linux-zen-desktop/drivers/net/dsa/rzn1_a5psw.c

1104 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2022 Schneider-Electric
*
* Clément Léger <clement.leger@bootlin.com>
*/
#include <linux/clk.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/if_ether.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <net/dsa.h>
#include "rzn1_a5psw.h"
struct a5psw_stats {
u16 offset;
const char name[ETH_GSTRING_LEN];
};
#define STAT_DESC(_offset) { \
.offset = A5PSW_##_offset, \
.name = __stringify(_offset), \
}
static const struct a5psw_stats a5psw_stats[] = {
STAT_DESC(aFramesTransmittedOK),
STAT_DESC(aFramesReceivedOK),
STAT_DESC(aFrameCheckSequenceErrors),
STAT_DESC(aAlignmentErrors),
STAT_DESC(aOctetsTransmittedOK),
STAT_DESC(aOctetsReceivedOK),
STAT_DESC(aTxPAUSEMACCtrlFrames),
STAT_DESC(aRxPAUSEMACCtrlFrames),
STAT_DESC(ifInErrors),
STAT_DESC(ifOutErrors),
STAT_DESC(ifInUcastPkts),
STAT_DESC(ifInMulticastPkts),
STAT_DESC(ifInBroadcastPkts),
STAT_DESC(ifOutDiscards),
STAT_DESC(ifOutUcastPkts),
STAT_DESC(ifOutMulticastPkts),
STAT_DESC(ifOutBroadcastPkts),
STAT_DESC(etherStatsDropEvents),
STAT_DESC(etherStatsOctets),
STAT_DESC(etherStatsPkts),
STAT_DESC(etherStatsUndersizePkts),
STAT_DESC(etherStatsOversizePkts),
STAT_DESC(etherStatsPkts64Octets),
STAT_DESC(etherStatsPkts65to127Octets),
STAT_DESC(etherStatsPkts128to255Octets),
STAT_DESC(etherStatsPkts256to511Octets),
STAT_DESC(etherStatsPkts1024to1518Octets),
STAT_DESC(etherStatsPkts1519toXOctets),
STAT_DESC(etherStatsJabbers),
STAT_DESC(etherStatsFragments),
STAT_DESC(VLANReceived),
STAT_DESC(VLANTransmitted),
STAT_DESC(aDeferred),
STAT_DESC(aMultipleCollisions),
STAT_DESC(aSingleCollisions),
STAT_DESC(aLateCollisions),
STAT_DESC(aExcessiveCollisions),
STAT_DESC(aCarrierSenseErrors),
};
static void a5psw_reg_writel(struct a5psw *a5psw, int offset, u32 value)
{
writel(value, a5psw->base + offset);
}
static u32 a5psw_reg_readl(struct a5psw *a5psw, int offset)
{
return readl(a5psw->base + offset);
}
static void a5psw_reg_rmw(struct a5psw *a5psw, int offset, u32 mask, u32 val)
{
u32 reg;
spin_lock(&a5psw->reg_lock);
reg = a5psw_reg_readl(a5psw, offset);
reg &= ~mask;
reg |= val;
a5psw_reg_writel(a5psw, offset, reg);
spin_unlock(&a5psw->reg_lock);
}
static enum dsa_tag_protocol a5psw_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
return DSA_TAG_PROTO_RZN1_A5PSW;
}
static void a5psw_port_pattern_set(struct a5psw *a5psw, int port, int pattern,
bool enable)
{
u32 rx_match = 0;
if (enable)
rx_match |= A5PSW_RXMATCH_CONFIG_PATTERN(pattern);
a5psw_reg_rmw(a5psw, A5PSW_RXMATCH_CONFIG(port),
A5PSW_RXMATCH_CONFIG_PATTERN(pattern), rx_match);
}
static void a5psw_port_mgmtfwd_set(struct a5psw *a5psw, int port, bool enable)
{
/* Enable "management forward" pattern matching, this will forward
* packets from this port only towards the management port and thus
* isolate the port.
*/
a5psw_port_pattern_set(a5psw, port, A5PSW_PATTERN_MGMTFWD, enable);
}
static void a5psw_port_tx_enable(struct a5psw *a5psw, int port, bool enable)
{
u32 mask = A5PSW_PORT_ENA_TX(port);
u32 reg = enable ? mask : 0;
/* Even though the port TX is disabled through TXENA bit in the
* PORT_ENA register, it can still send BPDUs. This depends on the tag
* configuration added when sending packets from the CPU port to the
* switch port. Indeed, when using forced forwarding without filtering,
* even disabled ports will be able to send packets that are tagged.
