linux-zen-desktop/drivers/media/platform/mediatek/vcodec/vdec_msg_queue.c

362 lines
9.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2021 MediaTek Inc.
* Author: Yunfei Dong <yunfei.dong@mediatek.com>
*/
#include <linux/freezer.h>
#include <linux/interrupt.h>
#include <linux/kthread.h>
#include "mtk_vcodec_dec_pm.h"
#include "mtk_vcodec_drv.h"
#include "vdec_msg_queue.h"
#define VDEC_MSG_QUEUE_TIMEOUT_MS 1500
/* the size used to store lat slice header information */
#define VDEC_LAT_SLICE_HEADER_SZ (640 * SZ_1K)
/* the size used to store avc error information */
#define VDEC_ERR_MAP_SZ_AVC (17 * SZ_1K)
/* core will read the trans buffer which decoded by lat to decode again.
* The trans buffer size of FHD and 4K bitstreams are different.
*/
static int vde_msg_queue_get_trans_size(int width, int height)
{
if (width > 1920 || height > 1088)
return 30 * SZ_1M;
else
return 6 * SZ_1M;
}
void vdec_msg_queue_init_ctx(struct vdec_msg_queue_ctx *ctx, int hardware_index)
{
init_waitqueue_head(&ctx->ready_to_use);
INIT_LIST_HEAD(&ctx->ready_queue);
spin_lock_init(&ctx->ready_lock);
ctx->ready_num = 0;
ctx->hardware_index = hardware_index;
}
static struct list_head *vdec_get_buf_list(int hardware_index, struct vdec_lat_buf *buf)
{
switch (hardware_index) {
case MTK_VDEC_CORE:
return &buf->core_list;
case MTK_VDEC_LAT0:
return &buf->lat_list;
default:
return NULL;
}
}
static void vdec_msg_queue_inc(struct vdec_msg_queue *msg_queue, int hardware_index)
{
if (hardware_index == MTK_VDEC_CORE)
atomic_inc(&msg_queue->core_list_cnt);
else
atomic_inc(&msg_queue->lat_list_cnt);
}
static void vdec_msg_queue_dec(struct vdec_msg_queue *msg_queue, int hardware_index)
{
if (hardware_index == MTK_VDEC_CORE)
atomic_dec(&msg_queue->core_list_cnt);
else
atomic_dec(&msg_queue->lat_list_cnt);
}
int vdec_msg_queue_qbuf(struct vdec_msg_queue_ctx *msg_ctx, struct vdec_lat_buf *buf)
{
struct list_head *head;
int status;
head = vdec_get_buf_list(msg_ctx->hardware_index, buf);
if (!head) {
mtk_v4l2_err("fail to qbuf: %d", msg_ctx->hardware_index);
return -EINVAL;
}
spin_lock(&msg_ctx->ready_lock);
list_add_tail(head, &msg_ctx->ready_queue);
msg_ctx->ready_num++;
vdec_msg_queue_inc(&buf->ctx->msg_queue, msg_ctx->hardware_index);
if (msg_ctx->hardware_index != MTK_VDEC_CORE) {
wake_up_all(&msg_ctx->ready_to_use);
} else {
if (buf->ctx->msg_queue.core_work_cnt <
atomic_read(&buf->ctx->msg_queue.core_list_cnt)) {
status = queue_work(buf->ctx->dev->core_workqueue,
&buf->ctx->msg_queue.core_work);
if (status)
buf->ctx->msg_queue.core_work_cnt++;
}
}
mtk_v4l2_debug(3, "enqueue buf type: %d addr: 0x%p num: %d",
msg_ctx->hardware_index, buf, msg_ctx->ready_num);
spin_unlock(&msg_ctx->ready_lock);
return 0;
}
static bool vdec_msg_queue_wait_event(struct vdec_msg_queue_ctx *msg_ctx)
{
int ret;
ret = wait_event_timeout(msg_ctx->ready_to_use,
!list_empty(&msg_ctx->ready_queue),
msecs_to_jiffies(VDEC_MSG_QUEUE_TIMEOUT_MS));
if (!ret)
return false;
return true;
}
struct vdec_lat_buf *vdec_msg_queue_dqbuf(struct vdec_msg_queue_ctx *msg_ctx)
{
struct vdec_lat_buf *buf;
struct list_head *head;
int ret;
spin_lock(&msg_ctx->ready_lock);
if (list_empty(&msg_ctx->ready_queue)) {
