linux-zen-desktop/drivers/net/ethernet/intel/e1000/e1000_hw.c

5637 lines
155 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2006 Intel Corporation. */
/* e1000_hw.c
* Shared functions for accessing and configuring the MAC
*/
#include "e1000.h"
static s32 e1000_check_downshift(struct e1000_hw *hw);
static s32 e1000_check_polarity(struct e1000_hw *hw,
e1000_rev_polarity *polarity);
static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
static void e1000_clear_vfta(struct e1000_hw *hw);
static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
bool link_up);
static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
u16 *max_length);
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
static s32 e1000_id_led_init(struct e1000_hw *hw);
static void e1000_init_rx_addrs(struct e1000_hw *hw);
static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info);
static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info);
static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
static s32 e1000_set_phy_type(struct e1000_hw *hw);
static void e1000_phy_init_script(struct e1000_hw *hw);
static s32 e1000_setup_copper_link(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
u16 phy_data);
static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
u16 *phy_data);
static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
static void e1000_release_eeprom(struct e1000_hw *hw);
static void e1000_standby_eeprom(struct e1000_hw *hw);
static s32 e1000_set_vco_speed(struct e1000_hw *hw);
static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
static s32 e1000_set_phy_mode(struct e1000_hw *hw);
static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data);
static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data);
/* IGP cable length table */
static const
u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100,
100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
110, 110,
110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
120, 120
};
static DEFINE_MUTEX(e1000_eeprom_lock);
static DEFINE_SPINLOCK(e1000_phy_lock);
/**
* e1000_set_phy_type - Set the phy type member in the hw struct.
* @hw: Struct containing variables accessed by shared code
*/
static s32 e1000_set_phy_type(struct e1000_hw *hw)
{
if (hw->mac_type == e1000_undefined)
return -E1000_ERR_PHY_TYPE;
switch (hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
case M88E1111_I_PHY_ID:
case M88E1118_E_PHY_ID:
hw->phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
if (hw->mac_type == e1000_82541 ||
hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547 ||
hw->mac_type == e1000_82547_rev_2)
hw->phy_type = e1000_phy_igp;
break;
case RTL8211B_PHY_ID:
hw->phy_type = e1000_phy_8211;
break;
case RTL8201N_PHY_ID:
hw->phy_type = e1000_phy_8201;
break;
default:
/* Should never have loaded on this device */
hw->phy_type = e1000_phy_undefined;
return -E1000_ERR_PHY_TYPE;
}
return E1000_SUCCESS;
}
/**
* e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
* @hw: Struct containing variables accessed by shared code
*/
static void e1000_phy_init_script(struct e1000_hw *hw)
{
u16 phy_saved_data;
if (hw->phy_init_script) {
msleep(20);
/* Save off the current value of register 0x2F5B to be restored
* at the end of this routine.
*/
e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
/* Disabled the PHY transmitter */
e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
msleep(20);
e1000_write_phy_reg(hw, 0x0000, 0x0140);
msleep(5);
switch (hw->mac_type) {
case e1000_82541:
case e1000_82547:
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
e1000_write_phy_reg(hw, 0x1F79, 0x0018);
e1000_write_phy_reg(hw, 0x1F30, 0x1600);
e1000_write_phy_reg(hw, 0x1F31, 0x0014);
e1000_write_phy_reg(hw, 0x1F32, 0x161C);
e1000_write_phy_reg(hw, 0x1F94, 0x0003);
e1000_write_phy_reg(hw, 0x1F96, 0x003F);
e1000_write_phy_reg(hw, 0x2010, 0x0008);
break;
case e1000_82541_rev_2:
case e1000_82547_rev_2:
e1000_write_phy_reg(hw, 0x1F73, 0x0099);
break;
default:
break;
}
e1000_write_phy_reg(hw, 0x0000, 0x3300);
msleep(20);
/* Now enable the transmitter */
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if (hw->mac_type == e1000_82547) {
u16 fused, fine, coarse;
/* Move to analog registers page */
e1000_read_phy_reg(hw,
IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
&fused);
if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
e1000_read_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_STATUS,
&fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse =
fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
if (coarse >
IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -=
IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
} else if (coarse ==
IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused =
(fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
(coarse &
IGP01E1000_ANALOG_FUSE_COARSE_MASK);
e1000_write_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_CONTROL,
fused);
e1000_write_phy_reg(hw,
IGP01E1000_ANALOG_FUSE_BYPASS,
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
}
}
}
}
/**
* e1000_set_mac_type - Set the mac type member in the hw struct.
* @hw: Struct containing variables accessed by shared code
*/
s32 e1000_set_mac_type(struct e1000_hw *hw)
{
switch (hw->device_id) {
case E1000_DEV_ID_82542:
switch (hw->revision_id) {
case E1000_82542_2_0_REV_ID:
hw->mac_type = e1000_82542_rev2_0;
break;
case E1000_82542_2_1_REV_ID:
hw->mac_type = e1000_82542_rev2_1;
break;
default:
/* Invalid 82542 revision ID */
return -E1000_ERR_MAC_TYPE;
}
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
hw->mac_type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
hw->mac_type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
hw->mac_type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
hw->mac_type = e1000_82545;
break;
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545GM_FIBER:
case E1000_DEV_ID_82545GM_SERDES:
hw->mac_type = e1000_82545_rev_3;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
hw->mac_type = e1000_82546;
break;
case E1000_DEV_ID_82546GB_COPPER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82546GB_PCIE:
case E1000_DEV_ID_82546GB_QUAD_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
hw->mac_type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER_LOM:
hw->mac_type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
hw->mac_type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
case E1000_DEV_ID_82547EI_MOBILE:
hw->mac_type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
hw->mac_type = e1000_82547_rev_2;
break;
case E1000_DEV_ID_INTEL_CE4100_GBE:
hw->mac_type = e1000_ce4100;
break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
switch (hw->mac_type) {
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
hw->asf_firmware_present = true;
break;
default:
break;
}
/* The 82543 chip does not count tx_carrier_errors properly in
* FD mode
*/
if (hw->mac_type == e1000_82543)
hw->bad_tx_carr_stats_fd = true;
if (hw->mac_type > e1000_82544)
hw->has_smbus = true;
return E1000_SUCCESS;
}
/**
* e1000_set_media_type - Set media type and TBI compatibility.
* @hw: Struct containing variables accessed by shared code
*/
void e1000_set_media_type(struct e1000_hw *hw)
{
u32 status;
if (hw->mac_type != e1000_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = false;
}
switch (hw->device_id) {
case E1000_DEV_ID_82545GM_SERDES:
case E1000_DEV_ID_82546GB_SERDES:
hw->media_type = e1000_media_type_internal_serdes;
break;
default:
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->media_type = e1000_media_type_fiber;
break;
case e1000_ce4100:
hw->media_type = e1000_media_type_copper;
break;
default:
status = er32(STATUS);
if (status & E1000_STATUS_TBIMODE) {
hw->media_type = e1000_media_type_fiber;
/* tbi_compatibility not valid on fiber */
hw->tbi_compatibility_en = false;
} else {
hw->media_type = e1000_media_type_copper;
}
break;
}
}
}
/**
* e1000_reset_hw - reset the hardware completely
* @hw: Struct containing variables accessed by shared code
*
* Reset the transmit and receive units; mask and clear all interrupts.
*/
s32 e1000_reset_hw(struct e1000_hw *hw)
{
u32 ctrl;
u32 ctrl_ext;
u32 manc;
u32 led_ctrl;
s32 ret_val;
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
if (hw->mac_type == e1000_82542_rev2_0) {
e_dbg("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw);
}
/* Clear interrupt mask to stop board from generating interrupts */
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
ew32(RCTL, 0);
ew32(TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH();
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
hw->tbi_compatibility_on = false;
/* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
*/
msleep(10);
ctrl = er32(CTRL);
/* Must reset the PHY before resetting the MAC */
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
E1000_WRITE_FLUSH();
msleep(5);
}
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
e_dbg("Issuing a global reset to MAC\n");
switch (hw->mac_type) {
case e1000_82544:
case e1000_82540:
case e1000_82545:
case e1000_82546:
case e1000_82541:
case e1000_82541_rev_2:
/* These controllers can't ack the 64-bit write when issuing the
* reset, so use IO-mapping as a workaround to issue the reset
*/
E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
case e1000_82545_rev_3:
case e1000_82546_rev_3:
/* Reset is performed on a shadow of the control register */
ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
break;
case e1000_ce4100:
default:
ew32(CTRL, (ctrl | E1000_CTRL_RST));
break;
}
/* After MAC reset, force reload of EEPROM to restore power-on settings
* to device. Later controllers reload the EEPROM automatically, so
* just wait for reload to complete.
*/
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
/* Wait for reset to complete */
udelay(10);
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
ew32(CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH();
/* Wait for EEPROM reload */
msleep(2);
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
/* Wait for EEPROM reload */
msleep(20);
break;
default:
/* Auto read done will delay 5ms or poll based on mac type */
ret_val = e1000_get_auto_rd_done(hw);
if (ret_val)
return ret_val;
break;
}
/* Disable HW ARPs on ASF enabled adapters */
if (hw->mac_type >= e1000_82540) {
manc = er32(MANC);
manc &= ~(E1000_MANC_ARP_EN);
ew32(MANC, manc);
}
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
e1000_phy_init_script(hw);
/* Configure activity LED after PHY reset */
led_ctrl = er32(LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
ew32(LEDCTL, led_ctrl);
}
/* Clear interrupt mask to stop board from generating interrupts */
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
/* Clear any pending interrupt events. */
er32(ICR);
/* If MWI was previously enabled, reenable it. */
if (hw->mac_type == e1000_82542_rev2_0) {
if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
e1000_pci_set_mwi(hw);
}
return E1000_SUCCESS;
}
/**
* e1000_init_hw - Performs basic configuration of the adapter.
* @hw: Struct containing variables accessed by shared code
*
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes the receive address registers,
* multicast table, and VLAN filter table. Calls routines to setup link
* configuration and flow control settings. Clears all on-chip counters. Leaves
* the transmit and receive units disabled and uninitialized.
*/
s32 e1000_init_hw(struct e1000_hw *hw)
{
u32 ctrl;
u32 i;
s32 ret_val;
u32 mta_size;
u32 ctrl_ext;
/* Initialize Identification LED */
ret_val = e1000_id_led_init(hw);
if (ret_val) {
e_dbg("Error Initializing Identification LED\n");
return ret_val;
}
/* Set the media type and TBI compatibility */
e1000_set_media_type(hw);
/* Disabling VLAN filtering. */
e_dbg("Initializing the IEEE VLAN\n");
if (hw->mac_type < e1000_82545_rev_3)
ew32(VET, 0);
e1000_clear_vfta(hw);
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
if (hw->mac_type == e1000_82542_rev2_0) {
e_dbg("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw);
ew32(RCTL, E1000_RCTL_RST);
E1000_WRITE_FLUSH();
msleep(5);
}
/* Setup the receive address. This involves initializing all of the
* Receive Address Registers (RARs 0 - 15).