* This allows to implement STP support when ports are in a state where
* forwarding traffic should be stopped but BPDUs should still be sent.
*/
a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, mask, reg);
}
static void a5psw_port_enable_set(struct a5psw *a5psw, int port, bool enable)
{
u32 port_ena = 0;
if (enable)
port_ena |= A5PSW_PORT_ENA_TX_RX(port);
a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, A5PSW_PORT_ENA_TX_RX(port),
port_ena);
}
static int a5psw_lk_execute_ctrl(struct a5psw *a5psw, u32 *ctrl)
{
int ret;
a5psw_reg_writel(a5psw, A5PSW_LK_ADDR_CTRL, *ctrl);
ret = readl_poll_timeout(a5psw->base + A5PSW_LK_ADDR_CTRL, *ctrl,
!(*ctrl & A5PSW_LK_ADDR_CTRL_BUSY),
A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
if (ret)
dev_err(a5psw->dev, "LK_CTRL timeout waiting for BUSY bit\n");
return ret;
}
static void a5psw_port_fdb_flush(struct a5psw *a5psw, int port)
{
u32 ctrl = A5PSW_LK_ADDR_CTRL_DELETE_PORT | BIT(port);
mutex_lock(&a5psw->lk_lock);
a5psw_lk_execute_ctrl(a5psw, &ctrl);
mutex_unlock(&a5psw->lk_lock);
}
static void a5psw_port_authorize_set(struct a5psw *a5psw, int port,
bool authorize)
{
u32 reg = a5psw_reg_readl(a5psw, A5PSW_AUTH_PORT(port));
if (authorize)
reg |= A5PSW_AUTH_PORT_AUTHORIZED;
else
reg &= ~A5PSW_AUTH_PORT_AUTHORIZED;
a5psw_reg_writel(a5psw, A5PSW_AUTH_PORT(port), reg);
}
static void a5psw_port_disable(struct dsa_switch *ds, int port)
{
struct a5psw *a5psw = ds->priv;
a5psw_port_authorize_set(a5psw, port, false);
a5psw_port_enable_set(a5psw, port, false);
}
static int a5psw_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct a5psw *a5psw = ds->priv;
a5psw_port_authorize_set(a5psw, port, true);
a5psw_port_enable_set(a5psw, port, true);
return 0;
}
static int a5psw_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct a5psw *a5psw = ds->priv;
new_mtu += ETH_HLEN + A5PSW_EXTRA_MTU_LEN + ETH_FCS_LEN;
a5psw_reg_writel(a5psw, A5PSW_FRM_LENGTH(port), new_mtu);
return 0;
}
static int a5psw_port_max_mtu(struct dsa_switch *ds, int port)
{
return A5PSW_MAX_MTU;
}
static void a5psw_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
unsigned long *intf = config->supported_interfaces;
config->mac_capabilities = MAC_1000FD;
if (dsa_is_cpu_port(ds, port)) {
/* GMII is used internally and GMAC2 is connected to the switch
* using 1000Mbps Full-Duplex mode only (cf ethernet manual)
*/
__set_bit(PHY_INTERFACE_MODE_GMII, intf);
} else {
config->mac_capabilities |= MAC_100 | MAC_10;
phy_interface_set_rgmii(intf);
__set_bit(PHY_INTERFACE_MODE_RMII, intf);
__set_bit(PHY_INTERFACE_MODE_MII, intf);
}
}
static struct phylink_pcs *
a5psw_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
phy_interface_t interface)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct a5psw *a5psw = ds->priv;
if (!dsa_port_is_cpu(dp) && a5psw->pcs[port])
return a5psw->pcs[port];
return NULL;
}
static void a5psw_phylink_mac_link_down(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface)
{
struct a5psw *a5psw = ds->priv;
u32 cmd_cfg;
cmd_cfg = a5psw_reg_readl(a5psw, A5PSW_CMD_CFG(port));
cmd_cfg &= ~(A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA);
a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
}
static void a5psw_phylink_mac_link_up(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev, int speed,