mtk_v4l2_debug(3, "queue is NULL, type:%d num: %d",
msg_ctx->hardware_index, msg_ctx->ready_num);
spin_unlock(&msg_ctx->ready_lock);
if (msg_ctx->hardware_index == MTK_VDEC_CORE)
return NULL;
ret = vdec_msg_queue_wait_event(msg_ctx);
if (!ret)
return NULL;
spin_lock(&msg_ctx->ready_lock);
}
if (msg_ctx->hardware_index == MTK_VDEC_CORE)
buf = list_first_entry(&msg_ctx->ready_queue,
struct vdec_lat_buf, core_list);
else
buf = list_first_entry(&msg_ctx->ready_queue,
struct vdec_lat_buf, lat_list);
head = vdec_get_buf_list(msg_ctx->hardware_index, buf);
if (!head) {
spin_unlock(&msg_ctx->ready_lock);
mtk_v4l2_err("fail to dqbuf: %d", msg_ctx->hardware_index);
return NULL;
}
list_del(head);
vdec_msg_queue_dec(&buf->ctx->msg_queue, msg_ctx->hardware_index);
msg_ctx->ready_num--;
mtk_v4l2_debug(3, "dqueue buf type:%d addr: 0x%p num: %d",
msg_ctx->hardware_index, buf, msg_ctx->ready_num);
spin_unlock(&msg_ctx->ready_lock);
return buf;
}
void vdec_msg_queue_update_ube_rptr(struct vdec_msg_queue *msg_queue, uint64_t ube_rptr)
{
spin_lock(&msg_queue->lat_ctx.ready_lock);
msg_queue->wdma_rptr_addr = ube_rptr;
mtk_v4l2_debug(3, "update ube rprt (0x%llx)", ube_rptr);
spin_unlock(&msg_queue->lat_ctx.ready_lock);
}
void vdec_msg_queue_update_ube_wptr(struct vdec_msg_queue *msg_queue, uint64_t ube_wptr)
{
spin_lock(&msg_queue->lat_ctx.ready_lock);
msg_queue->wdma_wptr_addr = ube_wptr;
mtk_v4l2_debug(3, "update ube wprt: (0x%llx 0x%llx) offset: 0x%llx",
msg_queue->wdma_rptr_addr, msg_queue->wdma_wptr_addr,
ube_wptr);
spin_unlock(&msg_queue->lat_ctx.ready_lock);
}
bool vdec_msg_queue_wait_lat_buf_full(struct vdec_msg_queue *msg_queue)
{
struct vdec_lat_buf *buf, *tmp;
struct list_head *list_core[3];
struct vdec_msg_queue_ctx *core_ctx;
int ret, i, in_core_count = 0, count = 0;
long timeout_jiff;
core_ctx = &msg_queue->ctx->dev->msg_queue_core_ctx;
spin_lock(&core_ctx->ready_lock);
list_for_each_entry_safe(buf, tmp, &core_ctx->ready_queue, core_list) {
if (buf && buf->ctx == msg_queue->ctx) {
list_core[in_core_count++] = &buf->core_list;
list_del(&buf->core_list);
}
}
for (i = 0; i < in_core_count; i++) {
list_add(list_core[in_core_count - (1 + i)], &core_ctx->ready_queue);
queue_work(msg_queue->ctx->dev->core_workqueue, &msg_queue->core_work);
}
spin_unlock(&core_ctx->ready_lock);
timeout_jiff = msecs_to_jiffies(1000 * (NUM_BUFFER_COUNT + 2));
ret = wait_event_timeout(msg_queue->ctx->msg_queue.core_dec_done,
msg_queue->lat_ctx.ready_num == NUM_BUFFER_COUNT,
timeout_jiff);
if (ret) {
mtk_v4l2_debug(3, "success to get lat buf: %d",
msg_queue->lat_ctx.ready_num);
return true;
}
spin_lock(&core_ctx->ready_lock);
list_for_each_entry_safe(buf, tmp, &core_ctx->ready_queue, core_list) {
if (buf && buf->ctx == msg_queue->ctx) {
count++;
list_del(&buf->core_list);
}
}
spin_unlock(&core_ctx->ready_lock);
mtk_v4l2_err("failed with lat buf isn't full: list(%d %d) count:%d",
atomic_read(&msg_queue->lat_list_cnt),
atomic_read(&msg_queue->core_list_cnt), count);
return false;
}
void vdec_msg_queue_deinit(struct vdec_msg_queue *msg_queue,
struct mtk_vcodec_ctx *ctx)
{
struct vdec_lat_buf *lat_buf;
struct mtk_vcodec_mem *mem;
int i;
mem = &msg_queue->wdma_addr;
if (mem->va)
mtk_vcodec_mem_free(ctx, mem);