*/
e1000_init_rx_addrs(hw);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if (hw->mac_type == e1000_82542_rev2_0) {
ew32(RCTL, 0);
E1000_WRITE_FLUSH();
msleep(1);
if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
e1000_pci_set_mwi(hw);
}
/* Zero out the Multicast HASH table */
e_dbg("Zeroing the MTA\n");
mta_size = E1000_MC_TBL_SIZE;
for (i = 0; i < mta_size; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* use write flush to prevent Memory Write Block (MWB) from
* occurring when accessing our register space
*/
E1000_WRITE_FLUSH();
}
/* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
* gives equal priority to transmits and receives. Valid only on
* 82542 and 82543 silicon.
*/
if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
ctrl = er32(CTRL);
ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
}
switch (hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
/* Workaround for PCI-X problem when BIOS sets MMRBC
* incorrectly.
*/
if (hw->bus_type == e1000_bus_type_pcix &&
e1000_pcix_get_mmrbc(hw) > 2048)
e1000_pcix_set_mmrbc(hw, 2048);
break;
}
/* Call a subroutine to configure the link and setup flow control. */
ret_val = e1000_setup_link(hw);
/* Set the transmit descriptor write-back policy */
if (hw->mac_type > e1000_82544) {
ctrl = er32(TXDCTL);
ctrl =
(ctrl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
ew32(TXDCTL, ctrl);
}
/* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs(hw);
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
ctrl_ext = er32(CTRL_EXT);
/* Relaxed ordering must be disabled to avoid a parity
* error crash in a PCI slot.
*/
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
ew32(CTRL_EXT, ctrl_ext);
}
return ret_val;
}
/**
* e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
* @hw: Struct containing variables accessed by shared code.
*/
static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
{
u16 eeprom_data;
s32 ret_val;
if (hw->media_type != e1000_media_type_internal_serdes)
return E1000_SUCCESS;
switch (hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
return E1000_SUCCESS;
}
ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
&eeprom_data);
if (ret_val)
return ret_val;
if (eeprom_data != EEPROM_RESERVED_WORD) {
/* Adjust SERDES output amplitude only. */
eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
ret_val =
e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/**
* e1000_setup_link - Configures flow control and link settings.
* @hw: Struct containing variables accessed by shared code
*
* Determines which flow control settings to use. Calls the appropriate media-
* specific link configuration function. Configures the flow control settings.
* Assuming the adapter has a valid link partner, a valid link should be
* established. Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*/
s32 e1000_setup_link(struct e1000_hw *hw)
{
u32 ctrl_ext;
s32 ret_val;
u16 eeprom_data;
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if (hw->fc == E1000_FC_DEFAULT) {
ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1, &eeprom_data);
if (ret_val) {
e_dbg("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = E1000_FC_NONE;
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
EEPROM_WORD0F_ASM_DIR)
hw->fc = E1000_FC_TX_PAUSE;
else
hw->fc = E1000_FC_FULL;
}
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
if (hw->mac_type == e1000_82542_rev2_0)
hw->fc &= (~E1000_FC_TX_PAUSE);
if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
hw->fc &= (~E1000_FC_RX_PAUSE);
hw->original_fc = hw->fc;
e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
* polarity value for the SW controlled pins, and setup the
* Extended Device Control reg with that info.
* This is needed because one of the SW controlled pins is used for
* signal detection. So this should be done before e1000_setup_pcs_link()
* or e1000_phy_setup() is called.
*/
if (hw->mac_type == e1000_82543) {
ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1, &eeprom_data);
if (ret_val) {
e_dbg("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
ew32(CTRL_EXT, ctrl_ext);
}
/* Call the necessary subroutine to configure the link. */
ret_val = (hw->media_type == e1000_media_type_copper) ?
e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
e_dbg("Initializing the Flow Control address, type and timer regs\n");
ew32(FCT, FLOW_CONTROL_TYPE);
ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
ew32(FCTTV, hw->fc_pause_time);
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
if (!(hw->fc & E1000_FC_TX_PAUSE)) {
ew32(FCRTL, 0);
ew32(FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
if (hw->fc_send_xon) {
ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
ew32(FCRTH, hw->fc_high_water);
} else {
ew32(FCRTL, hw->fc_low_water);
ew32(FCRTH, hw->fc_high_water);
}
}
return ret_val;
}
/**
* e1000_setup_fiber_serdes_link - prepare fiber or serdes link
* @hw: Struct containing variables accessed by shared code
*
* Manipulates Physical Coding Sublayer functions in order to configure
* link. Assumes the hardware has been previously reset and the transmitter
* and receiver are not enabled.
*/
static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
{
u32 ctrl;
u32 status;
u32 txcw = 0;
u32 i;
u32 signal = 0;
s32 ret_val;
/* On adapters with a MAC newer than 82544, SWDP 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
* If we're on serdes media, adjust the output amplitude to value
* set in the EEPROM.
*/
ctrl = er32(CTRL);
if (hw->media_type == e1000_media_type_fiber)
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
ret_val = e1000_adjust_serdes_amplitude(hw);
if (ret_val)
return ret_val;
/* Take the link out of reset */
ctrl &= ~(E1000_CTRL_LRST);
/* Adjust VCO speed to improve BER performance */
ret_val = e1000_set_vco_speed(hw);
if (ret_val)
return ret_val;
e1000_config_collision_dist(hw);
/* Check for a software override of the flow control settings, and setup
* the device accordingly. If auto-negotiation is enabled, then
* software will have to set the "PAUSE" bits to the correct value in
* the Tranmsit Config Word Register (TXCW) and re-start
* auto-negotiation. However, if auto-negotiation is disabled, then
* software will have to manually configure the two flow control enable
* bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames, but
* not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we do
* not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
*/
switch (hw->fc) {
case E1000_FC_NONE:
/* Flow ctrl is completely disabled by a software over-ride */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case E1000_FC_RX_PAUSE:
/* Rx Flow control is enabled and Tx Flow control is disabled by
* a software over-ride. Since there really isn't a way to
* advertise that we are capable of Rx Pause ONLY, we will
* advertise that we support both symmetric and asymmetric Rx
* PAUSE. Later, we will disable the adapter's ability to send
* PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case E1000_FC_TX_PAUSE:
/* Tx Flow control is enabled, and Rx Flow control is disabled,
* by a software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case E1000_FC_FULL:
/* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
/* Since auto-negotiation is enabled, take the link out of reset (the
* link will be in reset, because we previously reset the chip). This
* will restart auto-negotiation. If auto-negotiation is successful
* then the link-up status bit will be set and the flow control enable
* bits (RFCE and TFCE) will be set according to their negotiated value.
*/
e_dbg("Auto-negotiation enabled\n");
ew32(TXCW, txcw);
ew32(CTRL, ctrl);
E1000_WRITE_FLUSH();
hw->txcw = txcw;
msleep(1);
/* If we have a signal (the cable is plugged in) then poll for a
* "Link-Up" indication in the Device Status Register. Time-out if a
* link isn't seen in 500 milliseconds seconds (Auto-negotiation should
* complete in less than 500 milliseconds even if the other end is doing
* it in SW). For internal serdes, we just assume a signal is present,
* then poll.
*/
if (hw->media_type == e1000_media_type_internal_serdes ||
(er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
e_dbg("Looking for Link\n");
for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
msleep(10);
status = er32(STATUS);
if (status & E1000_STATUS_LU)
break;
}
if (i == (LINK_UP_TIMEOUT / 10)) {
e_dbg("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
/* AutoNeg failed to achieve a link, so we'll call
* e1000_check_for_link. This routine will force the
* link up if we detect a signal. This will allow us to
* communicate with non-autonegotiating link partners.
*/
ret_val = e1000_check_for_link(hw);
if (ret_val) {
e_dbg("Error while checking for link\n");
return ret_val;
}
hw->autoneg_failed = 0;
} else {
hw->autoneg_failed = 0;
e_dbg("Valid Link Found\n");
}
} else {
e_dbg("No Signal Detected\n");
}
return E1000_SUCCESS;
}
/**
* e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
* @hw: Struct containing variables accessed by shared code
*
* Commits changes to PHY configuration by calling e1000_phy_reset().
*/
static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
{
s32 ret_val;
/* SW reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val) {
e_dbg("Error Resetting the PHY\n");
return ret_val;
}
return E1000_SUCCESS;
}
static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
{
s32 ret_val;
u32 ctrl_aux;
switch (hw->phy_type) {
case e1000_phy_8211:
ret_val = e1000_copper_link_rtl_setup(hw);
if (ret_val) {
e_dbg("e1000_copper_link_rtl_setup failed!\n");
return ret_val;
}
break;
case e1000_phy_8201:
/* Set RMII mode */
ctrl_aux = er32(CTL_AUX);
ctrl_aux |= E1000_CTL_AUX_RMII;
ew32(CTL_AUX, ctrl_aux);
E1000_WRITE_FLUSH();
/* Disable the J/K bits required for receive */
ctrl_aux = er32(CTL_AUX);
ctrl_aux |= 0x4;
ctrl_aux &= ~0x2;
ew32(CTL_AUX, ctrl_aux);
E1000_WRITE_FLUSH();
ret_val = e1000_copper_link_rtl_setup(hw);
if (ret_val) {
e_dbg("e1000_copper_link_rtl_setup failed!\n");
return ret_val;
}
break;
default:
e_dbg("Error Resetting the PHY\n");
return E1000_ERR_PHY_TYPE;
}
return E1000_SUCCESS;
}
/**
* e1000_copper_link_preconfig - early configuration for copper
* @hw: Struct containing variables accessed by shared code
*
* Make sure we have a valid PHY and change PHY mode before link setup.
*/
static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 phy_data;
ctrl = er32(CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to
* what the PHY speed and duplex configuration is. In addition, we need
* to perform a hardware reset on the PHY to take it out of reset.
*/
if (hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
} else {
ctrl |=
(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
ew32(CTRL, ctrl);
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
}
/* Make sure we have a valid PHY */
ret_val = e1000_detect_gig_phy(hw);
if (ret_val) {
e_dbg("Error, did not detect valid phy.\n");
return ret_val;
}
e_dbg("Phy ID = %x\n", hw->phy_id);
/* Set PHY to class A mode (if necessary) */
ret_val = e1000_set_phy_mode(hw);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82545_rev_3) ||
(hw->mac_type == e1000_82546_rev_3)) {
ret_val =
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
phy_data |= 0x00000008;
ret_val =
e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
}
if (hw->mac_type <= e1000_82543 ||
hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2)
hw->phy_reset_disable = false;
return E1000_SUCCESS;
}
/**
* e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
* @hw: Struct containing variables accessed by shared code
*/
static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
u32 led_ctrl;
s32 ret_val;
u16 phy_data;
if (hw->phy_reset_disable)
return E1000_SUCCESS;
ret_val = e1000_phy_reset(hw);
if (ret_val) {
e_dbg("Error Resetting the PHY\n");
return ret_val;
}
/* Wait 15ms for MAC to configure PHY from eeprom settings */
msleep(15);
/* Configure activity LED after PHY reset */
led_ctrl = er32(LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
ew32(LEDCTL, led_ctrl);
/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
if (hw->phy_type == e1000_phy_igp) {
/* disable lplu d3 during driver init */
ret_val = e1000_set_d3_lplu_state(hw, false);
if (ret_val) {
e_dbg("Error Disabling LPLU D3\n");
return ret_val;
}
}
/* Configure mdi-mdix settings */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
hw->dsp_config_state = e1000_dsp_config_disabled;
/* Force MDI for earlier revs of the IGP PHY */
phy_data &=
~(IGP01E1000_PSCR_AUTO_MDIX |
IGP01E1000_PSCR_FORCE_MDI_MDIX);
hw->mdix = 1;
} else {
hw->dsp_config_state = e1000_dsp_config_enabled;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (hw->mdix) {
case 1:
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
}
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
if (hw->autoneg) {
e1000_ms_type phy_ms_setting = hw->master_slave;
if (hw->ffe_config_state == e1000_ffe_config_active)
hw->ffe_config_state = e1000_ffe_config_enabled;
if (hw->dsp_config_state == e1000_dsp_config_activated)
hw->dsp_config_state = e1000_dsp_config_enabled;
/* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default.
