linux-zen-desktop/drivers/media/platform/renesas/rcar-vin/rcar-csi2.c

1607 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Renesas R-Car MIPI CSI-2 Receiver
*
* Copyright (C) 2018 Renesas Electronics Corp.
*/
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sys_soc.h>
#include <media/mipi-csi2.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>
struct rcar_csi2;
/* Register offsets and bits */
/* Control Timing Select */
#define TREF_REG 0x00
#define TREF_TREF BIT(0)
/* Software Reset */
#define SRST_REG 0x04
#define SRST_SRST BIT(0)
/* PHY Operation Control */
#define PHYCNT_REG 0x08
#define PHYCNT_SHUTDOWNZ BIT(17)
#define PHYCNT_RSTZ BIT(16)
#define PHYCNT_ENABLECLK BIT(4)
#define PHYCNT_ENABLE_3 BIT(3)
#define PHYCNT_ENABLE_2 BIT(2)
#define PHYCNT_ENABLE_1 BIT(1)
#define PHYCNT_ENABLE_0 BIT(0)
/* Checksum Control */
#define CHKSUM_REG 0x0c
#define CHKSUM_ECC_EN BIT(1)
#define CHKSUM_CRC_EN BIT(0)
/*
* Channel Data Type Select
* VCDT[0-15]: Channel 0 VCDT[16-31]: Channel 1
* VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
*/
#define VCDT_REG 0x10
#define VCDT2_REG 0x14
#define VCDT_VCDTN_EN BIT(15)
#define VCDT_SEL_VC(n) (((n) & 0x3) << 8)
#define VCDT_SEL_DTN_ON BIT(6)
#define VCDT_SEL_DT(n) (((n) & 0x3f) << 0)
/* Frame Data Type Select */
#define FRDT_REG 0x18
/* Field Detection Control */
#define FLD_REG 0x1c
#define FLD_FLD_NUM(n) (((n) & 0xff) << 16)
#define FLD_DET_SEL(n) (((n) & 0x3) << 4)
#define FLD_FLD_EN4 BIT(3)
#define FLD_FLD_EN3 BIT(2)
#define FLD_FLD_EN2 BIT(1)
#define FLD_FLD_EN BIT(0)
/* Automatic Standby Control */
#define ASTBY_REG 0x20
/* Long Data Type Setting 0 */
#define LNGDT0_REG 0x28
/* Long Data Type Setting 1 */
#define LNGDT1_REG 0x2c
/* Interrupt Enable */
#define INTEN_REG 0x30
#define INTEN_INT_AFIFO_OF BIT(27)
#define INTEN_INT_ERRSOTHS BIT(4)
#define INTEN_INT_ERRSOTSYNCHS BIT(3)
/* Interrupt Source Mask */
#define INTCLOSE_REG 0x34
/* Interrupt Status Monitor */
#define INTSTATE_REG 0x38
#define INTSTATE_INT_ULPS_START BIT(7)
#define INTSTATE_INT_ULPS_END BIT(6)
/* Interrupt Error Status Monitor */
#define INTERRSTATE_REG 0x3c
/* Short Packet Data */
#define SHPDAT_REG 0x40
/* Short Packet Count */
#define SHPCNT_REG 0x44
/* LINK Operation Control */
#define LINKCNT_REG 0x48
#define LINKCNT_MONITOR_EN BIT(31)
#define LINKCNT_REG_MONI_PACT_EN BIT(25)
#define LINKCNT_ICLK_NONSTOP BIT(24)
/* Lane Swap */
#define LSWAP_REG 0x4c
#define LSWAP_L3SEL(n) (((n) & 0x3) << 6)
#define LSWAP_L2SEL(n) (((n) & 0x3) << 4)
#define LSWAP_L1SEL(n) (((n) & 0x3) << 2)
#define LSWAP_L0SEL(n) (((n) & 0x3) << 0)
/* PHY Test Interface Write Register */
#define PHTW_REG 0x50
#define PHTW_DWEN BIT(24)
#define PHTW_TESTDIN_DATA(n) (((n & 0xff)) << 16)
#define PHTW_CWEN BIT(8)
#define PHTW_TESTDIN_CODE(n) ((n & 0xff))
#define PHYFRX_REG 0x64
#define PHYFRX_FORCERX_MODE_3 BIT(3)
#define PHYFRX_FORCERX_MODE_2 BIT(2)
#define PHYFRX_FORCERX_MODE_1 BIT(1)
#define PHYFRX_FORCERX_MODE_0 BIT(0)
struct phtw_value {
u16 data;
u16 code;
};
struct rcsi2_mbps_reg {
u16 mbps;
u16 reg;
};
static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
{ .mbps = 1500, .reg = 0xcc },
{ .mbps = 1550, .reg = 0x1d },
{ .mbps = 1600, .reg = 0x27 },
{ .mbps = 1650, .reg = 0x30 },
{ .mbps = 1700, .reg = 0x39 },
{ .mbps = 1750, .reg = 0x42 },
{ .mbps = 1800, .reg = 0x4b },
{ .mbps = 1850, .reg = 0x55 },
{ .mbps = 1900, .reg = 0x5e },
{ .mbps = 1950, .reg = 0x67 },
{ .mbps = 2000, .reg = 0x71 },
{ .mbps = 2050, .reg = 0x79 },
{ .mbps = 2100, .reg = 0x83 },
{ .mbps = 2150, .reg = 0x8c },
{ .mbps = 2200, .reg = 0x95 },
{ .mbps = 2250, .reg = 0x9e },
{ .mbps = 2300, .reg = 0xa7 },
{ .mbps = 2350, .reg = 0xb0 },
{ .mbps = 2400, .reg = 0xba },
{ .mbps = 2450, .reg = 0xc3 },
{ .mbps = 2500, .reg = 0xcc },
{ /* sentinel */ },
};