for (i = 0; i < NUM_BUFFER_COUNT; i++) {
lat_buf = &msg_queue->lat_buf[i];
mem = &lat_buf->wdma_err_addr;
if (mem->va)
mtk_vcodec_mem_free(ctx, mem);
mem = &lat_buf->slice_bc_addr;
if (mem->va)
mtk_vcodec_mem_free(ctx, mem);
kfree(lat_buf->private_data);
}
}
static void vdec_msg_queue_core_work(struct work_struct *work)
{
struct vdec_msg_queue *msg_queue =
container_of(work, struct vdec_msg_queue, core_work);
struct mtk_vcodec_ctx *ctx =
container_of(msg_queue, struct mtk_vcodec_ctx, msg_queue);
struct mtk_vcodec_dev *dev = ctx->dev;
struct vdec_lat_buf *lat_buf;
int status;
lat_buf = vdec_msg_queue_dqbuf(&dev->msg_queue_core_ctx);
if (!lat_buf)
return;
ctx = lat_buf->ctx;
mtk_vcodec_dec_enable_hardware(ctx, MTK_VDEC_CORE);
mtk_vcodec_set_curr_ctx(dev, ctx, MTK_VDEC_CORE);
lat_buf->core_decode(lat_buf);
mtk_vcodec_set_curr_ctx(dev, NULL, MTK_VDEC_CORE);
mtk_vcodec_dec_disable_hardware(ctx, MTK_VDEC_CORE);
vdec_msg_queue_qbuf(&ctx->msg_queue.lat_ctx, lat_buf);
wake_up_all(&ctx->msg_queue.core_dec_done);
spin_lock(&dev->msg_queue_core_ctx.ready_lock);
lat_buf->ctx->msg_queue.core_work_cnt--;
if (lat_buf->ctx->msg_queue.core_work_cnt <
atomic_read(&lat_buf->ctx->msg_queue.core_list_cnt)) {
status = queue_work(lat_buf->ctx->dev->core_workqueue,
&lat_buf->ctx->msg_queue.core_work);
if (status)
lat_buf->ctx->msg_queue.core_work_cnt++;
}
spin_unlock(&dev->msg_queue_core_ctx.ready_lock);
}
int vdec_msg_queue_init(struct vdec_msg_queue *msg_queue,
struct mtk_vcodec_ctx *ctx, core_decode_cb_t core_decode,
int private_size)
{
struct vdec_lat_buf *lat_buf;
int i, err;
/* already init msg queue */
if (msg_queue->wdma_addr.size)
return 0;
msg_queue->ctx = ctx;
msg_queue->core_work_cnt = 0;
vdec_msg_queue_init_ctx(&msg_queue->lat_ctx, MTK_VDEC_LAT0);
INIT_WORK(&msg_queue->core_work, vdec_msg_queue_core_work);
atomic_set(&msg_queue->lat_list_cnt, 0);
atomic_set(&msg_queue->core_list_cnt, 0);
init_waitqueue_head(&msg_queue->core_dec_done);
msg_queue->wdma_addr.size =
vde_msg_queue_get_trans_size(ctx->picinfo.buf_w,
ctx->picinfo.buf_h);
err = mtk_vcodec_mem_alloc(ctx, &msg_queue->wdma_addr);
if (err) {
mtk_v4l2_err("failed to allocate wdma_addr buf");
return -ENOMEM;
}
msg_queue->wdma_rptr_addr = msg_queue->wdma_addr.dma_addr;
msg_queue->wdma_wptr_addr = msg_queue->wdma_addr.dma_addr;
for (i = 0; i < NUM_BUFFER_COUNT; i++) {
lat_buf = &msg_queue->lat_buf[i];
lat_buf->wdma_err_addr.size = VDEC_ERR_MAP_SZ_AVC;
err = mtk_vcodec_mem_alloc(ctx, &lat_buf->wdma_err_addr);
if (err) {
mtk_v4l2_err("failed to allocate wdma_err_addr buf[%d]", i);
goto mem_alloc_err;
}
lat_buf->slice_bc_addr.size = VDEC_LAT_SLICE_HEADER_SZ;
err = mtk_vcodec_mem_alloc(ctx, &lat_buf->slice_bc_addr);
if (err) {
mtk_v4l2_err("failed to allocate wdma_addr buf[%d]", i);
goto mem_alloc_err;
}
lat_buf->private_data = kzalloc(private_size, GFP_KERNEL);
if (!lat_buf->private_data) {
err = -ENOMEM;
goto mem_alloc_err;
}
lat_buf->ctx = ctx;
lat_buf->core_decode = core_decode;
err = vdec_msg_queue_qbuf(&msg_queue->lat_ctx, lat_buf);
if (err) {
mtk_v4l2_err("failed to qbuf buf[%d]", i);
goto mem_alloc_err;
}
}
return 0;
mem_alloc_err:
vdec_msg_queue_deinit(msg_queue, ctx);
return err;
}