*/
if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val =
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val =
e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val =
e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
ret_val =
e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
if (ret_val)
return ret_val;
}
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* load defaults for future use */
hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
((phy_data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) : e1000_ms_auto;
switch (phy_ms_setting) {
case e1000_ms_force_master:
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
phy_data |= CR_1000T_MS_ENABLE;
phy_data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
phy_data &= ~CR_1000T_MS_ENABLE;
break;
default:
break;
}
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/**
* e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
* @hw: Struct containing variables accessed by shared code
*/
static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
if (hw->phy_reset_disable)
return E1000_SUCCESS;
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (hw->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if (hw->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
if (hw->phy_revision < M88E1011_I_REV_4) {
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val =
e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
&phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((hw->phy_revision == E1000_REVISION_2) &&
(hw->phy_id == M88E1111_I_PHY_ID)) {
/* Vidalia Phy, set the downshift counter to 5x */
phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
return ret_val;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
return ret_val;
}
}
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val) {
e_dbg("Error Resetting the PHY\n");
return ret_val;
}
return E1000_SUCCESS;
}
/**
* e1000_copper_link_autoneg - setup auto-neg
* @hw: Struct containing variables accessed by shared code
*
* Setup auto-negotiation and flow control advertisements,
* and then perform auto-negotiation.
*/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
/* Perform some bounds checking on the hw->autoneg_advertised
* parameter. If this variable is zero, then set it to the default.
*/
hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* IFE/RTL8201N PHY only supports 10/100 */
if (hw->phy_type == e1000_phy_8201)
hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
e_dbg("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if (ret_val) {
e_dbg("Error Setting up Auto-Negotiation\n");
return ret_val;
}
e_dbg("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if (hw->wait_autoneg_complete) {
ret_val = e1000_wait_autoneg(hw);
if (ret_val) {
e_dbg
("Error while waiting for autoneg to complete\n");
return ret_val;
}
}
hw->get_link_status = true;
return E1000_SUCCESS;
}
/**
* e1000_copper_link_postconfig - post link setup
* @hw: Struct containing variables accessed by shared code
*
* Config the MAC and the PHY after link is up.
* 1) Set up the MAC to the current PHY speed/duplex
* if we are on 82543. If we
* are on newer silicon, we only need to configure
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
*/
static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
{
s32 ret_val;
if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
e1000_config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val) {
e_dbg("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error Configuring Flow Control\n");
return ret_val;
}
/* Config DSP to improve Giga link quality */
if (hw->phy_type == e1000_phy_igp) {
ret_val = e1000_config_dsp_after_link_change(hw, true);
if (ret_val) {
e_dbg("Error Configuring DSP after link up\n");
return ret_val;
}
}
return E1000_SUCCESS;
}
/**
* e1000_setup_copper_link - phy/speed/duplex setting
* @hw: Struct containing variables accessed by shared code
*
* Detects which PHY is present and sets up the speed and duplex
*/
static s32 e1000_setup_copper_link(struct e1000_hw *hw)
{
s32 ret_val;
u16 i;
u16 phy_data;
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = e1000_copper_link_preconfig(hw);
if (ret_val)
return ret_val;
if (hw->phy_type == e1000_phy_igp) {
ret_val = e1000_copper_link_igp_setup(hw);
if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_m88) {
ret_val = e1000_copper_link_mgp_setup(hw);
if (ret_val)
return ret_val;
} else {
ret_val = gbe_dhg_phy_setup(hw);
if (ret_val) {
e_dbg("gbe_dhg_phy_setup failed!\n");
return ret_val;
}
}
if (hw->autoneg) {
/* Setup autoneg and flow control advertisement
* and perform autonegotiation
*/
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
return ret_val;
} else {
/* PHY will be set to 10H, 10F, 100H,or 100F
* depending on value from forced_speed_duplex.
*/
e_dbg("Forcing speed and duplex\n");
ret_val = e1000_phy_force_speed_duplex(hw);
if (ret_val) {
e_dbg("Error Forcing Speed and Duplex\n");
return ret_val;
}
}
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
for (i = 0; i < 10; i++) {
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
if (phy_data & MII_SR_LINK_STATUS) {
/* Config the MAC and PHY after link is up */
ret_val = e1000_copper_link_postconfig(hw);
if (ret_val)
return ret_val;
e_dbg("Valid link established!!!\n");
return E1000_SUCCESS;
}
udelay(10);
}
e_dbg("Unable to establish link!!!\n");
return E1000_SUCCESS;
}
/**
* e1000_phy_setup_autoneg - phy settings
* @hw: Struct containing variables accessed by shared code
*
* Configures PHY autoneg and flow control advertisement settings
*/
s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
s32 ret_val;
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
else if (hw->phy_type == e1000_phy_8201)
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
e_dbg("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
e_dbg("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
e_dbg("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
e_dbg("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
e_dbg
("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
e_dbg("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start
* auto-negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc) {
case E1000_FC_NONE: /* 0 */
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case E1000_FC_RX_PAUSE: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*/
/* Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
* hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case E1000_FC_TX_PAUSE: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case E1000_FC_FULL: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (hw->phy_type == e1000_phy_8201) {
mii_1000t_ctrl_reg = 0;
} else {
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/**
* e1000_phy_force_speed_duplex - force link settings
* @hw: Struct containing variables accessed by shared code
*
* Force PHY speed and duplex settings to hw->forced_speed_duplex
*/
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 mii_ctrl_reg;
u16 mii_status_reg;
u16 phy_data;
u16 i;
/* Turn off Flow control if we are forcing speed and duplex. */
hw->fc = E1000_FC_NONE;
e_dbg("hw->fc = %d\n", hw->fc);
/* Read the Device Control Register. */
ctrl = er32(CTRL);
/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(DEVICE_SPEED_MASK);
/* Clear the Auto Speed Detect Enable bit. */
ctrl &= ~E1000_CTRL_ASDE;
/* Read the MII Control Register. */
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
if (ret_val)
return ret_val;
/* We need to disable autoneg in order to force link and duplex. */
mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
/* Are we forcing Full or Half Duplex? */
if (hw->forced_speed_duplex == e1000_100_full ||
hw->forced_speed_duplex == e1000_10_full) {
/* We want to force full duplex so we SET the full duplex bits
* in the Device and MII Control Registers.
*/
ctrl |= E1000_CTRL_FD;
mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
e_dbg("Full Duplex\n");
} else {
/* We want to force half duplex so we CLEAR the full duplex bits
* in the Device and MII Control Registers.
*/
ctrl &= ~E1000_CTRL_FD;
mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
e_dbg("Half Duplex\n");
}
/* Are we forcing 100Mbps??? */
if (hw->forced_speed_duplex == e1000_100_full ||
hw->forced_speed_duplex == e1000_100_half) {
/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
ctrl |= E1000_CTRL_SPD_100;
mii_ctrl_reg |= MII_CR_SPEED_100;
mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
e_dbg("Forcing 100mb ");
} else {
/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
mii_ctrl_reg |= MII_CR_SPEED_10;
mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
e_dbg("Forcing 10mb ");
}
e1000_config_collision_dist(hw);
/* Write the configured values back to the Device Control Reg. */
ew32(CTRL, ctrl);
if (hw->phy_type == e1000_phy_m88) {
ret_val =
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
* MDI forced whenever speed are duplex are forced.
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val =
e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
e_dbg("M88E1000 PSCR: %x\n", phy_data);
/* Need to reset the PHY or these changes will be ignored */
mii_ctrl_reg |= MII_CR_RESET;
/* Disable MDI-X support for 10/100 */
} else {
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed or duplex are forced.
*/
ret_val =
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val =
e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
return ret_val;
}
/* Write back the modified PHY MII control register. */
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
if (ret_val)
return ret_val;
udelay(1);
/* The wait_autoneg_complete flag may be a little misleading here.
* Since we are forcing speed and duplex, Auto-Neg is not enabled.
* But we do want to delay for a period while forcing only so we
* don't generate false No Link messages. So we will wait here
* only if the user has set wait_autoneg_complete to 1, which is
* the default.
*/
if (hw->wait_autoneg_complete) {
/* We will wait for autoneg to complete. */
e_dbg("Waiting for forced speed/duplex link.\n");
mii_status_reg = 0;
/* Wait for autoneg to complete or 4.5 seconds to expire */
for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
ret_val =
e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val =
e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if (mii_status_reg & MII_SR_LINK_STATUS)
break;
msleep(100);
}
if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
/* We didn't get link. Reset the DSP and wait again
* for link.
*/
ret_val = e1000_phy_reset_dsp(hw);
if (ret_val) {
e_dbg("Error Resetting PHY DSP\n");
return ret_val;
}
}
/* This loop will early-out if the link condition has been
* met
*/
for (i = PHY_FORCE_TIME; i > 0; i--) {
if (mii_status_reg & MII_SR_LINK_STATUS)
break;
msleep(100);
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
ret_val =
e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val =
e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
}
}
if (hw->phy_type == e1000_phy_m88) {
/* Because we reset the PHY above, we need to re-force TX_CLK in
* the Extended PHY Specific Control Register to 25MHz clock.
* This value defaults back to a 2.5MHz clock when the PHY is
* reset.
*/
ret_val =
e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
&phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val =
e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
return ret_val;
/* In addition, because of the s/w reset above, we need to
* enable CRS on Tx. This must be set for both full and half
* duplex operation.
*/
ret_val =
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val =
e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82544 ||
hw->mac_type == e1000_82543) &&
(!hw->autoneg) &&
(hw->forced_speed_duplex == e1000_10_full ||
hw->forced_speed_duplex == e1000_10_half)) {
ret_val = e1000_polarity_reversal_workaround(hw);
if (ret_val)
return ret_val;
}
}
return E1000_SUCCESS;
}
/**
* e1000_config_collision_dist - set collision distance register
* @hw: Struct containing variables accessed by shared code
*
* Sets the collision distance in the Transmit Control register.
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
*/
void e1000_config_collision_dist(struct e1000_hw *hw)
{
u32 tctl, coll_dist;
if (hw->mac_type < e1000_82543)
coll_dist = E1000_COLLISION_DISTANCE_82542;
else
coll_dist = E1000_COLLISION_DISTANCE;
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= coll_dist << E1000_COLD_SHIFT;
ew32(TCTL, tctl);
E1000_WRITE_FLUSH();
}
/**
* e1000_config_mac_to_phy - sync phy and mac settings
* @hw: Struct containing variables accessed by shared code
*
* Sets MAC speed and duplex settings to reflect the those in the PHY
* The contents of the PHY register containing the needed information need to
* be passed in.