static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
{ .mbps = 80, .reg = 0x86 },
{ .mbps = 90, .reg = 0x86 },
{ .mbps = 100, .reg = 0x87 },
{ .mbps = 110, .reg = 0x87 },
{ .mbps = 120, .reg = 0x88 },
{ .mbps = 130, .reg = 0x88 },
{ .mbps = 140, .reg = 0x89 },
{ .mbps = 150, .reg = 0x89 },
{ .mbps = 160, .reg = 0x8a },
{ .mbps = 170, .reg = 0x8a },
{ .mbps = 180, .reg = 0x8b },
{ .mbps = 190, .reg = 0x8b },
{ .mbps = 205, .reg = 0x8c },
{ .mbps = 220, .reg = 0x8d },
{ .mbps = 235, .reg = 0x8e },
{ .mbps = 250, .reg = 0x8e },
{ /* sentinel */ },
};
static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
{ .mbps = 80, .reg = 0x00 },
{ .mbps = 90, .reg = 0x20 },
{ .mbps = 100, .reg = 0x40 },
{ .mbps = 110, .reg = 0x02 },
{ .mbps = 130, .reg = 0x22 },
{ .mbps = 140, .reg = 0x42 },
{ .mbps = 150, .reg = 0x04 },
{ .mbps = 170, .reg = 0x24 },
{ .mbps = 180, .reg = 0x44 },
{ .mbps = 200, .reg = 0x06 },
{ .mbps = 220, .reg = 0x26 },
{ .mbps = 240, .reg = 0x46 },
{ .mbps = 250, .reg = 0x08 },
{ .mbps = 270, .reg = 0x28 },
{ .mbps = 300, .reg = 0x0a },
{ .mbps = 330, .reg = 0x2a },
{ .mbps = 360, .reg = 0x4a },
{ .mbps = 400, .reg = 0x0c },
{ .mbps = 450, .reg = 0x2c },
{ .mbps = 500, .reg = 0x0e },
{ .mbps = 550, .reg = 0x2e },
{ .mbps = 600, .reg = 0x10 },
{ .mbps = 650, .reg = 0x30 },
{ .mbps = 700, .reg = 0x12 },
{ .mbps = 750, .reg = 0x32 },
{ .mbps = 800, .reg = 0x52 },
{ .mbps = 850, .reg = 0x72 },
{ .mbps = 900, .reg = 0x14 },
{ .mbps = 950, .reg = 0x34 },
{ .mbps = 1000, .reg = 0x54 },
{ .mbps = 1050, .reg = 0x74 },
{ .mbps = 1125, .reg = 0x16 },
{ /* sentinel */ },
};
/* PHY Test Interface Clear */
#define PHTC_REG 0x58
#define PHTC_TESTCLR BIT(0)
/* PHY Frequency Control */
#define PHYPLL_REG 0x68
#define PHYPLL_HSFREQRANGE(n) ((n) << 16)
static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
{ .mbps = 80, .reg = 0x00 },
{ .mbps = 90, .reg = 0x10 },
{ .mbps = 100, .reg = 0x20 },
{ .mbps = 110, .reg = 0x30 },
{ .mbps = 120, .reg = 0x01 },
{ .mbps = 130, .reg = 0x11 },
{ .mbps = 140, .reg = 0x21 },
{ .mbps = 150, .reg = 0x31 },
{ .mbps = 160, .reg = 0x02 },
{ .mbps = 170, .reg = 0x12 },
{ .mbps = 180, .reg = 0x22 },
{ .mbps = 190, .reg = 0x32 },
{ .mbps = 205, .reg = 0x03 },
{ .mbps = 220, .reg = 0x13 },
{ .mbps = 235, .reg = 0x23 },
{ .mbps = 250, .reg = 0x33 },
{ .mbps = 275, .reg = 0x04 },
{ .mbps = 300, .reg = 0x14 },
{ .mbps = 325, .reg = 0x25 },
{ .mbps = 350, .reg = 0x35 },
{ .mbps = 400, .reg = 0x05 },
{ .mbps = 450, .reg = 0x16 },
{ .mbps = 500, .reg = 0x26 },
{ .mbps = 550, .reg = 0x37 },
{ .mbps = 600, .reg = 0x07 },
{ .mbps = 650, .reg = 0x18 },
{ .mbps = 700, .reg = 0x28 },
{ .mbps = 750, .reg = 0x39 },
{ .mbps = 800, .reg = 0x09 },
{ .mbps = 850, .reg = 0x19 },
{ .mbps = 900, .reg = 0x29 },
{ .mbps = 950, .reg = 0x3a },
{ .mbps = 1000, .reg = 0x0a },
{ .mbps = 1050, .reg = 0x1a },
{ .mbps = 1100, .reg = 0x2a },
{ .mbps = 1150, .reg = 0x3b },
{ .mbps = 1200, .reg = 0x0b },
{ .mbps = 1250, .reg = 0x1b },
{ .mbps = 1300, .reg = 0x2b },
{ .mbps = 1350, .reg = 0x3c },
{ .mbps = 1400, .reg = 0x0c },
{ .mbps = 1450, .reg = 0x1c },
{ .mbps = 1500, .reg = 0x2c },
{ .mbps = 1550, .reg = 0x3d },
{ .mbps = 1600, .reg = 0x0d },
{ .mbps = 1650, .reg = 0x1d },
{ .mbps = 1700, .reg = 0x2e },
{ .mbps = 1750, .reg = 0x3e },
{ .mbps = 1800, .reg = 0x0e },
{ .mbps = 1850, .reg = 0x1e },
{ .mbps = 1900, .reg = 0x2f },
{ .mbps = 1950, .reg = 0x3f },
{ .mbps = 2000, .reg = 0x0f },
{ .mbps = 2050, .reg = 0x40 },
{ .mbps = 2100, .reg = 0x41 },
{ .mbps = 2150, .reg = 0x42 },
{ .mbps = 2200, .reg = 0x43 },
{ .mbps = 2300, .reg = 0x45 },
{ .mbps = 2350, .reg = 0x46 },
{ .mbps = 2400, .reg = 0x47 },
{ .mbps = 2450, .reg = 0x48 },
{ .mbps = 2500, .reg = 0x49 },
{ /* sentinel */ },
};
static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