int duplex, bool tx_pause, bool rx_pause)
{
u32 cmd_cfg = A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA |
A5PSW_CMD_CFG_TX_CRC_APPEND;
struct a5psw *a5psw = ds->priv;
if (speed == SPEED_1000)
cmd_cfg |= A5PSW_CMD_CFG_ETH_SPEED;
if (duplex == DUPLEX_HALF)
cmd_cfg |= A5PSW_CMD_CFG_HD_ENA;
cmd_cfg |= A5PSW_CMD_CFG_CNTL_FRM_ENA;
if (!rx_pause)
cmd_cfg &= ~A5PSW_CMD_CFG_PAUSE_IGNORE;
a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
}
static int a5psw_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
{
struct a5psw *a5psw = ds->priv;
unsigned long rate;
u64 max, tmp;
u32 agetime;
rate = clk_get_rate(a5psw->clk);
max = div64_ul(((u64)A5PSW_LK_AGETIME_MASK * A5PSW_TABLE_ENTRIES * 1024),
rate) * 1000;
if (msecs > max)
return -EINVAL;
tmp = div_u64(rate, MSEC_PER_SEC);
agetime = div_u64(msecs * tmp, 1024 * A5PSW_TABLE_ENTRIES);
a5psw_reg_writel(a5psw, A5PSW_LK_AGETIME, agetime);
return 0;
}
static void a5psw_port_learning_set(struct a5psw *a5psw, int port, bool learn)
{
u32 mask = A5PSW_INPUT_LEARN_DIS(port);
u32 reg = !learn ? mask : 0;
a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
}
static void a5psw_port_rx_block_set(struct a5psw *a5psw, int port, bool block)
{
u32 mask = A5PSW_INPUT_LEARN_BLOCK(port);
u32 reg = block ? mask : 0;
a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
}
static void a5psw_flooding_set_resolution(struct a5psw *a5psw, int port,
bool set)
{
u8 offsets[] = {A5PSW_UCAST_DEF_MASK, A5PSW_BCAST_DEF_MASK,
A5PSW_MCAST_DEF_MASK};
int i;
if (set)
a5psw->bridged_ports |= BIT(port);
else
a5psw->bridged_ports &= ~BIT(port);
for (i = 0; i < ARRAY_SIZE(offsets); i++)
a5psw_reg_writel(a5psw, offsets[i], a5psw->bridged_ports);
}
static void a5psw_port_set_standalone(struct a5psw *a5psw, int port,
bool standalone)
{
a5psw_port_learning_set(a5psw, port, !standalone);
a5psw_flooding_set_resolution(a5psw, port, !standalone);
a5psw_port_mgmtfwd_set(a5psw, port, standalone);
}
static int a5psw_port_bridge_join(struct dsa_switch *ds, int port,
struct dsa_bridge bridge,
bool *tx_fwd_offload,
struct netlink_ext_ack *extack)
{
struct a5psw *a5psw = ds->priv;
/* We only support 1 bridge device */
if (a5psw->br_dev && bridge.dev != a5psw->br_dev) {
NL_SET_ERR_MSG_MOD(extack,
"Forwarding offload supported for a single bridge");
return -EOPNOTSUPP;
}
a5psw->br_dev = bridge.dev;
a5psw_port_set_standalone(a5psw, port, false);
return 0;
}
static void a5psw_port_bridge_leave(struct dsa_switch *ds, int port,
struct dsa_bridge bridge)
{
struct a5psw *a5psw = ds->priv;
a5psw_port_set_standalone(a5psw, port, true);
/* No more ports bridged */
if (a5psw->bridged_ports == BIT(A5PSW_CPU_PORT))
a5psw->br_dev = NULL;
}
static void a5psw_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
bool learning_enabled, rx_enabled, tx_enabled;
struct a5psw *a5psw = ds->priv;
switch (state) {
case BR_STATE_DISABLED:
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
rx_enabled = false;
tx_enabled = false;
learning_enabled = false;
break;
case BR_STATE_LEARNING:
rx_enabled = false;
tx_enabled = false;
learning_enabled = true;
break;
case BR_STATE_FORWARDING:
rx_enabled = true;
tx_enabled = true;
learning_enabled = true;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
a5psw_port_learning_set(a5psw, port, learning_enabled);