*/
static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 phy_data;
/* 82544 or newer MAC, Auto Speed Detection takes care of
* MAC speed/duplex configuration.
*/
if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
return E1000_SUCCESS;
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
switch (hw->phy_type) {
case e1000_phy_8201:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
if (phy_data & RTL_PHY_CTRL_FD)
ctrl |= E1000_CTRL_FD;
else
ctrl &= ~E1000_CTRL_FD;
if (phy_data & RTL_PHY_CTRL_SPD_100)
ctrl |= E1000_CTRL_SPD_100;
else
ctrl |= E1000_CTRL_SPD_10;
e1000_config_collision_dist(hw);
break;
default:
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
if (ret_val)
return ret_val;
if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
else
ctrl &= ~E1000_CTRL_FD;
e1000_config_collision_dist(hw);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
else if ((phy_data & M88E1000_PSSR_SPEED) ==
M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
}
/* Write the configured values back to the Device Control Reg. */
ew32(CTRL, ctrl);
return E1000_SUCCESS;
}
/**
* e1000_force_mac_fc - force flow control settings
* @hw: Struct containing variables accessed by shared code
*
* Forces the MAC's flow control settings.
* Sets the TFCE and RFCE bits in the device control register to reflect
* the adapter settings. TFCE and RFCE need to be explicitly set by
* software when a Copper PHY is used because autonegotiation is managed
* by the PHY rather than the MAC. Software must also configure these
* bits when link is forced on a fiber connection.
*/
s32 e1000_force_mac_fc(struct e1000_hw *hw)
{
u32 ctrl;
/* Get the current configuration of the Device Control Register */
ctrl = er32(CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
switch (hw->fc) {
case E1000_FC_NONE:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case E1000_FC_RX_PAUSE:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case E1000_FC_TX_PAUSE:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case E1000_FC_FULL:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
if (hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
ew32(CTRL, ctrl);
return E1000_SUCCESS;
}
/**
* e1000_config_fc_after_link_up - configure flow control after autoneg
* @hw: Struct containing variables accessed by shared code
*
* Configures flow control settings after link is established
* Should be called immediately after a valid link has been established.
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
* and autonegotiation is enabled, the MAC flow control settings will be set
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
* and RFCE bits will be automatically set to the negotiated flow control mode.
*/
static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
s32 ret_val;
u16 mii_status_reg;
u16 mii_nway_adv_reg;
u16 mii_nway_lp_ability_reg;
u16 speed;
u16 duplex;
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (((hw->media_type == e1000_media_type_fiber) &&
(hw->autoneg_failed)) ||
((hw->media_type == e1000_media_type_internal_serdes) &&
(hw->autoneg_failed)) ||
((hw->media_type == e1000_media_type_copper) &&
(!hw->autoneg))) {
ret_val = e1000_force_mac_fc(hw);
if (ret_val) {
e_dbg("Error forcing flow control settings\n");
return ret_val;
}
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page
* Ability Register (Address 5) to determine how flow
* control was negotiated.
*/
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
if (ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement
* Register (Address 4) and two bits in the Auto
* Negotiation Base Page Ability Register (Address 5)
* determine flow control for both the PHY and the link
* partner. The following table, taken out of the IEEE
* 802.3ab/D6.0 dated March 25, 1999, describes these
* PAUSE resolution bits and how flow control is
* determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|------------------
* 0 | 0 | DC | DC | E1000_FC_NONE
* 0 | 1 | 0 | DC | E1000_FC_NONE
* 0 | 1 | 1 | 0 | E1000_FC_NONE
* 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
* 1 | 0 | 0 | DC | E1000_FC_NONE
* 1 | DC | 1 | DC | E1000_FC_FULL
* 1 | 1 | 0 | 0 | E1000_FC_NONE
* 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
*
*/
/* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|------------------
* 1 | DC | 1 | DC | E1000_FC_FULL
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected Rx
* ONLY of pause frames. In this case, we had
* to advertise FULL flow control because we
* could not advertise Rx ONLY. Hence, we must
* now check to see if we need to turn OFF the
* TRANSMISSION of PAUSE frames.
*/
if (hw->original_fc == E1000_FC_FULL) {
hw->fc = E1000_FC_FULL;
e_dbg("Flow Control = FULL.\n");
} else {
hw->fc = E1000_FC_RX_PAUSE;
e_dbg
("Flow Control = RX PAUSE frames only.\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|------------------
* 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
*
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = E1000_FC_TX_PAUSE;
e_dbg
("Flow Control = TX PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|------------------
* 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
*
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = E1000_FC_RX_PAUSE;
e_dbg
("Flow Control = RX PAUSE frames only.\n");
}
/* Per the IEEE spec, at this point flow control should
* be disabled. However, we want to consider that we
* could be connected to a legacy switch that doesn't
* advertise desired flow control, but can be forced on
* the link partner. So if we advertised no flow
* control, that is what we will resolve to. If we
* advertised some kind of receive capability (Rx Pause
* Only or Full Flow Control) and the link partner
* advertised none, we will configure ourselves to
* enable Rx Flow Control only. We can do this safely
* for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx,
* no harm done since we won't be receiving any PAUSE
* frames anyway. If the intent on the link partner was
* to have flow control enabled, then by us enabling Rx
* only, we can at least receive pause frames and
* process them. This is a good idea because in most
* cases, since we are predominantly a server NIC, more
* times than not we will be asked to delay transmission
* of packets than asking our link partner to pause
* transmission of frames.
*/
else if ((hw->original_fc == E1000_FC_NONE ||
hw->original_fc == E1000_FC_TX_PAUSE) ||
hw->fc_strict_ieee) {
hw->fc = E1000_FC_NONE;
e_dbg("Flow Control = NONE.\n");
} else {
hw->fc = E1000_FC_RX_PAUSE;
e_dbg
("Flow Control = RX PAUSE frames only.\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val =
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
e_dbg
("Error getting link speed and duplex\n");
return ret_val;
}
if (duplex == HALF_DUPLEX)
hw->fc = E1000_FC_NONE;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000_force_mac_fc(hw);
if (ret_val) {
e_dbg
("Error forcing flow control settings\n");
return ret_val;
}
} else {
e_dbg
("Copper PHY and Auto Neg has not completed.\n");
}
}
return E1000_SUCCESS;
}
/**
* e1000_check_for_serdes_link_generic - Check for link (Serdes)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
*/
static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
{
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val = E1000_SUCCESS;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
/* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), and our link partner is not trying to
* auto-negotiate with us (we are receiving idles or data),
* we need to force link up. We also need to give auto-negotiation
* time to complete.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
if (hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
goto out;
}
e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error configuring flow control\n");
goto out;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
ew32(TXCW, hw->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
hw->serdes_has_link = true;
} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
/* If we force link for non-auto-negotiation switch, check
* link status based on MAC synchronization for internal
* serdes media type.
*/
/* SYNCH bit and IV bit are sticky. */
udelay(10);
rxcw = er32(RXCW);
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
hw->serdes_has_link = true;
e_dbg("SERDES: Link up - forced.\n");
}
} else {
hw->serdes_has_link = false;
e_dbg("SERDES: Link down - force failed.\n");
}
}
if (E1000_TXCW_ANE & er32(TXCW)) {
status = er32(STATUS);
if (status & E1000_STATUS_LU) {
/* SYNCH bit and IV bit are sticky, so reread rxcw. */
udelay(10);
rxcw = er32(RXCW);
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
hw->serdes_has_link = true;
e_dbg("SERDES: Link up - autoneg "
"completed successfully.\n");
} else {
hw->serdes_has_link = false;
e_dbg("SERDES: Link down - invalid"
"codewords detected in autoneg.\n");
}
} else {
hw->serdes_has_link = false;
e_dbg("SERDES: Link down - no sync.\n");
}
} else {
hw->serdes_has_link = false;
e_dbg("SERDES: Link down - autoneg failed\n");
}
}
out:
return ret_val;
}
/**
* e1000_check_for_link
* @hw: Struct containing variables accessed by shared code
*
* Checks to see if the link status of the hardware has changed.
* Called by any function that needs to check the link status of the adapter.
*/
s32 e1000_check_for_link(struct e1000_hw *hw)
{
u32 status;
u32 rctl;
u32 icr;
s32 ret_val;
u16 phy_data;
er32(CTRL);
status = er32(STATUS);
/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
*/
if ((hw->media_type == e1000_media_type_fiber) ||
(hw->media_type == e1000_media_type_internal_serdes)) {
er32(RXCW);
if (hw->media_type == e1000_media_type_fiber) {
if (status & E1000_STATUS_LU)
hw->get_link_status = false;
}
}
/* If we have a copper PHY then we only want to go out to the PHY
* registers to see if Auto-Neg has completed and/or if our link
* status has changed. The get_link_status flag will be set if we
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
if (phy_data & MII_SR_LINK_STATUS) {
hw->get_link_status = false;
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000_check_downshift(hw);
/* If we are on 82544 or 82543 silicon and speed/duplex
* are forced to 10H or 10F, then we will implement the
* polarity reversal workaround. We disable interrupts
* first, and upon returning, place the devices
* interrupt state to its previous value except for the
* link status change interrupt which will
* happen due to the execution of this workaround.
*/
if ((hw->mac_type == e1000_82544 ||
hw->mac_type == e1000_82543) &&
(!hw->autoneg) &&
(hw->forced_speed_duplex == e1000_10_full ||
hw->forced_speed_duplex == e1000_10_half)) {
ew32(IMC, 0xffffffff);
ret_val =
e1000_polarity_reversal_workaround(hw);
icr = er32(ICR);
ew32(ICS, (icr & ~E1000_ICS_LSC));
ew32(IMS, IMS_ENABLE_MASK);
}
} else {
/* No link detected */
e1000_config_dsp_after_link_change(hw, false);
return 0;
}
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!hw->autoneg)
return -E1000_ERR_CONFIG;
/* optimize the dsp settings for the igp phy */
e1000_config_dsp_after_link_change(hw, true);
/* We have a M88E1000 PHY and Auto-Neg is enabled. If we
* have Si on board that is 82544 or newer, Auto
* Speed Detection takes care of MAC speed/duplex
* configuration. So we only need to configure Collision
* Distance in the MAC. Otherwise, we need to force
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
if ((hw->mac_type >= e1000_82544) &&
(hw->mac_type != e1000_ce4100))
e1000_config_collision_dist(hw);
else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val) {
e_dbg
("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control settings
* because we may have had to re-autoneg with a different link
* partner.
*/
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error configuring flow control\n");
return ret_val;
}
/* At this point we know that we are on copper and we have
* auto-negotiated link. These are conditions for checking the
* link partner capability register. We use the link speed to
* determine if TBI compatibility needs to be turned on or off.
* If the link is not at gigabit speed, then TBI compatibility
* is not needed. If we are at gigabit speed, we turn on TBI
* compatibility.
*/
if (hw->tbi_compatibility_en) {
u16 speed, duplex;
ret_val =
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
e_dbg
("Error getting link speed and duplex\n");
return ret_val;
}
if (speed != SPEED_1000) {
/* If link speed is not set to gigabit speed, we
* do not need to enable TBI compatibility.