{ .mbps = 80, .reg = 0x00 },
{ .mbps = 90, .reg = 0x10 },
{ .mbps = 100, .reg = 0x20 },
{ .mbps = 110, .reg = 0x30 },
{ .mbps = 120, .reg = 0x01 },
{ .mbps = 130, .reg = 0x11 },
{ .mbps = 140, .reg = 0x21 },
{ .mbps = 150, .reg = 0x31 },
{ .mbps = 160, .reg = 0x02 },
{ .mbps = 170, .reg = 0x12 },
{ .mbps = 180, .reg = 0x22 },
{ .mbps = 190, .reg = 0x32 },
{ .mbps = 205, .reg = 0x03 },
{ .mbps = 220, .reg = 0x13 },
{ .mbps = 235, .reg = 0x23 },
{ .mbps = 250, .reg = 0x33 },
{ .mbps = 275, .reg = 0x04 },
{ .mbps = 300, .reg = 0x14 },
{ .mbps = 325, .reg = 0x25 },
{ .mbps = 350, .reg = 0x35 },
{ .mbps = 400, .reg = 0x05 },
{ .mbps = 450, .reg = 0x16 },
{ .mbps = 500, .reg = 0x26 },
{ .mbps = 550, .reg = 0x37 },
{ .mbps = 600, .reg = 0x07 },
{ .mbps = 650, .reg = 0x18 },
{ .mbps = 700, .reg = 0x28 },
{ .mbps = 750, .reg = 0x39 },
{ .mbps = 800, .reg = 0x09 },
{ .mbps = 850, .reg = 0x19 },
{ .mbps = 900, .reg = 0x29 },
{ .mbps = 950, .reg = 0x3a },
{ .mbps = 1000, .reg = 0x0a },
{ .mbps = 1050, .reg = 0x1a },
{ .mbps = 1100, .reg = 0x2a },
{ .mbps = 1150, .reg = 0x3b },
{ .mbps = 1200, .reg = 0x0b },
{ .mbps = 1250, .reg = 0x1b },
{ .mbps = 1300, .reg = 0x2b },
{ .mbps = 1350, .reg = 0x3c },
{ .mbps = 1400, .reg = 0x0c },
{ .mbps = 1450, .reg = 0x1c },
{ .mbps = 1500, .reg = 0x2c },
{ /* sentinel */ },
};
static const struct rcsi2_mbps_reg hsfreqrange_m3w_h3es1[] = {
{ .mbps = 80, .reg = 0x00 },
{ .mbps = 90, .reg = 0x10 },
{ .mbps = 100, .reg = 0x20 },
{ .mbps = 110, .reg = 0x30 },
{ .mbps = 120, .reg = 0x01 },
{ .mbps = 130, .reg = 0x11 },
{ .mbps = 140, .reg = 0x21 },
{ .mbps = 150, .reg = 0x31 },
{ .mbps = 160, .reg = 0x02 },
{ .mbps = 170, .reg = 0x12 },
{ .mbps = 180, .reg = 0x22 },
{ .mbps = 190, .reg = 0x32 },
{ .mbps = 205, .reg = 0x03 },
{ .mbps = 220, .reg = 0x13 },
{ .mbps = 235, .reg = 0x23 },
{ .mbps = 250, .reg = 0x33 },
{ .mbps = 275, .reg = 0x04 },
{ .mbps = 300, .reg = 0x14 },
{ .mbps = 325, .reg = 0x05 },
{ .mbps = 350, .reg = 0x15 },
{ .mbps = 400, .reg = 0x25 },
{ .mbps = 450, .reg = 0x06 },
{ .mbps = 500, .reg = 0x16 },
{ .mbps = 550, .reg = 0x07 },
{ .mbps = 600, .reg = 0x17 },
{ .mbps = 650, .reg = 0x08 },
{ .mbps = 700, .reg = 0x18 },
{ .mbps = 750, .reg = 0x09 },
{ .mbps = 800, .reg = 0x19 },
{ .mbps = 850, .reg = 0x29 },
{ .mbps = 900, .reg = 0x39 },
{ .mbps = 950, .reg = 0x0a },
{ .mbps = 1000, .reg = 0x1a },
{ .mbps = 1050, .reg = 0x2a },
{ .mbps = 1100, .reg = 0x3a },
{ .mbps = 1150, .reg = 0x0b },
{ .mbps = 1200, .reg = 0x1b },
{ .mbps = 1250, .reg = 0x2b },
{ .mbps = 1300, .reg = 0x3b },
{ .mbps = 1350, .reg = 0x0c },
{ .mbps = 1400, .reg = 0x1c },
{ .mbps = 1450, .reg = 0x2c },
{ .mbps = 1500, .reg = 0x3c },
{ /* sentinel */ },
};
/* PHY ESC Error Monitor */
#define PHEERM_REG 0x74
/* PHY Clock Lane Monitor */
#define PHCLM_REG 0x78
#define PHCLM_STOPSTATECKL BIT(0)
/* PHY Data Lane Monitor */
#define PHDLM_REG 0x7c
/* CSI0CLK Frequency Configuration Preset Register */
#define CSI0CLKFCPR_REG 0x260
#define CSI0CLKFREQRANGE(n) ((n & 0x3f) << 16)
struct rcar_csi2_format {
u32 code;
unsigned int datatype;
unsigned int bpp;
};
static const struct rcar_csi2_format rcar_csi2_formats[] = {
{
.code = MEDIA_BUS_FMT_RGB888_1X24,
.datatype = MIPI_CSI2_DT_RGB888,
.bpp = 24,
}, {
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.datatype = MIPI_CSI2_DT_YUV422_8B,
.bpp = 16,
}, {
.code = MEDIA_BUS_FMT_YUYV8_1X16,
.datatype = MIPI_CSI2_DT_YUV422_8B,
.bpp = 16,
}, {
.code = MEDIA_BUS_FMT_UYVY8_2X8,
.datatype = MIPI_CSI2_DT_YUV422_8B,
.bpp = 16,
}, {
.code = MEDIA_BUS_FMT_YUYV10_2X10,
.datatype = MIPI_CSI2_DT_YUV422_8B,
.bpp = 20,
}, {
.code = MEDIA_BUS_FMT_Y10_1X10,
.datatype = MIPI_CSI2_DT_RAW10,
.bpp = 10,
}, {
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
.datatype = MIPI_CSI2_DT_RAW8,
.bpp = 8,
}, {