a5psw_port_rx_block_set(a5psw, port, !rx_enabled);
a5psw_port_tx_enable(a5psw, port, tx_enabled);
}
static void a5psw_port_fast_age(struct dsa_switch *ds, int port)
{
struct a5psw *a5psw = ds->priv;
a5psw_port_fdb_flush(a5psw, port);
}
static int a5psw_lk_execute_lookup(struct a5psw *a5psw, union lk_data *lk_data,
u16 *entry)
{
u32 ctrl;
int ret;
a5psw_reg_writel(a5psw, A5PSW_LK_DATA_LO, lk_data->lo);
a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data->hi);
ctrl = A5PSW_LK_ADDR_CTRL_LOOKUP;
ret = a5psw_lk_execute_ctrl(a5psw, &ctrl);
if (ret)
return ret;
*entry = ctrl & A5PSW_LK_ADDR_CTRL_ADDRESS;
return 0;
}
static int a5psw_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct a5psw *a5psw = ds->priv;
union lk_data lk_data = {0};
bool inc_learncount = false;
int ret = 0;
u16 entry;
u32 reg;
ether_addr_copy(lk_data.entry.mac, addr);
lk_data.entry.port_mask = BIT(port);
mutex_lock(&a5psw->lk_lock);
/* Set the value to be written in the lookup table */
ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
if (ret)
goto lk_unlock;
lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
if (!lk_data.entry.valid) {
inc_learncount = true;
/* port_mask set to 0x1f when entry is not valid, clear it */
lk_data.entry.port_mask = 0;
lk_data.entry.prio = 0;
}
lk_data.entry.port_mask |= BIT(port);
lk_data.entry.is_static = 1;
lk_data.entry.valid = 1;
a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
reg = A5PSW_LK_ADDR_CTRL_WRITE | entry;
ret = a5psw_lk_execute_ctrl(a5psw, &reg);
if (ret)
goto lk_unlock;
if (inc_learncount) {
reg = A5PSW_LK_LEARNCOUNT_MODE_INC;
a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
}
lk_unlock:
mutex_unlock(&a5psw->lk_lock);
return ret;
}
static int a5psw_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
struct a5psw *a5psw = ds->priv;
union lk_data lk_data = {0};
bool clear = false;
u16 entry;
u32 reg;
int ret;
ether_addr_copy(lk_data.entry.mac, addr);
mutex_lock(&a5psw->lk_lock);
ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
if (ret)
goto lk_unlock;
lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
/* Our hardware does not associate any VID to the FDB entries so this
* means that if two entries were added for the same mac but for
* different VID, then, on the deletion of the first one, we would also
* delete the second one. Since there is unfortunately nothing we can do
* about that, do not return an error...
*/
if (!lk_data.entry.valid)
goto lk_unlock;
lk_data.entry.port_mask &= ~BIT(port);
/* If there is no more port in the mask, clear the entry */
if (lk_data.entry.port_mask == 0)
clear = true;
a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
reg = entry;
if (clear)
reg |= A5PSW_LK_ADDR_CTRL_CLEAR;
else
reg |= A5PSW_LK_ADDR_CTRL_WRITE;
ret = a5psw_lk_execute_ctrl(a5psw, &reg);
if (ret)
goto lk_unlock;
/* Decrement LEARNCOUNT */
if (clear) {
reg = A5PSW_LK_LEARNCOUNT_MODE_DEC;
a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
}
lk_unlock:
mutex_unlock(&a5psw->lk_lock);
return ret;
}
static int a5psw_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct a5psw *a5psw = ds->priv;
union lk_data lk_data;
int i = 0, ret = 0;
u32 reg;
mutex_lock(&a5psw->lk_lock);
for (i = 0; i < A5PSW_TABLE_ENTRIES; i++) {
reg = A5PSW_LK_ADDR_CTRL_READ | A5PSW_LK_ADDR_CTRL_WAIT | i;