*/
if (hw->tbi_compatibility_on) {
/* If we previously were in the mode,
* turn it off.
*/
rctl = er32(RCTL);
rctl &= ~E1000_RCTL_SBP;
ew32(RCTL, rctl);
hw->tbi_compatibility_on = false;
}
} else {
/* If TBI compatibility is was previously off,
* turn it on. For compatibility with a TBI link
* partner, we will store bad packets. Some
* frames have an additional byte on the end and
* will look like CRC errors to the hardware.
*/
if (!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = true;
rctl = er32(RCTL);
rctl |= E1000_RCTL_SBP;
ew32(RCTL, rctl);
}
}
}
}
if ((hw->media_type == e1000_media_type_fiber) ||
(hw->media_type == e1000_media_type_internal_serdes))
e1000_check_for_serdes_link_generic(hw);
return E1000_SUCCESS;
}
/**
* e1000_get_speed_and_duplex
* @hw: Struct containing variables accessed by shared code
* @speed: Speed of the connection
* @duplex: Duplex setting of the connection
*
* Detects the current speed and duplex settings of the hardware.
*/
s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
u32 status;
s32 ret_val;
u16 phy_data;
if (hw->mac_type >= e1000_82543) {
status = er32(STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
e_dbg("1000 Mbs, ");
} else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
e_dbg("100 Mbs, ");
} else {
*speed = SPEED_10;
e_dbg("10 Mbs, ");
}
if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
e_dbg("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
e_dbg(" Half Duplex\n");
}
} else {
e_dbg("1000 Mbs, Full Duplex\n");
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
}
/* IGP01 PHY may advertise full duplex operation after speed downgrade
* even if it is operating at half duplex. Here we set the duplex
* settings to match the duplex in the link partner's capabilities.
*/
if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
*duplex = HALF_DUPLEX;
else {
ret_val =
e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
if (ret_val)
return ret_val;
if ((*speed == SPEED_100 &&
!(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
(*speed == SPEED_10 &&
!(phy_data & NWAY_LPAR_10T_FD_CAPS)))
*duplex = HALF_DUPLEX;
}
}
return E1000_SUCCESS;
}
/**
* e1000_wait_autoneg
* @hw: Struct containing variables accessed by shared code
*
* Blocks until autoneg completes or times out (~4.5 seconds)
*/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
s32 ret_val;
u16 i;
u16 phy_data;
e_dbg("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
if (phy_data & MII_SR_AUTONEG_COMPLETE)
return E1000_SUCCESS;
msleep(100);
}
return E1000_SUCCESS;
}
/**
* e1000_raise_mdi_clk - Raises the Management Data Clock
* @hw: Struct containing variables accessed by shared code
* @ctrl: Device control register's current value
*/
static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
{
/* Raise the clock input to the Management Data Clock (by setting the
* MDC bit), and then delay 10 microseconds.
*/
ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
E1000_WRITE_FLUSH();
udelay(10);
}
/**
* e1000_lower_mdi_clk - Lowers the Management Data Clock
* @hw: Struct containing variables accessed by shared code
* @ctrl: Device control register's current value
*/
static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
{
/* Lower the clock input to the Management Data Clock (by clearing the
* MDC bit), and then delay 10 microseconds.
*/
ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
E1000_WRITE_FLUSH();
udelay(10);
}
/**
* e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
* @hw: Struct containing variables accessed by shared code
* @data: Data to send out to the PHY
* @count: Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
*/
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
{
u32 ctrl;
u32 mask;
/* We need to shift "count" number of bits out to the PHY. So, the value
* in the "data" parameter will be shifted out to the PHY one bit at a
* time. In order to do this, "data" must be broken down into bits.
*/
mask = 0x01;
mask <<= (count - 1);
ctrl = er32(CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
while (mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to
* "1" and then raising and lowering the Management Data Clock.
* A "0" is shifted out to the PHY by setting the MDIO bit to
* "0" and then raising and lowering the clock.
*/
if (data & mask)
ctrl |= E1000_CTRL_MDIO;
else
ctrl &= ~E1000_CTRL_MDIO;
ew32(CTRL, ctrl);
E1000_WRITE_FLUSH();
udelay(10);
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
mask = mask >> 1;
}
}
/**
* e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
* @hw: Struct containing variables accessed by shared code
*
* Bits are shifted in MSB to LSB order.
*/
static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
u32 ctrl;
u16 data = 0;
u8 i;
/* In order to read a register from the PHY, we need to shift in a total
* of 18 bits from the PHY. The first two bit (turnaround) times are
* used to avoid contention on the MDIO pin when a read operation is
* performed. These two bits are ignored by us and thrown away. Bits are
* "shifted in" by raising the input to the Management Data Clock
* (setting the MDC bit), and then reading the value of the MDIO bit.
*/
ctrl = er32(CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
* input.
*/
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
ew32(CTRL, ctrl);
E1000_WRITE_FLUSH();
/* Raise and Lower the clock before reading in the data. This accounts
* for the turnaround bits. The first clock occurred when we clocked out
* the last bit of the Register Address.
*/
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
for (data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
ctrl = er32(CTRL);
/* Check to see if we shifted in a "1". */
if (ctrl & E1000_CTRL_MDIO)
data |= 1;
e1000_lower_mdi_clk(hw, &ctrl);
}
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
return data;
}
/**
* e1000_read_phy_reg - read a phy register
* @hw: Struct containing variables accessed by shared code
* @reg_addr: address of the PHY register to read
* @phy_data: pointer to the value on the PHY register
*
* Reads the value from a PHY register, if the value is on a specific non zero
* page, sets the page first.
*/
s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
{
u32 ret_val;
unsigned long flags;
spin_lock_irqsave(&e1000_phy_lock, flags);
if ((hw->phy_type == e1000_phy_igp) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(u16) reg_addr);
if (ret_val)
goto out;
}
ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
phy_data);
out:
spin_unlock_irqrestore(&e1000_phy_lock, flags);
return ret_val;
}
static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
u16 *phy_data)
{
u32 i;
u32 mdic = 0;
const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
if (reg_addr > MAX_PHY_REG_ADDRESS) {
e_dbg("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with
* the PHY to retrieve the desired data.
*/
if (hw->mac_type == e1000_ce4100) {
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(INTEL_CE_GBE_MDIC_OP_READ) |
(INTEL_CE_GBE_MDIC_GO));
writel(mdic, E1000_MDIO_CMD);
/* Poll the ready bit to see if the MDI read
* completed
*/
for (i = 0; i < 64; i++) {
udelay(50);
mdic = readl(E1000_MDIO_CMD);
if (!(mdic & INTEL_CE_GBE_MDIC_GO))
break;
}
if (mdic & INTEL_CE_GBE_MDIC_GO) {
e_dbg("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
mdic = readl(E1000_MDIO_STS);
if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
e_dbg("MDI Read Error\n");
return -E1000_ERR_PHY;
}
*phy_data = (u16)mdic;
} else {
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
ew32(MDIC, mdic);
/* Poll the ready bit to see if the MDI read
* completed
*/
for (i = 0; i < 64; i++) {
udelay(50);
mdic = er32(MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
e_dbg("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
e_dbg("MDI Error\n");
return -E1000_ERR_PHY;
}
*phy_data = (u16)mdic;
}
} else {
/* We must first send a preamble through the MDIO pin to signal
* the beginning of an MII instruction. This is done by sending
* 32 consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the next few fields that are required for a read
* operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine five different times. The
* format of a MII read instruction consists of a shift out of
* 14 bits and is defined as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
* followed by a shift in of 18 bits. This first two bits
* shifted in are TurnAround bits used to avoid contention on
* the MDIO pin when a READ operation is performed. These two
* bits are thrown away followed by a shift in of 16 bits which
* contains the desired data.
*/
mdic = ((reg_addr) | (phy_addr << 5) |
(PHY_OP_READ << 10) | (PHY_SOF << 12));
e1000_shift_out_mdi_bits(hw, mdic, 14);
/* Now that we've shifted out the read command to the MII, we
* need to "shift in" the 16-bit value (18 total bits) of the
* requested PHY register address.
*/
*phy_data = e1000_shift_in_mdi_bits(hw);
}
return E1000_SUCCESS;
}
/**
* e1000_write_phy_reg - write a phy register
*
* @hw: Struct containing variables accessed by shared code
* @reg_addr: address of the PHY register to write
* @phy_data: data to write to the PHY
*
* Writes a value to a PHY register
*/
s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
{
u32 ret_val;
unsigned long flags;
spin_lock_irqsave(&e1000_phy_lock, flags);
if ((hw->phy_type == e1000_phy_igp) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(u16)reg_addr);
if (ret_val) {
spin_unlock_irqrestore(&e1000_phy_lock, flags);
return ret_val;
}
}
ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
phy_data);
spin_unlock_irqrestore(&e1000_phy_lock, flags);
return ret_val;
}
static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
u16 phy_data)
{
u32 i;
u32 mdic = 0;
const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
if (reg_addr > MAX_PHY_REG_ADDRESS) {
e_dbg("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, register address, and data
* intended for the PHY register in the MDI Control register.
* The MAC will take care of interfacing with the PHY to send
* the desired data.
*/
if (hw->mac_type == e1000_ce4100) {
mdic = (((u32)phy_data) |
(reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(INTEL_CE_GBE_MDIC_OP_WRITE) |
(INTEL_CE_GBE_MDIC_GO));
writel(mdic, E1000_MDIO_CMD);
/* Poll the ready bit to see if the MDI read
* completed
*/
for (i = 0; i < 640; i++) {
udelay(5);
mdic = readl(E1000_MDIO_CMD);
if (!(mdic & INTEL_CE_GBE_MDIC_GO))
break;
}
if (mdic & INTEL_CE_GBE_MDIC_GO) {
e_dbg("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
} else {
mdic = (((u32)phy_data) |
(reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
ew32(MDIC, mdic);
/* Poll the ready bit to see if the MDI read
* completed
*/
for (i = 0; i < 641; i++) {
udelay(5);
mdic = er32(MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
e_dbg("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
}
} else {
/* We'll need to use the SW defined pins to shift the write
* command out to the PHY. We first send a preamble to the PHY
* to signal the beginning of the MII instruction. This is done
* by sending 32 consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the remaining required fields that will indicate
* a write operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine for each field in the
* command. The format of a MII write instruction is as follows:
* <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
*/
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
mdic <<= 16;
mdic |= (u32)phy_data;
e1000_shift_out_mdi_bits(hw, mdic, 32);
}
return E1000_SUCCESS;
}
/**
* e1000_phy_hw_reset - reset the phy, hardware style
* @hw: Struct containing variables accessed by shared code
*
* Returns the PHY to the power-on reset state
*/
s32 e1000_phy_hw_reset(struct e1000_hw *hw)
{
u32 ctrl, ctrl_ext;
u32 led_ctrl;
e_dbg("Resetting Phy...\n");
if (hw->mac_type > e1000_82543) {
/* Read the device control register and assert the
* E1000_CTRL_PHY_RST bit. Then, take it out of reset.
* For e1000 hardware, we delay for 10ms between the assert
* and de-assert.