.code = MEDIA_BUS_FMT_SGBRG8_1X8,
.datatype = MIPI_CSI2_DT_RAW8,
.bpp = 8,
}, {
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
.datatype = MIPI_CSI2_DT_RAW8,
.bpp = 8,
}, {
.code = MEDIA_BUS_FMT_SRGGB8_1X8,
.datatype = MIPI_CSI2_DT_RAW8,
.bpp = 8,
}, {
.code = MEDIA_BUS_FMT_Y8_1X8,
.datatype = MIPI_CSI2_DT_RAW8,
.bpp = 8,
},
};
static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
if (rcar_csi2_formats[i].code == code)
return &rcar_csi2_formats[i];
return NULL;
}
enum rcar_csi2_pads {
RCAR_CSI2_SINK,
RCAR_CSI2_SOURCE_VC0,
RCAR_CSI2_SOURCE_VC1,
RCAR_CSI2_SOURCE_VC2,
RCAR_CSI2_SOURCE_VC3,
NR_OF_RCAR_CSI2_PAD,
};
struct rcar_csi2_info {
int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
int (*phy_post_init)(struct rcar_csi2 *priv);
const struct rcsi2_mbps_reg *hsfreqrange;
unsigned int csi0clkfreqrange;
unsigned int num_channels;
bool clear_ulps;
bool use_isp;
};
struct rcar_csi2 {
struct device *dev;
void __iomem *base;
const struct rcar_csi2_info *info;
struct reset_control *rstc;
struct v4l2_subdev subdev;
struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
struct v4l2_async_notifier notifier;
struct v4l2_subdev *remote;
unsigned int remote_pad;
int channel_vc[4];
struct mutex lock; /* Protects mf and stream_count. */
struct v4l2_mbus_framefmt mf;
int stream_count;
unsigned short lanes;
unsigned char lane_swap[4];
};
static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
{
return container_of(sd, struct rcar_csi2, subdev);
}
static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
{
return container_of(n, struct rcar_csi2, notifier);
}
static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
{
return ioread32(priv->base + reg);
}
static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
{
iowrite32(data, priv->base + reg);
}
static void rcsi2_enter_standby(struct rcar_csi2 *priv)
{
rcsi2_write(priv, PHYCNT_REG, 0);
rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
reset_control_assert(priv->rstc);
usleep_range(100, 150);
pm_runtime_put(priv->dev);
}
static int rcsi2_exit_standby(struct rcar_csi2 *priv)
{
int ret;
ret = pm_runtime_resume_and_get(priv->dev);
if (ret < 0)
return ret;
reset_control_deassert(priv->rstc);
return 0;
}
static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
unsigned int lanes)
{
unsigned int timeout;
/* Wait for the clock and data lanes to enter LP-11 state. */
for (timeout = 0; timeout <= 20; timeout++) {
const u32 lane_mask = (1 << lanes) - 1;
if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL) &&
(rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
return 0;
usleep_range(1000, 2000);
}
dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
return -ETIMEDOUT;
}
static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
{
const struct rcsi2_mbps_reg *hsfreq;
const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
if (mbps < priv->info->hsfreqrange->mbps)
dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps",
mbps, priv->info->hsfreqrange->mbps);
for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
if (hsfreq->mbps >= mbps)
break;
hsfreq_prev = hsfreq;
}
if (!hsfreq->mbps) {
dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
return -ERANGE;
}
if (hsfreq_prev &&
((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
hsfreq = hsfreq_prev;
rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
return 0;
}
static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
unsigned int lanes)
{
struct v4l2_subdev *source;
struct v4l2_ctrl *ctrl;
u64 mbps;
if (!priv->remote)
return -ENODEV;
source = priv->remote;
/* Read the pixel rate control from remote. */
ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
if (!ctrl) {
dev_err(priv->dev, "no pixel rate control in subdev %s\n",
source->name);
return -EINVAL;
}
/*
* Calculate the phypll in mbps.