ret = a5psw_lk_execute_ctrl(a5psw, &reg);
if (ret)
goto out_unlock;
lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
/* If entry is not valid or does not contain the port, skip */
if (!lk_data.entry.valid ||
!(lk_data.entry.port_mask & BIT(port)))
continue;
lk_data.lo = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_LO);
ret = cb(lk_data.entry.mac, 0, lk_data.entry.is_static, data);
if (ret)
goto out_unlock;
}
out_unlock:
mutex_unlock(&a5psw->lk_lock);
return ret;
}
static u64 a5psw_read_stat(struct a5psw *a5psw, u32 offset, int port)
{
u32 reg_lo, reg_hi;
reg_lo = a5psw_reg_readl(a5psw, offset + A5PSW_PORT_OFFSET(port));
/* A5PSW_STATS_HIWORD is latched on stat read */
reg_hi = a5psw_reg_readl(a5psw, A5PSW_STATS_HIWORD);
return ((u64)reg_hi << 32) | reg_lo;
}
static void a5psw_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
unsigned int u;
if (stringset != ETH_SS_STATS)
return;
for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++) {
memcpy(data + u * ETH_GSTRING_LEN, a5psw_stats[u].name,
ETH_GSTRING_LEN);
}
}
static void a5psw_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct a5psw *a5psw = ds->priv;
unsigned int u;
for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++)
data[u] = a5psw_read_stat(a5psw, a5psw_stats[u].offset, port);
}
static int a5psw_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(a5psw_stats);
}
static void a5psw_get_eth_mac_stats(struct dsa_switch *ds, int port,
struct ethtool_eth_mac_stats *mac_stats)
{
struct a5psw *a5psw = ds->priv;
#define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
mac_stats->FramesTransmittedOK = RD(aFramesTransmittedOK);
mac_stats->SingleCollisionFrames = RD(aSingleCollisions);
mac_stats->MultipleCollisionFrames = RD(aMultipleCollisions);
mac_stats->FramesReceivedOK = RD(aFramesReceivedOK);
mac_stats->FrameCheckSequenceErrors = RD(aFrameCheckSequenceErrors);
mac_stats->AlignmentErrors = RD(aAlignmentErrors);
mac_stats->OctetsTransmittedOK = RD(aOctetsTransmittedOK);
mac_stats->FramesWithDeferredXmissions = RD(aDeferred);
mac_stats->LateCollisions = RD(aLateCollisions);
mac_stats->FramesAbortedDueToXSColls = RD(aExcessiveCollisions);
mac_stats->FramesLostDueToIntMACXmitError = RD(ifOutErrors);
mac_stats->CarrierSenseErrors = RD(aCarrierSenseErrors);
mac_stats->OctetsReceivedOK = RD(aOctetsReceivedOK);
mac_stats->FramesLostDueToIntMACRcvError = RD(ifInErrors);
mac_stats->MulticastFramesXmittedOK = RD(ifOutMulticastPkts);
mac_stats->BroadcastFramesXmittedOK = RD(ifOutBroadcastPkts);
mac_stats->FramesWithExcessiveDeferral = RD(aDeferred);
mac_stats->MulticastFramesReceivedOK = RD(ifInMulticastPkts);
mac_stats->BroadcastFramesReceivedOK = RD(ifInBroadcastPkts);
#undef RD
}
static const struct ethtool_rmon_hist_range a5psw_rmon_ranges[] = {
{ 0, 64 },
{ 65, 127 },
{ 128, 255 },
{ 256, 511 },
{ 512, 1023 },
{ 1024, 1518 },
{ 1519, A5PSW_MAX_MTU },
{}
};
static void a5psw_get_rmon_stats(struct dsa_switch *ds, int port,
struct ethtool_rmon_stats *rmon_stats,
const struct ethtool_rmon_hist_range **ranges)
{
struct a5psw *a5psw = ds->priv;
#define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
rmon_stats->undersize_pkts = RD(etherStatsUndersizePkts);
rmon_stats->oversize_pkts = RD(etherStatsOversizePkts);
rmon_stats->fragments = RD(etherStatsFragments);