*/
ctrl = er32(CTRL);
ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH();
msleep(10);
ew32(CTRL, ctrl);
E1000_WRITE_FLUSH();
} else {
/* Read the Extended Device Control Register, assert the
* PHY_RESET_DIR bit to put the PHY into reset. Then, take it
* out of reset.
*/
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
ew32(CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH();
msleep(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
ew32(CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH();
}
udelay(150);
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Configure activity LED after PHY reset */
led_ctrl = er32(LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
ew32(LEDCTL, led_ctrl);
}
/* Wait for FW to finish PHY configuration. */
return e1000_get_phy_cfg_done(hw);
}
/**
* e1000_phy_reset - reset the phy to commit settings
* @hw: Struct containing variables accessed by shared code
*
* Resets the PHY
* Sets bit 15 of the MII Control register
*/
s32 e1000_phy_reset(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
switch (hw->phy_type) {
case e1000_phy_igp:
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
break;
default:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= MII_CR_RESET;
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
udelay(1);
break;
}
if (hw->phy_type == e1000_phy_igp)
e1000_phy_init_script(hw);
return E1000_SUCCESS;
}
/**
* e1000_detect_gig_phy - check the phy type
* @hw: Struct containing variables accessed by shared code
*
* Probes the expected PHY address for known PHY IDs
*/
static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
{
s32 phy_init_status, ret_val;
u16 phy_id_high, phy_id_low;
bool match = false;
if (hw->phy_id != 0)
return E1000_SUCCESS;
/* Read the PHY ID Registers to identify which PHY is onboard. */
ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
if (ret_val)
return ret_val;
hw->phy_id = (u32)(phy_id_high << 16);
udelay(20);
ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
if (ret_val)
return ret_val;
hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
switch (hw->mac_type) {
case e1000_82543:
if (hw->phy_id == M88E1000_E_PHY_ID)
match = true;
break;
case e1000_82544:
if (hw->phy_id == M88E1000_I_PHY_ID)
match = true;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
if (hw->phy_id == M88E1011_I_PHY_ID)
match = true;
break;
case e1000_ce4100:
if ((hw->phy_id == RTL8211B_PHY_ID) ||
(hw->phy_id == RTL8201N_PHY_ID) ||
(hw->phy_id == M88E1118_E_PHY_ID))
match = true;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if (hw->phy_id == IGP01E1000_I_PHY_ID)
match = true;
break;
default:
e_dbg("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
}
phy_init_status = e1000_set_phy_type(hw);
if ((match) && (phy_init_status == E1000_SUCCESS)) {
e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
return E1000_SUCCESS;
}
e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
return -E1000_ERR_PHY;
}
/**
* e1000_phy_reset_dsp - reset DSP
* @hw: Struct containing variables accessed by shared code
*
* Resets the PHY's DSP
*/
static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
{
s32 ret_val;
do {
ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
if (ret_val)
break;
ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
if (ret_val)
break;
ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
if (ret_val)
break;
ret_val = E1000_SUCCESS;
} while (0);
return ret_val;
}
/**
* e1000_phy_igp_get_info - get igp specific registers
* @hw: Struct containing variables accessed by shared code
* @phy_info: PHY information structure
*
* Get PHY information from various PHY registers for igp PHY only.
*/
static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
s32 ret_val;
u16 phy_data, min_length, max_length, average;
e1000_rev_polarity polarity;
/* The downshift status is checked only once, after link is established,
* and it stored in the hw->speed_downgraded parameter.
*/
phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
/* IGP01E1000 does not need to support it. */
phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
/* IGP01E1000 always correct polarity reversal */
phy_info->polarity_correction = e1000_polarity_reversal_enabled;
/* Check polarity status */
ret_val = e1000_check_polarity(hw, &polarity);
if (ret_val)
return ret_val;
phy_info->cable_polarity = polarity;
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy_info->mdix_mode =
(e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
IGP01E1000_PSSR_MDIX_SHIFT);
if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Local/Remote Receiver Information are only valid @ 1000
* Mbps
*/
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
/* Get cable length */
ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
if (ret_val)
return ret_val;
/* Translate to old method */
average = (max_length + min_length) / 2;
if (average <= e1000_igp_cable_length_50)
phy_info->cable_length = e1000_cable_length_50;
else if (average <= e1000_igp_cable_length_80)
phy_info->cable_length = e1000_cable_length_50_80;
else if (average <= e1000_igp_cable_length_110)
phy_info->cable_length = e1000_cable_length_80_110;
else if (average <= e1000_igp_cable_length_140)
phy_info->cable_length = e1000_cable_length_110_140;
else
phy_info->cable_length = e1000_cable_length_140;
}
return E1000_SUCCESS;
}
/**
* e1000_phy_m88_get_info - get m88 specific registers
* @hw: Struct containing variables accessed by shared code
* @phy_info: PHY information structure
*
* Get PHY information from various PHY registers for m88 PHY only.
*/
static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
s32 ret_val;
u16 phy_data;
e1000_rev_polarity polarity;
/* The downshift status is checked only once, after link is established,
* and it stored in the hw->speed_downgraded parameter.
*/
phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_info->extended_10bt_distance =
((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
e1000_10bt_ext_dist_enable_lower :
e1000_10bt_ext_dist_enable_normal;
phy_info->polarity_correction =
((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
/* Check polarity status */
ret_val = e1000_check_polarity(hw, &polarity);
if (ret_val)
return ret_val;
phy_info->cable_polarity = polarity;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy_info->mdix_mode =
(e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
M88E1000_PSSR_MDIX_SHIFT);
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
/* Cable Length Estimation and Local/Remote Receiver Information
* are only valid at 1000 Mbps.
*/
phy_info->cable_length =
(e1000_cable_length) ((phy_data &
M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT);
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
}
return E1000_SUCCESS;
}
/**
* e1000_phy_get_info - request phy info
* @hw: Struct containing variables accessed by shared code
* @phy_info: PHY information structure
*
* Get PHY information from various PHY registers
*/
s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
{
s32 ret_val;
u16 phy_data;
phy_info->cable_length = e1000_cable_length_undefined;
phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
phy_info->cable_polarity = e1000_rev_polarity_undefined;
phy_info->downshift = e1000_downshift_undefined;
phy_info->polarity_correction = e1000_polarity_reversal_undefined;
phy_info->mdix_mode = e1000_auto_x_mode_undefined;
phy_info->local_rx = e1000_1000t_rx_status_undefined;
phy_info->remote_rx = e1000_1000t_rx_status_undefined;
if (hw->media_type != e1000_media_type_copper) {
e_dbg("PHY info is only valid for copper media\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
e_dbg("PHY info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
if (hw->phy_type == e1000_phy_igp)
return e1000_phy_igp_get_info(hw, phy_info);
else if ((hw->phy_type == e1000_phy_8211) ||
(hw->phy_type == e1000_phy_8201))
return E1000_SUCCESS;
else
return e1000_phy_m88_get_info(hw, phy_info);
}
s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
{
if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
e_dbg("Invalid MDI setting detected\n");
hw->mdix = 1;
return -E1000_ERR_CONFIG;
}
return E1000_SUCCESS;
}
/**
* e1000_init_eeprom_params - initialize sw eeprom vars
* @hw: Struct containing variables accessed by shared code
*
* Sets up eeprom variables in the hw struct. Must be called after mac_type
* is configured.
*/
s32 e1000_init_eeprom_params(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
u32 eecd = er32(EECD);
s32 ret_val = E1000_SUCCESS;
u16 eeprom_size;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
eeprom->type = e1000_eeprom_microwire;
eeprom->word_size = 64;
eeprom->opcode_bits = 3;
eeprom->address_bits = 6;
eeprom->delay_usec = 50;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if (eecd & E1000_EECD_SIZE) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if (eecd & E1000_EECD_TYPE) {
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
} else {
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
}
break;
default:
break;
}
if (eeprom->type == e1000_eeprom_spi) {
/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
* 128B to 32KB (incremented by powers of 2).
*/
/* Set to default value for initial eeprom read. */
eeprom->word_size = 64;
ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
if (ret_val)
return ret_val;
eeprom_size =
(eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
/* 256B eeprom size was not supported in earlier hardware, so we
* bump eeprom_size up one to ensure that "1" (which maps to
* 256B) is never the result used in the shifting logic below.
*/
if (eeprom_size)
eeprom_size++;
eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
}
return ret_val;
}
/**
* e1000_raise_ee_clk - Raises the EEPROM's clock input.
* @hw: Struct containing variables accessed by shared code
* @eecd: EECD's current value
*/
static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
{
/* Raise the clock input to the EEPROM (by setting the SK bit), and then
* wait <delay> microseconds.
*/
*eecd = *eecd | E1000_EECD_SK;
ew32(EECD, *eecd);
E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec);
}
/**
* e1000_lower_ee_clk - Lowers the EEPROM's clock input.
* @hw: Struct containing variables accessed by shared code
* @eecd: EECD's current value
*/
static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
{
/* Lower the clock input to the EEPROM (by clearing the SK bit), and
* then wait 50 microseconds.
*/
*eecd = *eecd & ~E1000_EECD_SK;
ew32(EECD, *eecd);
E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec);
}
/**
* e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
* @hw: Struct containing variables accessed by shared code
* @data: data to send to the EEPROM
* @count: number of bits to shift out
*/
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
u32 eecd;
u32 mask;
/* We need to shift "count" bits out to the EEPROM. So, value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
*/
mask = 0x01 << (count - 1);
eecd = er32(EECD);
if (eeprom->type == e1000_eeprom_microwire)
eecd &= ~E1000_EECD_DO;
else if (eeprom->type == e1000_eeprom_spi)
eecd |= E1000_EECD_DO;
do {
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
* "1", and then raising and then lowering the clock (the SK bit
* controls the clock input to the EEPROM). A "0" is shifted
* out to the EEPROM by setting "DI" to "0" and then raising and
* then lowering the clock.
*/
eecd &= ~E1000_EECD_DI;
if (data & mask)
eecd |= E1000_EECD_DI;
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec);
e1000_raise_ee_clk(hw, &eecd);
e1000_lower_ee_clk(hw, &eecd);
mask = mask >> 1;
} while (mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
ew32(EECD, eecd);
}
/**
* e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
* @hw: Struct containing variables accessed by shared code
* @count: number of bits to shift in
*/
static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
{
u32 eecd;
u32 i;
u16 data;
/* In order to read a register from the EEPROM, we need to shift 'count'
* bits in from the EEPROM. Bits are "shifted in" by raising the clock
* input to the EEPROM (setting the SK bit), and then reading the value
* of the "DO" bit. During this "shifting in" process the "DI" bit
* should always be clear.
*/
eecd = er32(EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for (i = 0; i < count; i++) {
data = data << 1;
e1000_raise_ee_clk(hw, &eecd);
eecd = er32(EECD);
eecd &= ~(E1000_EECD_DI);
if (eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_ee_clk(hw, &eecd);
}
return data;
}
/**
* e1000_acquire_eeprom - Prepares EEPROM for access
* @hw: Struct containing variables accessed by shared code
*
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* function should be called before issuing a command to the EEPROM.