* link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
* bps = link_freq * 2
*/
mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
do_div(mbps, lanes * 1000000);
return mbps;
}
static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
unsigned int *lanes)
{
struct v4l2_mbus_config mbus_config = { 0 };
int ret;
*lanes = priv->lanes;
ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
priv->remote_pad, &mbus_config);
if (ret == -ENOIOCTLCMD) {
dev_dbg(priv->dev, "No remote mbus configuration available\n");
return 0;
}
if (ret) {
dev_err(priv->dev, "Failed to get remote mbus configuration\n");
return ret;
}
if (mbus_config.type != V4L2_MBUS_CSI2_DPHY) {
dev_err(priv->dev, "Unsupported media bus type %u\n",
mbus_config.type);
return -EINVAL;
}
if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) {
dev_err(priv->dev,
"Unsupported mbus config: too many data lanes %u\n",
mbus_config.bus.mipi_csi2.num_data_lanes);
return -EINVAL;
}
*lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
return 0;
}
static int rcsi2_start_receiver(struct rcar_csi2 *priv)
{
const struct rcar_csi2_format *format;
u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
unsigned int lanes;
unsigned int i;
int mbps, ret;
dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
priv->mf.width, priv->mf.height,
priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
/* Code is validated in set_fmt. */
format = rcsi2_code_to_fmt(priv->mf.code);
if (!format)
return -EINVAL;
/*
* Enable all supported CSI-2 channels with virtual channel and
* data type matching.
*
* NOTE: It's not possible to get individual datatype for each
* source virtual channel. Once this is possible in V4L2
* it should be used here.
*/
for (i = 0; i < priv->info->num_channels; i++) {
u32 vcdt_part;
if (priv->channel_vc[i] < 0)
continue;
vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN |
VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype);
/* Store in correct reg and offset. */
if (i < 2)
vcdt |= vcdt_part << ((i % 2) * 16);
else
vcdt2 |= vcdt_part << ((i % 2) * 16);
}
if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
| FLD_FLD_EN;
if (priv->mf.height == 240)
fld |= FLD_FLD_NUM(0);
else
fld |= FLD_FLD_NUM(1);
}
/*
* Get the number of active data lanes inspecting the remote mbus
* configuration.
*/
ret = rcsi2_get_active_lanes(priv, &lanes);
if (ret)
return ret;
phycnt = PHYCNT_ENABLECLK;
phycnt |= (1 << lanes) - 1;
mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
if (mbps < 0)
return mbps;
/* Enable interrupts. */
rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
| INTEN_INT_ERRSOTSYNCHS);
/* Init */
rcsi2_write(priv, TREF_REG, TREF_TREF);
rcsi2_write(priv, PHTC_REG, 0);
/* Configure */
if (!priv->info->use_isp) {
rcsi2_write(priv, VCDT_REG, vcdt);
if (vcdt2)
rcsi2_write(priv, VCDT2_REG, vcdt2);
}
/* Lanes are zero indexed. */
rcsi2_write(priv, LSWAP_REG,
LSWAP_L0SEL(priv->lane_swap[0] - 1) |
LSWAP_L1SEL(priv->lane_swap[1] - 1) |
LSWAP_L2SEL(priv->lane_swap[2] - 1) |
LSWAP_L3SEL(priv->lane_swap[3] - 1));
/* Start */
if (priv->info->init_phtw) {
ret = priv->info->init_phtw(priv, mbps);
if (ret)
return ret;
}
if (priv->info->hsfreqrange) {
ret = rcsi2_set_phypll(priv, mbps);
if (ret)
return ret;
}
if (priv->info->csi0clkfreqrange)
rcsi2_write(priv, CSI0CLKFCPR_REG,
CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
if (priv->info->use_isp)
rcsi2_write(priv, PHYFRX_REG,
PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);
rcsi2_write(priv, PHYCNT_REG, phycnt);
rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
rcsi2_write(priv, FLD_REG, fld);
rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
ret = rcsi2_wait_phy_start(priv, lanes);
if (ret)
return ret;
if (priv->info->use_isp)
rcsi2_write(priv, PHYFRX_REG, 0);
/* Run post PHY start initialization, if needed. */
if (priv->info->phy_post_init) {
ret = priv->info->phy_post_init(priv);
if (ret)
return ret;
}
/* Clear Ultra Low Power interrupt. */
if (priv->info->clear_ulps)
rcsi2_write(priv, INTSTATE_REG,
INTSTATE_INT_ULPS_START |
INTSTATE_INT_ULPS_END);
return 0;
}
static int rcsi2_start(struct rcar_csi2 *priv)
{
int ret;
ret = rcsi2_exit_standby(priv);
if (ret < 0)
return ret;
ret = rcsi2_start_receiver(priv);
if (ret) {
rcsi2_enter_standby(priv);
return ret;
}
ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
if (ret) {
rcsi2_enter_standby(priv);
return ret;
}
return 0;
}
static void rcsi2_stop(struct rcar_csi2 *priv)
{
rcsi2_enter_standby(priv);
v4l2_subdev_call(priv->remote, video, s_stream, 0);
}
static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
{
struct rcar_csi2 *priv = sd_to_csi2(sd);
int ret = 0;
mutex_lock(&priv->lock);
if (!priv->remote) {
ret = -ENODEV;
goto out;
}
if (enable && priv->stream_count == 0) {
ret = rcsi2_start(priv);
if (ret)
goto out;
} else if (!enable && priv->stream_count == 1) {
rcsi2_stop(priv);
}
