cfg_map_reg_offset(drvdata, &feat_csdev->regs_csdev[i], offset);
}
return err;
}
/* match information when loading configurations */
#define CS_CFG_ETM4_MATCH_FLAGS (CS_CFG_MATCH_CLASS_SRC_ALL | \
CS_CFG_MATCH_CLASS_SRC_ETM4)
int etm4_cscfg_register(struct coresight_device *csdev)
{
struct cscfg_csdev_feat_ops ops;
ops.load_feat = &etm4_cfg_load_feature;
return cscfg_register_csdev(csdev, CS_CFG_ETM4_MATCH_FLAGS, &ops);
}