*/
static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
u32 eecd, i = 0;
eecd = er32(EECD);
/* Request EEPROM Access */
if (hw->mac_type > e1000_82544) {
eecd |= E1000_EECD_REQ;
ew32(EECD, eecd);
eecd = er32(EECD);
while ((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
udelay(5);
eecd = er32(EECD);
}
if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
ew32(EECD, eecd);
e_dbg("Could not acquire EEPROM grant\n");
return -E1000_ERR_EEPROM;
}
}
/* Setup EEPROM for Read/Write */
if (eeprom->type == e1000_eeprom_microwire) {
/* Clear SK and DI */
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
ew32(EECD, eecd);
/* Set CS */
eecd |= E1000_EECD_CS;
ew32(EECD, eecd);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(1);
}
return E1000_SUCCESS;
}
/**
* e1000_standby_eeprom - Returns EEPROM to a "standby" state
* @hw: Struct containing variables accessed by shared code
*/
static void e1000_standby_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
u32 eecd;
eecd = er32(EECD);
if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec);
/* Clock high */
eecd |= E1000_EECD_SK;
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec);
/* Select EEPROM */
eecd |= E1000_EECD_CS;
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec);
/* Clock low */
eecd &= ~E1000_EECD_SK;
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec);
eecd &= ~E1000_EECD_CS;
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec);
}
}
/**
* e1000_release_eeprom - drop chip select
* @hw: Struct containing variables accessed by shared code
*
* Terminates a command by inverting the EEPROM's chip select pin
*/
static void e1000_release_eeprom(struct e1000_hw *hw)
{
u32 eecd;
eecd = er32(EECD);
if (hw->eeprom.type == e1000_eeprom_spi) {
eecd |= E1000_EECD_CS; /* Pull CS high */
eecd &= ~E1000_EECD_SK; /* Lower SCK */
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec);
} else if (hw->eeprom.type == e1000_eeprom_microwire) {
/* cleanup eeprom */
/* CS on Microwire is active-high */
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
ew32(EECD, eecd);
/* Rising edge of clock */
eecd |= E1000_EECD_SK;
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec);
/* Falling edge of clock */
eecd &= ~E1000_EECD_SK;
ew32(EECD, eecd);
E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec);
}
/* Stop requesting EEPROM access */
if (hw->mac_type > e1000_82544) {
eecd &= ~E1000_EECD_REQ;
ew32(EECD, eecd);
}
}
/**
* e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
* @hw: Struct containing variables accessed by shared code
*/
static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
u16 retry_count = 0;
u8 spi_stat_reg;
/* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
retry_count = 0;
do {
e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
hw->eeprom.opcode_bits);
spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
break;
udelay(5);
retry_count += 5;
e1000_standby_eeprom(hw);
} while (retry_count < EEPROM_MAX_RETRY_SPI);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
if (retry_count >= EEPROM_MAX_RETRY_SPI) {
e_dbg("SPI EEPROM Status error\n");
return -E1000_ERR_EEPROM;
}
return E1000_SUCCESS;
}
/**
* e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
* @hw: Struct containing variables accessed by shared code
* @offset: offset of word in the EEPROM to read
* @data: word read from the EEPROM
* @words: number of words to read
*/
s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
s32 ret;
mutex_lock(&e1000_eeprom_lock);
ret = e1000_do_read_eeprom(hw, offset, words, data);
mutex_unlock(&e1000_eeprom_lock);
return ret;
}
static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
u32 i = 0;
if (hw->mac_type == e1000_ce4100) {
GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
data);
return E1000_SUCCESS;
}
/* A check for invalid values: offset too large, too many words, and
* not enough words.
*/
if ((offset >= eeprom->word_size) ||
(words > eeprom->word_size - offset) ||
(words == 0)) {
e_dbg("\"words\" parameter out of bounds. Words = %d,"
"size = %d\n", offset, eeprom->word_size);
return -E1000_ERR_EEPROM;
}
/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
* directly. In this case, we need to acquire the EEPROM so that
* FW or other port software does not interrupt.
*/
/* Prepare the EEPROM for bit-bang reading */
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
/* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
* acquired the EEPROM at this point, so any returns should release it
*/
if (eeprom->type == e1000_eeprom_spi) {
u16 word_in;
u8 read_opcode = EEPROM_READ_OPCODE_SPI;
if (e1000_spi_eeprom_ready(hw)) {
e1000_release_eeprom(hw);
return -E1000_ERR_EEPROM;
}
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((eeprom->address_bits == 8) && (offset >= 128))
read_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
eeprom->address_bits);
/* Read the data. The address of the eeprom internally
* increments with each byte (spi) being read, saving on the
* overhead of eeprom setup and tear-down. The address counter
* will roll over if reading beyond the size of the eeprom, thus
* allowing the entire memory to be read starting from any
* offset.
*/
for (i = 0; i < words; i++) {
word_in = e1000_shift_in_ee_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
} else if (eeprom->type == e1000_eeprom_microwire) {
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw,
EEPROM_READ_OPCODE_MICROWIRE,
eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (u16)(offset + i),
eeprom->address_bits);
/* Read the data. For microwire, each word requires the
* overhead of eeprom setup and tear-down.
*/
data[i] = e1000_shift_in_ee_bits(hw, 16);
e1000_standby_eeprom(hw);
cond_resched();
}
}
/* End this read operation */
e1000_release_eeprom(hw);
return E1000_SUCCESS;
}
/**
* e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
* @hw: Struct containing variables accessed by shared code
*
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
* If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
* valid.
*/
s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
u16 checksum = 0;
u16 i, eeprom_data;
for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
e_dbg("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
#ifdef CONFIG_PARISC
/* This is a signature and not a checksum on HP c8000 */
if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
return E1000_SUCCESS;
#endif
if (checksum == (u16)EEPROM_SUM)
return E1000_SUCCESS;
else {
e_dbg("EEPROM Checksum Invalid\n");
return -E1000_ERR_EEPROM;
}
}
/**
* e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
* @hw: Struct containing variables accessed by shared code
*
* Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
* Writes the difference to word offset 63 of the EEPROM.
*/
s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
{
u16 checksum = 0;
u16 i, eeprom_data;
for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
e_dbg("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
checksum = (u16)EEPROM_SUM - checksum;
if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
e_dbg("EEPROM Write Error\n");
return -E1000_ERR_EEPROM;
}
return E1000_SUCCESS;
}
/**
* e1000_write_eeprom - write words to the different EEPROM types.
* @hw: Struct containing variables accessed by shared code
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word to be written to the EEPROM
*
* If e1000_update_eeprom_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
*/
s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
s32 ret;
mutex_lock(&e1000_eeprom_lock);
ret = e1000_do_write_eeprom(hw, offset, words, data);
mutex_unlock(&e1000_eeprom_lock);
return ret;
}
static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
s32 status = 0;
if (hw->mac_type == e1000_ce4100) {
GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
data);
return E1000_SUCCESS;
}
/* A check for invalid values: offset too large, too many words, and
* not enough words.
*/
if ((offset >= eeprom->word_size) ||
(words > eeprom->word_size - offset) ||
(words == 0)) {
e_dbg("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
}
/* Prepare the EEPROM for writing */
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
if (eeprom->type == e1000_eeprom_microwire) {
status = e1000_write_eeprom_microwire(hw, offset, words, data);
} else {
status = e1000_write_eeprom_spi(hw, offset, words, data);
msleep(10);
}
/* Done with writing */
e1000_release_eeprom(hw);
return status;
}
/**
* e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
* @hw: Struct containing variables accessed by shared code
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: pointer to array of 8 bit words to be written to the EEPROM
*/
static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
u16 widx = 0;
while (widx < words) {
u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
if (e1000_spi_eeprom_ready(hw))
return -E1000_ERR_EEPROM;
e1000_standby_eeprom(hw);
cond_resched();
/* Send the WRITE ENABLE command (8 bit opcode ) */
e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
eeprom->opcode_bits);
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((eeprom->address_bits == 8) && (offset >= 128))
write_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
eeprom->address_bits);
/* Send the data */
/* Loop to allow for up to whole page write (32 bytes) of
* eeprom
*/
while (widx < words) {
u16 word_out = data[widx];
word_out = (word_out >> 8) | (word_out << 8);
e1000_shift_out_ee_bits(hw, word_out, 16);
widx++;
/* Some larger eeprom sizes are capable of a 32-byte
* PAGE WRITE operation, while the smaller eeproms are
* capable of an 8-byte PAGE WRITE operation. Break the
* inner loop to pass new address
*/
if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
e1000_standby_eeprom(hw);
break;
}
}
}
return E1000_SUCCESS;
}
/**
* e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
* @hw: Struct containing variables accessed by shared code
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: pointer to array of 8 bit words to be written to the EEPROM
*/
static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
u32 eecd;
u16 words_written = 0;
u16 i = 0;
/* Send the write enable command to the EEPROM (3-bit opcode plus
* 6/8-bit dummy address beginning with 11). It's less work to include
* the 11 of the dummy address as part of the opcode than it is to shift
* it over the correct number of bits for the address. This puts the
* EEPROM into write/erase mode.
*/
e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
(u16)(eeprom->opcode_bits + 2));
e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
/* Prepare the EEPROM */
e1000_standby_eeprom(hw);
while (words_written < words) {
/* Send the Write command (3-bit opcode + addr) */
e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
eeprom->address_bits);
/* Send the data */
e1000_shift_out_ee_bits(hw, data[words_written], 16);
/* Toggle the CS line. This in effect tells the EEPROM to
* execute the previous command.
*/
e1000_standby_eeprom(hw);
/* Read DO repeatedly until it is high (equal to '1'). The
* EEPROM will signal that the command has been completed by
* raising the DO signal. If DO does not go high in 10
* milliseconds, then error out.
*/
for (i = 0; i < 200; i++) {
eecd = er32(EECD);
if (eecd & E1000_EECD_DO)
break;
udelay(50);
}
if (i == 200) {
e_dbg("EEPROM Write did not complete\n");
return -E1000_ERR_EEPROM;
}
/* Recover from write */
e1000_standby_eeprom(hw);
cond_resched();
words_written++;
}
/* Send the write disable command to the EEPROM (3-bit opcode plus
* 6/8-bit dummy address beginning with 10). It's less work to include
* the 10 of the dummy address as part of the opcode than it is to shift
* it over the correct number of bits for the address. This takes the
* EEPROM out of write/erase mode.
*/
e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
(u16)(eeprom->opcode_bits + 2));
e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
return E1000_SUCCESS;
}
/**
* e1000_read_mac_addr - read the adapters MAC from eeprom
* @hw: Struct containing variables accessed by shared code
*
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
* second function of dual function devices
*/
s32 e1000_read_mac_addr(struct e1000_hw *hw)
{
u16 offset;
u16 eeprom_data, i;
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
e_dbg("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
}
switch (hw->mac_type) {
default:
break;
case e1000_82546:
case e1000_82546_rev_3:
if (er32(STATUS) & E1000_STATUS_FUNC_1)
hw->perm_mac_addr[5] ^= 0x01;
break;
}
for (i = 0; i < NODE_ADDRESS_SIZE; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return E1000_SUCCESS;
}
/**
* e1000_init_rx_addrs - Initializes receive address filters.