rmon_stats->jabbers = RD(etherStatsJabbers);
rmon_stats->hist[0] = RD(etherStatsPkts64Octets);
rmon_stats->hist[1] = RD(etherStatsPkts65to127Octets);
rmon_stats->hist[2] = RD(etherStatsPkts128to255Octets);
rmon_stats->hist[3] = RD(etherStatsPkts256to511Octets);
rmon_stats->hist[4] = RD(etherStatsPkts512to1023Octets);
rmon_stats->hist[5] = RD(etherStatsPkts1024to1518Octets);
rmon_stats->hist[6] = RD(etherStatsPkts1519toXOctets);
#undef RD
*ranges = a5psw_rmon_ranges;
}
static void a5psw_get_eth_ctrl_stats(struct dsa_switch *ds, int port,
struct ethtool_eth_ctrl_stats *ctrl_stats)
{
struct a5psw *a5psw = ds->priv;
u64 stat;
stat = a5psw_read_stat(a5psw, A5PSW_aTxPAUSEMACCtrlFrames, port);
ctrl_stats->MACControlFramesTransmitted = stat;
stat = a5psw_read_stat(a5psw, A5PSW_aRxPAUSEMACCtrlFrames, port);
ctrl_stats->MACControlFramesReceived = stat;
}
static int a5psw_setup(struct dsa_switch *ds)
{
struct a5psw *a5psw = ds->priv;
int port, vlan, ret;
struct dsa_port *dp;
u32 reg;
/* Validate that there is only 1 CPU port with index A5PSW_CPU_PORT */
dsa_switch_for_each_cpu_port(dp, ds) {
if (dp->index != A5PSW_CPU_PORT) {
dev_err(a5psw->dev, "Invalid CPU port\n");
return -EINVAL;
}
}
/* Configure management port */
reg = A5PSW_CPU_PORT | A5PSW_MGMT_CFG_ENABLE;
a5psw_reg_writel(a5psw, A5PSW_MGMT_CFG, reg);
/* Set pattern 0 to forward all frame to mgmt port */
a5psw_reg_writel(a5psw, A5PSW_PATTERN_CTRL(A5PSW_PATTERN_MGMTFWD),
A5PSW_PATTERN_CTRL_MGMTFWD);
/* Enable port tagging */
reg = FIELD_PREP(A5PSW_MGMT_TAG_CFG_TAGFIELD, ETH_P_DSA_A5PSW);
reg |= A5PSW_MGMT_TAG_CFG_ENABLE | A5PSW_MGMT_TAG_CFG_ALL_FRAMES;
a5psw_reg_writel(a5psw, A5PSW_MGMT_TAG_CFG, reg);
/* Enable normal switch operation */
reg = A5PSW_LK_ADDR_CTRL_BLOCKING | A5PSW_LK_ADDR_CTRL_LEARNING |
A5PSW_LK_ADDR_CTRL_AGEING | A5PSW_LK_ADDR_CTRL_ALLOW_MIGR |
A5PSW_LK_ADDR_CTRL_CLEAR_TABLE;
a5psw_reg_writel(a5psw, A5PSW_LK_CTRL, reg);
ret = readl_poll_timeout(a5psw->base + A5PSW_LK_CTRL, reg,
!(reg & A5PSW_LK_ADDR_CTRL_CLEAR_TABLE),
A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
if (ret) {
dev_err(a5psw->dev, "Failed to clear lookup table\n");
return ret;
}
/* Reset learn count to 0 */
reg = A5PSW_LK_LEARNCOUNT_MODE_SET;
a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
/* Clear VLAN resource table */
reg = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_WR_TAGMASK;
for (vlan = 0; vlan < A5PSW_VLAN_COUNT; vlan++)
a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(vlan), reg);
/* Reset all ports */
dsa_switch_for_each_port(dp, ds) {
port = dp->index;
/* Reset the port */
a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port),
A5PSW_CMD_CFG_SW_RESET);
/* Enable only CPU port */
a5psw_port_enable_set(a5psw, port, dsa_port_is_cpu(dp));
if (dsa_port_is_unused(dp))
continue;
/* Enable egress flooding and learning for CPU port */
if (dsa_port_is_cpu(dp)) {
a5psw_flooding_set_resolution(a5psw, port, true);
a5psw_port_learning_set(a5psw, port, true);
}
/* Enable standalone mode for user ports */
if (dsa_port_is_user(dp))
a5psw_port_set_standalone(a5psw, port, true);
}
return 0;
}
static const struct dsa_switch_ops a5psw_switch_ops = {
.get_tag_protocol = a5psw_get_tag_protocol,
.setup = a5psw_setup,
.port_disable = a5psw_port_disable,
.port_enable = a5psw_port_enable,