priv->stream_count += enable ? 1 : -1;
out:
mutex_unlock(&priv->lock);
return ret;
}
static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct rcar_csi2 *priv = sd_to_csi2(sd);
struct v4l2_mbus_framefmt *framefmt;
mutex_lock(&priv->lock);
if (!rcsi2_code_to_fmt(format->format.code))
format->format.code = rcar_csi2_formats[0].code;
if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
priv->mf = format->format;
} else {
framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
*framefmt = format->format;
}
mutex_unlock(&priv->lock);
return 0;
}
static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct rcar_csi2 *priv = sd_to_csi2(sd);
mutex_lock(&priv->lock);
if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
format->format = priv->mf;
else
format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
mutex_unlock(&priv->lock);
return 0;
}
static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
.s_stream = rcsi2_s_stream,
};
static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
.set_fmt = rcsi2_set_pad_format,
.get_fmt = rcsi2_get_pad_format,
};
static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
.video = &rcar_csi2_video_ops,
.pad = &rcar_csi2_pad_ops,
};
static irqreturn_t rcsi2_irq(int irq, void *data)
{
struct rcar_csi2 *priv = data;
u32 status, err_status;
status = rcsi2_read(priv, INTSTATE_REG);
err_status = rcsi2_read(priv, INTERRSTATE_REG);
if (!status)
return IRQ_HANDLED;
rcsi2_write(priv, INTSTATE_REG, status);
if (!err_status)
return IRQ_HANDLED;
rcsi2_write(priv, INTERRSTATE_REG, err_status);
dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
return IRQ_WAKE_THREAD;
}
static irqreturn_t rcsi2_irq_thread(int irq, void *data)
{
struct rcar_csi2 *priv = data;
mutex_lock(&priv->lock);
rcsi2_stop(priv);
usleep_range(1000, 2000);
if (rcsi2_start(priv))
dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
mutex_unlock(&priv->lock);
return IRQ_HANDLED;
}
/* -----------------------------------------------------------------------------
* Async handling and registration of subdevices and links.
*/
static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct rcar_csi2 *priv = notifier_to_csi2(notifier);
int pad;
pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
MEDIA_PAD_FL_SOURCE);
if (pad < 0) {
dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
return pad;
}
priv->remote = subdev;
priv->remote_pad = pad;
dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
return media_create_pad_link(&subdev->entity, pad,
&priv->subdev.entity, 0,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
}
static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct rcar_csi2 *priv = notifier_to_csi2(notifier);
priv->remote = NULL;
dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
}
static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
.bound = rcsi2_notify_bound,
.unbind = rcsi2_notify_unbind,
};
static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
struct v4l2_fwnode_endpoint *vep)
{
unsigned int i;
/* Only port 0 endpoint 0 is valid. */
if (vep->base.port || vep->base.id)
return -ENOTCONN;
if (vep->bus_type != V4L2_MBUS_CSI2_DPHY) {
dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
return -EINVAL;
}
priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
dev_err(priv->dev, "Unsupported number of data-lanes: %u\n",
priv->lanes);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
priv->lane_swap[i] = i < priv->lanes ?
vep->bus.mipi_csi2.data_lanes[i] : i;
/* Check for valid lane number. */
if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
return -EINVAL;
}
}
return 0;
}
static int rcsi2_parse_dt(struct rcar_csi2 *priv)
{
struct v4l2_async_subdev *asd;
struct fwnode_handle *fwnode;
struct fwnode_handle *ep;
struct v4l2_fwnode_endpoint v4l2_ep = {
.bus_type = V4L2_MBUS_CSI2_DPHY
};
int ret;
ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
if (!ep) {
dev_err(priv->dev, "Not connected to subdevice\n");
return -EINVAL;
}
ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
if (ret) {
dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
fwnode_handle_put(ep);
return -EINVAL;
}
ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
if (ret) {
fwnode_handle_put(ep);
return ret;
}
fwnode = fwnode_graph_get_remote_endpoint(ep);
fwnode_handle_put(ep);
dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
v4l2_async_nf_init(&priv->notifier);
priv->notifier.ops = &rcar_csi2_notify_ops;
asd = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
struct v4l2_async_subdev);
fwnode_handle_put(fwnode);
if (IS_ERR(asd))
return PTR_ERR(asd);
ret = v4l2_async_subdev_nf_register(&priv->subdev, &priv->notifier);
if (ret)
v4l2_async_nf_cleanup(&priv->notifier);
return ret;
}
/* -----------------------------------------------------------------------------
* PHTW initialization sequences.
*
* NOTE: Magic values are from the datasheet and lack documentation.
*/
static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
{
unsigned int timeout;
rcsi2_write(priv, PHTW_REG,
PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
PHTW_CWEN | PHTW_TESTDIN_CODE(code));
/* Wait for DWEN and CWEN to be cleared by hardware. */
for (timeout = 0; timeout <= 20; timeout++) {
if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
return 0;
usleep_range(1000, 2000);
}
dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
return -ETIMEDOUT;
}
static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
const struct phtw_value *values)
{
const struct phtw_value *value;
int ret;
for (value = values; value->data || value->code; value++) {
ret = rcsi2_phtw_write(priv, value->data, value->code);
if (ret)
return ret;
}
return 0;
}
static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
const struct rcsi2_mbps_reg *values, u16 code)
{
const struct rcsi2_mbps_reg *value;
const struct rcsi2_mbps_reg *prev_value = NULL;
for (value = values; value->mbps; value++) {
if (value->mbps >= mbps)
break;
prev_value = value;
}
if (prev_value &&
((mbps - prev_value->mbps) <= (value->mbps - mbps)))
value = prev_value;
if (!value->mbps) {
dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
return -ERANGE;
}
return rcsi2_phtw_write(priv, value->reg, code);
}
static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
unsigned int mbps)
{
static const struct phtw_value step1[] = {
{ .data = 0xcc, .code = 0xe2 },
{ .data = 0x01, .code = 0xe3 },
{ .data = 0x11, .code = 0xe4 },
{ .data = 0x01, .code = 0xe5 },
{ .data = 0x10, .code = 0x04 },
{ /* sentinel */ },
};
static const struct phtw_value step2[] = {
{ .data = 0x38, .code = 0x08 },
{ .data = 0x01, .code = 0x00 },
{ .data = 0x4b, .code = 0xac },
{ .data = 0x03, .code = 0x00 },
{ .data = 0x80, .code = 0x07 },
{ /* sentinel */ },
};
int ret;
ret = rcsi2_phtw_write_array(priv, step1);
if (ret)
return ret;
if (mbps != 0 && mbps <= 250) {
ret = rcsi2_phtw_write(priv, 0x39, 0x05);
if (ret)
return ret;
ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
0xf1);
if (ret)
return ret;
}
return rcsi2_phtw_write_array(priv, step2);
}
static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
{
return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
}
static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
{
return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
}
static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
{
return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
}
static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
{
static const struct phtw_value step1[] = {
{ .data = 0xee, .code = 0x34 },
{ .data = 0xee, .code = 0x44 },
{ .data = 0xee, .code = 0x54 },
{ .data = 0xee, .code = 0x84 },
{ .data = 0xee, .code = 0x94 },
{ /* sentinel */ },
};
return rcsi2_phtw_write_array(priv, step1);
}
static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
unsigned int mbps)
{
/* In case of 1500Mbps or less */
static const struct phtw_value step1[] = {
{ .data = 0xcc, .code = 0xe2 },
{ /* sentinel */ },
};
static const struct phtw_value step2[] = {
{ .data = 0x01, .code = 0xe3 },
{ .data = 0x11, .code = 0xe4 },
{ .data = 0x01, .code = 0xe5 },
{ /* sentinel */ },
};
/* In case of 1500Mbps or less */
static const struct phtw_value step3[] = {
{ .data = 0x38, .code = 0x08 },
{ /* sentinel */ },
};
static const struct phtw_value step4[] = {
{ .data = 0x01, .code = 0x00 },
{ .data = 0x4b, .code = 0xac },
{ .data = 0x03, .code = 0x00 },
{ .data = 0x80, .code = 0x07 },
{ /* sentinel */ },
};
int ret;
if (mbps != 0 && mbps <= 1500)
ret = rcsi2_phtw_write_array(priv, step1);
else
ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2);
if (ret)
return ret;
ret = rcsi2_phtw_write_array(priv, step2);
if (ret)
return ret;
if (mbps != 0 && mbps <= 1500) {
ret = rcsi2_phtw_write_array(priv, step3);
if (ret)
return ret;
}
ret = rcsi2_phtw_write_array(priv, step4);
if (ret)
return ret;
return ret;
}
/* -----------------------------------------------------------------------------
* Platform Device Driver.
*/
static int rcsi2_link_setup(struct media_entity *entity,
const struct media_pad *local,
const struct media_pad *remote, u32 flags)
{
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
struct rcar_csi2 *priv = sd_to_csi2(sd);
struct video_device *vdev;
int channel, vc;
u32 id;
if (!is_media_entity_v4l2_video_device(remote->entity)) {
dev_err(priv->dev, "Remote is not a video device\n");
return -EINVAL;
}
vdev = media_entity_to_video_device(remote->entity);
if (of_property_read_u32(vdev->dev_parent->of_node, "renesas,id", &id)) {
dev_err(priv->dev, "No renesas,id, can't configure routing\n");
return -EINVAL;
}
channel = id % 4;
if (flags & MEDIA_LNK_FL_ENABLED) {
if (media_pad_remote_pad_first(local)) {
dev_dbg(priv->dev,
"Each VC can only be routed to one output channel\n");
return -EINVAL;
}
vc = local->index - 1;
dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n",
vc, id, channel);
} else {
vc = -1;
}
priv->channel_vc[channel] = vc;
return 0;
}
static const struct media_entity_operations rcar_csi2_entity_ops = {
.link_setup = rcsi2_link_setup,
.link_validate = v4l2_subdev_link_validate,
};
static int rcsi2_probe_resources(struct rcar_csi2 *priv,
struct platform_device *pdev)
{