.phylink_get_caps = a5psw_phylink_get_caps,
.phylink_mac_select_pcs = a5psw_phylink_mac_select_pcs,
.phylink_mac_link_down = a5psw_phylink_mac_link_down,
.phylink_mac_link_up = a5psw_phylink_mac_link_up,
.port_change_mtu = a5psw_port_change_mtu,
.port_max_mtu = a5psw_port_max_mtu,
.get_sset_count = a5psw_get_sset_count,
.get_strings = a5psw_get_strings,
.get_ethtool_stats = a5psw_get_ethtool_stats,
.get_eth_mac_stats = a5psw_get_eth_mac_stats,
.get_eth_ctrl_stats = a5psw_get_eth_ctrl_stats,
.get_rmon_stats = a5psw_get_rmon_stats,
.set_ageing_time = a5psw_set_ageing_time,
.port_bridge_join = a5psw_port_bridge_join,
.port_bridge_leave = a5psw_port_bridge_leave,
.port_stp_state_set = a5psw_port_stp_state_set,
.port_fast_age = a5psw_port_fast_age,
.port_fdb_add = a5psw_port_fdb_add,
.port_fdb_del = a5psw_port_fdb_del,
.port_fdb_dump = a5psw_port_fdb_dump,
};
static int a5psw_mdio_wait_busy(struct a5psw *a5psw)
{
u32 status;
int err;
err = readl_poll_timeout(a5psw->base + A5PSW_MDIO_CFG_STATUS, status,
!(status & A5PSW_MDIO_CFG_STATUS_BUSY), 10,
1000 * USEC_PER_MSEC);
if (err)
dev_err(a5psw->dev, "MDIO command timeout\n");
return err;
}
static int a5psw_mdio_read(struct mii_bus *bus, int phy_id, int phy_reg)
{
struct a5psw *a5psw = bus->priv;
u32 cmd, status;
int ret;
cmd = A5PSW_MDIO_COMMAND_READ;
cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
ret = a5psw_mdio_wait_busy(a5psw);
if (ret)
return ret;
ret = a5psw_reg_readl(a5psw, A5PSW_MDIO_DATA) & A5PSW_MDIO_DATA_MASK;
status = a5psw_reg_readl(a5psw, A5PSW_MDIO_CFG_STATUS);
if (status & A5PSW_MDIO_CFG_STATUS_READERR)
return -EIO;
return ret;
}
static int a5psw_mdio_write(struct mii_bus *bus, int phy_id, int phy_reg,
u16 phy_data)
{
struct a5psw *a5psw = bus->priv;
u32 cmd;
cmd = FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
a5psw_reg_writel(a5psw, A5PSW_MDIO_DATA, phy_data);
return a5psw_mdio_wait_busy(a5psw);
}
static int a5psw_mdio_config(struct a5psw *a5psw, u32 mdio_freq)
{
unsigned long rate;
unsigned long div;
u32 cfgstatus;
rate = clk_get_rate(a5psw->hclk);
div = ((rate / mdio_freq) / 2);
if (div > FIELD_MAX(A5PSW_MDIO_CFG_STATUS_CLKDIV) ||
div < A5PSW_MDIO_CLK_DIV_MIN) {
dev_err(a5psw->dev, "MDIO clock div %ld out of range\n", div);
return -ERANGE;
}
cfgstatus = FIELD_PREP(A5PSW_MDIO_CFG_STATUS_CLKDIV, div);
a5psw_reg_writel(a5psw, A5PSW_MDIO_CFG_STATUS, cfgstatus);
return 0;
}
static int a5psw_probe_mdio(struct a5psw *a5psw, struct device_node *node)
{
struct device *dev = a5psw->dev;
struct mii_bus *bus;
u32 mdio_freq;
int ret;
if (of_property_read_u32(node, "clock-frequency", &mdio_freq))
mdio_freq = A5PSW_MDIO_DEF_FREQ;
ret = a5psw_mdio_config(a5psw, mdio_freq);
if (ret)
return ret;
bus = devm_mdiobus_alloc(dev);
if (!bus)
return -ENOMEM;
bus->name = "a5psw_mdio";
bus->read = a5psw_mdio_read;
bus->write = a5psw_mdio_write;
bus->priv = a5psw;
bus->parent = dev;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
a5psw->mii_bus = bus;
return devm_of_mdiobus_register(dev, bus, node);
}
static void a5psw_pcs_free(struct a5psw *a5psw)
{
int i;
for (i = 0; i < ARRAY_SIZE(a5psw->pcs); i++) {
if (a5psw->pcs[i])
miic_destroy(a5psw->pcs[i]);
}
}
static int a5psw_pcs_get(struct a5psw *a5psw)
{
struct device_node *ports, *port, *pcs_node;
struct phylink_pcs *pcs;