int irq, ret;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
rcsi2_irq_thread, IRQF_SHARED,
KBUILD_MODNAME, priv);
if (ret)
return ret;
priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
return PTR_ERR_OR_ZERO(priv->rstc);
}
static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
.hsfreqrange = hsfreqrange_h3_v3h_m3n,
.csi0clkfreqrange = 0x20,
.num_channels = 4,
.clear_ulps = true,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a7795es1 = {
.hsfreqrange = hsfreqrange_m3w_h3es1,
.num_channels = 4,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
.init_phtw = rcsi2_init_phtw_h3es2,
.hsfreqrange = hsfreqrange_h3_v3h_m3n,
.csi0clkfreqrange = 0x20,
.num_channels = 4,
.clear_ulps = true,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
.hsfreqrange = hsfreqrange_m3w_h3es1,
.num_channels = 4,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
.hsfreqrange = hsfreqrange_m3w_h3es1,
.num_channels = 4,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
.hsfreqrange = hsfreqrange_h3_v3h_m3n,
.csi0clkfreqrange = 0x20,
.num_channels = 4,
.clear_ulps = true,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
.init_phtw = rcsi2_init_phtw_v3m_e3,
.phy_post_init = rcsi2_phy_post_init_v3m_e3,
.num_channels = 4,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
.init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
.hsfreqrange = hsfreqrange_h3_v3h_m3n,
.csi0clkfreqrange = 0x20,
.clear_ulps = true,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
.init_phtw = rcsi2_init_phtw_v3m_e3,
.phy_post_init = rcsi2_phy_post_init_v3m_e3,
.num_channels = 2,
};
static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
.init_phtw = rcsi2_init_phtw_v3u,
.hsfreqrange = hsfreqrange_v3u,
.csi0clkfreqrange = 0x20,
.clear_ulps = true,
.use_isp = true,
};
static const struct of_device_id rcar_csi2_of_table[] = {
{
.compatible = "renesas,r8a774a1-csi2",
.data = &rcar_csi2_info_r8a7796,
},
{
.compatible = "renesas,r8a774b1-csi2",
.data = &rcar_csi2_info_r8a77965,
},
{
.compatible = "renesas,r8a774c0-csi2",
.data = &rcar_csi2_info_r8a77990,
},
{
.compatible = "renesas,r8a774e1-csi2",
.data = &rcar_csi2_info_r8a7795,
},
{
.compatible = "renesas,r8a7795-csi2",
.data = &rcar_csi2_info_r8a7795,
},
{
.compatible = "renesas,r8a7796-csi2",
.data = &rcar_csi2_info_r8a7796,
},
{
.compatible = "renesas,r8a77961-csi2",
.data = &rcar_csi2_info_r8a77961,
},
{
.compatible = "renesas,r8a77965-csi2",
.data = &rcar_csi2_info_r8a77965,
},
{
.compatible = "renesas,r8a77970-csi2",
.data = &rcar_csi2_info_r8a77970,
},
{
.compatible = "renesas,r8a77980-csi2",
.data = &rcar_csi2_info_r8a77980,
},
{
.compatible = "renesas,r8a77990-csi2",
.data = &rcar_csi2_info_r8a77990,
},
{
.compatible = "renesas,r8a779a0-csi2",
.data = &rcar_csi2_info_r8a779a0,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
static const struct soc_device_attribute r8a7795[] = {
{
.soc_id = "r8a7795", .revision = "ES1.*",
.data = &rcar_csi2_info_r8a7795es1,
},
{
.soc_id = "r8a7795", .revision = "ES2.*",
.data = &rcar_csi2_info_r8a7795es2,
},
{ /* sentinel */ }
};
static int rcsi2_probe(struct platform_device *pdev)
{
const struct soc_device_attribute *attr;
struct rcar_csi2 *priv;
unsigned int i, num_pads;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->info = of_device_get_match_data(&pdev->dev);
/*
* The different ES versions of r8a7795 (H3) behave differently but
* share the same compatible string.
*/
attr = soc_device_match(r8a7795);
if (attr)
priv->info = attr->data;
priv->dev = &pdev->dev;
mutex_init(&priv->lock);
priv->stream_count = 0;
ret = rcsi2_probe_resources(priv, pdev);
if (ret) {
dev_err(priv->dev, "Failed to get resources\n");
goto error_mutex;
}
platform_set_drvdata(pdev, priv);
ret = rcsi2_parse_dt(priv);
if (ret)
goto error_mutex;
priv->subdev.owner = THIS_MODULE;
priv->subdev.dev = &pdev->dev;
v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
KBUILD_MODNAME, dev_name(&pdev->dev));
priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
priv->subdev.entity.ops = &rcar_csi2_entity_ops;
num_pads = priv->info->use_isp ? 2 : NR_OF_RCAR_CSI2_PAD;
priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&priv->subdev.entity, num_pads,
priv->pads);
if (ret)
goto error_async;
for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++)
priv->channel_vc[i] = -1;
pm_runtime_enable(&pdev->dev);
ret = v4l2_async_register_subdev(&priv->subdev);
if (ret < 0)
goto error_async;
dev_info(priv->dev, "%d lanes found\n", priv->lanes);
return 0;
error_async:
v4l2_async_nf_unregister(&priv->notifier);
v4l2_async_nf_cleanup(&priv->notifier);
error_mutex:
mutex_destroy(&priv->lock);
return ret;
}
static int rcsi2_remove(struct platform_device *pdev)
{
struct rcar_csi2 *priv = platform_get_drvdata(pdev);
v4l2_async_nf_unregister(&priv->notifier);
v4l2_async_nf_cleanup(&priv->notifier);
v4l2_async_unregister_subdev(&priv->subdev);
pm_runtime_disable(&pdev->dev);
mutex_destroy(&priv->lock);
return 0;
}
static struct platform_driver rcar_csi2_pdrv = {
.remove = rcsi2_remove,
.probe = rcsi2_probe,
.driver = {
.name = "rcar-csi2",
.suppress_bind_attrs = true,
.of_match_table = rcar_csi2_of_table,
},
};
module_platform_driver(rcar_csi2_pdrv);
MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
MODULE_LICENSE("GPL");