int ret;
u32 reg;
ports = of_get_child_by_name(a5psw->dev->of_node, "ethernet-ports");
if (!ports)
return -EINVAL;
for_each_available_child_of_node(ports, port) {
pcs_node = of_parse_phandle(port, "pcs-handle", 0);
if (!pcs_node)
continue;
if (of_property_read_u32(port, "reg", &reg)) {
ret = -EINVAL;
goto free_pcs;
}
if (reg >= ARRAY_SIZE(a5psw->pcs)) {
ret = -ENODEV;
goto free_pcs;
}
pcs = miic_create(a5psw->dev, pcs_node);
if (IS_ERR(pcs)) {
dev_err(a5psw->dev, "Failed to create PCS for port %d\n",
reg);
ret = PTR_ERR(pcs);
goto free_pcs;
}
a5psw->pcs[reg] = pcs;
of_node_put(pcs_node);
}
of_node_put(ports);
return 0;
free_pcs:
of_node_put(pcs_node);
of_node_put(port);
of_node_put(ports);
a5psw_pcs_free(a5psw);
return ret;
}
static int a5psw_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *mdio;
struct dsa_switch *ds;
struct a5psw *a5psw;
int ret;
a5psw = devm_kzalloc(dev, sizeof(*a5psw), GFP_KERNEL);
if (!a5psw)
return -ENOMEM;
a5psw->dev = dev;
mutex_init(&a5psw->lk_lock);
spin_lock_init(&a5psw->reg_lock);
a5psw->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(a5psw->base))
return PTR_ERR(a5psw->base);
ret = a5psw_pcs_get(a5psw);
if (ret)
return ret;
a5psw->hclk = devm_clk_get(dev, "hclk");
if (IS_ERR(a5psw->hclk)) {
dev_err(dev, "failed get hclk clock\n");
ret = PTR_ERR(a5psw->hclk);
goto free_pcs;
}
a5psw->clk = devm_clk_get(dev, "clk");
if (IS_ERR(a5psw->clk)) {
dev_err(dev, "failed get clk_switch clock\n");
ret = PTR_ERR(a5psw->clk);
goto free_pcs;
}
ret = clk_prepare_enable(a5psw->clk);
if (ret)
goto free_pcs;
ret = clk_prepare_enable(a5psw->hclk);
if (ret)
goto clk_disable;
mdio = of_get_child_by_name(dev->of_node, "mdio");
if (of_device_is_available(mdio)) {
ret = a5psw_probe_mdio(a5psw, mdio);
if (ret) {
of_node_put(mdio);
dev_err(dev, "Failed to register MDIO: %d\n", ret);
goto hclk_disable;
}
}
of_node_put(mdio);
ds = &a5psw->ds;
ds->dev = dev;
ds->num_ports = A5PSW_PORTS_NUM;
ds->ops = &a5psw_switch_ops;
ds->priv = a5psw;
ret = dsa_register_switch(ds);
if (ret) {
dev_err(dev, "Failed to register DSA switch: %d\n", ret);
goto hclk_disable;
}
return 0;
hclk_disable:
clk_disable_unprepare(a5psw->hclk);
clk_disable:
clk_disable_unprepare(a5psw->clk);
free_pcs:
a5psw_pcs_free(a5psw);
return ret;
}
static int a5psw_remove(struct platform_device *pdev)
{
struct a5psw *a5psw = platform_get_drvdata(pdev);
if (!a5psw)
return 0;
dsa_unregister_switch(&a5psw->ds);
a5psw_pcs_free(a5psw);
clk_disable_unprepare(a5psw->hclk);
clk_disable_unprepare(a5psw->clk);
return 0;
}
static void a5psw_shutdown(struct platform_device *pdev)
{
struct a5psw *a5psw = platform_get_drvdata(pdev);
if (!a5psw)
return;
dsa_switch_shutdown(&a5psw->ds);
platform_set_drvdata(pdev, NULL);
}
static const struct of_device_id a5psw_of_mtable[] = {
{ .compatible = "renesas,rzn1-a5psw", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, a5psw_of_mtable);
static struct platform_driver a5psw_driver = {
.driver = {
.name = "rzn1_a5psw",
.of_match_table = of_match_ptr(a5psw_of_mtable),
},
.probe = a5psw_probe,
.remove = a5psw_remove,
.shutdown = a5psw_shutdown,
};
module_platform_driver(a5psw_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Renesas RZ/N1 Advanced 5-port Switch driver");
MODULE_AUTHOR("Clément Léger <clement.leger@bootlin.com>");