* @hw: Struct containing variables accessed by shared code
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive address registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
*/
static void e1000_init_rx_addrs(struct e1000_hw *hw)
{
u32 i;
u32 rar_num;
/* Setup the receive address. */
e_dbg("Programming MAC Address into RAR[0]\n");
e1000_rar_set(hw, hw->mac_addr, 0);
rar_num = E1000_RAR_ENTRIES;
/* Zero out the following 14 receive addresses. RAR[15] is for
* manageability
*/
e_dbg("Clearing RAR[1-14]\n");
for (i = 1; i < rar_num; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
E1000_WRITE_FLUSH();
}
}
/**
* e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
* @hw: Struct containing variables accessed by shared code
* @mc_addr: the multicast address to hash
*/
u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
u32 hash_value = 0;
/* The portion of the address that is used for the hash table is
* determined by the mc_filter_type setting.
*/
switch (hw->mc_filter_type) {
/* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*/
case 0:
/* [47:36] i.e. 0x563 for above example address */
hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
break;
case 1:
/* [46:35] i.e. 0xAC6 for above example address */
hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
break;
case 2:
/* [45:34] i.e. 0x5D8 for above example address */
hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
break;
case 3:
/* [43:32] i.e. 0x634 for above example address */
hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
break;
}
hash_value &= 0xFFF;
return hash_value;
}
/**
* e1000_rar_set - Puts an ethernet address into a receive address register.
* @hw: Struct containing variables accessed by shared code
* @addr: Address to put into receive address register
* @index: Receive address register to write
*/
void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
((u32)addr[2] << 16) | ((u32)addr[3] << 24));
rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
* unit hang.
*
* Description:
* If there are any Rx frames queued up or otherwise present in the HW
* before RSS is enabled, and then we enable RSS, the HW Rx unit will
* hang. To work around this issue, we have to disable receives and
* flush out all Rx frames before we enable RSS. To do so, we modify we
* redirect all Rx traffic to manageability and then reset the HW.
* This flushes away Rx frames, and (since the redirections to
* manageability persists across resets) keeps new ones from coming in
* while we work. Then, we clear the Address Valid AV bit for all MAC
* addresses and undo the re-direction to manageability.
* Now, frames are coming in again, but the MAC won't accept them, so
* far so good. We now proceed to initialize RSS (if necessary) and
* configure the Rx unit. Last, we re-enable the AV bits and continue
* on our merry way.
*/
switch (hw->mac_type) {
default:
/* Indicate to hardware the Address is Valid. */
rar_high |= E1000_RAH_AV;
break;
}
E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
E1000_WRITE_FLUSH();
}
/**
* e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
* @hw: Struct containing variables accessed by shared code
* @offset: Offset in VLAN filter table to write
* @value: Value to write into VLAN filter table
*/
void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
{
u32 temp;
if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
E1000_WRITE_FLUSH();
} else {
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
E1000_WRITE_FLUSH();
}
}
/**
* e1000_clear_vfta - Clears the VLAN filter table
* @hw: Struct containing variables accessed by shared code
*/
static void e1000_clear_vfta(struct e1000_hw *hw)
{
u32 offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
E1000_WRITE_FLUSH();
}
}
static s32 e1000_id_led_init(struct e1000_hw *hw)
{
u32 ledctl;
const u32 ledctl_mask = 0x000000FF;
const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
u16 eeprom_data, i, temp;
const u16 led_mask = 0x0F;
if (hw->mac_type < e1000_82540) {
/* Nothing to do */
return E1000_SUCCESS;
}
ledctl = er32(LEDCTL);
hw->ledctl_default = ledctl;
hw->ledctl_mode1 = hw->ledctl_default;
hw->ledctl_mode2 = hw->ledctl_default;
if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
e_dbg("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
if ((eeprom_data == ID_LED_RESERVED_0000) ||
(eeprom_data == ID_LED_RESERVED_FFFF)) {
eeprom_data = ID_LED_DEFAULT;
}
for (i = 0; i < 4; i++) {
temp = (eeprom_data >> (i << 2)) & led_mask;
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
hw->ledctl_mode1 |= ledctl_on << (i << 3);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
hw->ledctl_mode1 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
hw->ledctl_mode2 |= ledctl_on << (i << 3);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
hw->ledctl_mode2 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
}
return E1000_SUCCESS;
}
/**
* e1000_setup_led
* @hw: Struct containing variables accessed by shared code
*
* Prepares SW controlable LED for use and saves the current state of the LED.
*/
s32 e1000_setup_led(struct e1000_hw *hw)
{
u32 ledctl;
s32 ret_val = E1000_SUCCESS;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
/* No setup necessary */
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
/* Turn off PHY Smart Power Down (if enabled) */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
&hw->phy_spd_default);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
(u16)(hw->phy_spd_default &
~IGP01E1000_GMII_SPD));
if (ret_val)
return ret_val;
fallthrough;
default:
if (hw->media_type == e1000_media_type_fiber) {
ledctl = er32(LEDCTL);
/* Save current LEDCTL settings */
hw->ledctl_default = ledctl;
/* Turn off LED0 */
ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
E1000_LEDCTL_LED0_BLINK |
E1000_LEDCTL_LED0_MODE_MASK);
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT);
ew32(LEDCTL, ledctl);
} else if (hw->media_type == e1000_media_type_copper)
ew32(LEDCTL, hw->ledctl_mode1);
break;
}
return E1000_SUCCESS;
}
/**
* e1000_cleanup_led - Restores the saved state of the SW controlable LED.
* @hw: Struct containing variables accessed by shared code
*/
s32 e1000_cleanup_led(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
/* No cleanup necessary */
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
/* Turn on PHY Smart Power Down (if previously enabled) */
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
hw->phy_spd_default);
if (ret_val)
return ret_val;
fallthrough;
default:
/* Restore LEDCTL settings */
ew32(LEDCTL, hw->ledctl_default);
break;
}
return E1000_SUCCESS;
}
/**
* e1000_led_on - Turns on the software controllable LED
* @hw: Struct containing variables accessed by shared code
*/
s32 e1000_led_on(struct e1000_hw *hw)
{
u32 ctrl = er32(CTRL);
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
/* Set SW Defineable Pin 0 to turn on the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
break;
case e1000_82544:
if (hw->media_type == e1000_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn on the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else {
/* Clear SW Defineable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
}
break;
default:
if (hw->media_type == e1000_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else if (hw->media_type == e1000_media_type_copper) {
ew32(LEDCTL, hw->ledctl_mode2);
return E1000_SUCCESS;
}
break;
}
ew32(CTRL, ctrl);
return E1000_SUCCESS;
}
/**
* e1000_led_off - Turns off the software controllable LED
* @hw: Struct containing variables accessed by shared code
*/
s32 e1000_led_off(struct e1000_hw *hw)
{
u32 ctrl = er32(CTRL);
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
/* Clear SW Defineable Pin 0 to turn off the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
break;
case e1000_82544:
if (hw->media_type == e1000_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn off the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else {
/* Set SW Defineable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
}
break;
default:
if (hw->media_type == e1000_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else if (hw->media_type == e1000_media_type_copper) {
ew32(LEDCTL, hw->ledctl_mode1);
return E1000_SUCCESS;
}
break;
}
ew32(CTRL, ctrl);
return E1000_SUCCESS;
}
/**
* e1000_clear_hw_cntrs - Clears all hardware statistics counters.
* @hw: Struct containing variables accessed by shared code
*/
static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
{
er32(CRCERRS);
er32(SYMERRS);
er32(MPC);
er32(SCC);
er32(ECOL);
er32(MCC);
er32(LATECOL);
er32(COLC);
er32(DC);
er32(SEC);
er32(RLEC);
er32(XONRXC);
er32(XONTXC);
er32(XOFFRXC);
er32(XOFFTXC);
er32(FCRUC);
er32(PRC64);
er32(PRC127);
er32(PRC255);
er32(PRC511);
er32(PRC1023);
er32(PRC1522);
er32(GPRC);
er32(BPRC);
er32(MPRC);
er32(GPTC);
er32(GORCL);
er32(GORCH);
er32(GOTCL);
er32(GOTCH);
er32(RNBC);
er32(RUC);
er32(RFC);
er32(ROC);
er32(RJC);
er32(TORL);
er32(TORH);
er32(TOTL);
er32(TOTH);
er32(TPR);
er32(TPT);
er32(PTC64);
er32(PTC127);
er32(PTC255);
er32(PTC511);
er32(PTC1023);
er32(PTC1522);
er32(MPTC);
er32(BPTC);
if (hw->mac_type < e1000_82543)
return;
er32(ALGNERRC);
er32(RXERRC);
er32(TNCRS);
er32(CEXTERR);
er32(TSCTC);
er32(TSCTFC);
if (hw->mac_type <= e1000_82544)
return;
er32(MGTPRC);
er32(MGTPDC);
er32(MGTPTC);
}
/**
* e1000_reset_adaptive - Resets Adaptive IFS to its default state.
* @hw: Struct containing variables accessed by shared code
*
* Call this after e1000_init_hw. You may override the IFS defaults by setting
* hw->ifs_params_forced to true. However, you must initialize hw->
* current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
* before calling this function.
*/
void e1000_reset_adaptive(struct e1000_hw *hw)
{
if (hw->adaptive_ifs) {
if (!hw->ifs_params_forced) {
hw->current_ifs_val = 0;
hw->ifs_min_val = IFS_MIN;
hw->ifs_max_val = IFS_MAX;
hw->ifs_step_size = IFS_STEP;
hw->ifs_ratio = IFS_RATIO;
}
hw->in_ifs_mode = false;
ew32(AIT, 0);
} else {
e_dbg("Not in Adaptive IFS mode!\n");
}
}
/**
* e1000_update_adaptive - update adaptive IFS
* @hw: Struct containing variables accessed by shared code
*
* Called during the callback/watchdog routine to update IFS value based on
* the ratio of transmits to collisions.
*/
void e1000_update_adaptive(struct e1000_hw *hw)
{
if (hw->adaptive_ifs) {
if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
if (hw->tx_packet_delta > MIN_NUM_XMITS) {
hw->in_ifs_mode = true;
if (hw->current_ifs_val < hw->ifs_max_val) {
if (hw->current_ifs_val == 0)
hw->current_ifs_val =
hw->ifs_min_val;
else
hw->current_ifs_val +=
hw->ifs_step_size;
ew32(AIT, hw->current_ifs_val);
}
}
} else {
if (hw->in_ifs_mode &&
(hw->tx_packet_delta <= MIN_NUM_XMITS)) {
hw->current_ifs_val = 0;
hw->in_ifs_mode = false;
ew32(AIT, 0);
}
}
} else {
e_dbg("Not in Adaptive IFS mode!\n");
}
}
/**
* e1000_get_bus_info
* @hw: Struct containing variables accessed by shared code
*
* Gets the current PCI bus type, speed, and width of the hardware
*/
void e1000_get_bus_info(struct e1000_hw *hw)
{
u32 status;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->bus_type = e1000_bus_type_pci;
hw->bus_speed = e1000_bus_speed_unknown;
hw->bus_width = e1000_bus_width_unknown;
break;
default:
status = er32(STATUS);
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
e1000_bus_type_pcix : e1000_bus_type_pci;
if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
e1000_bus_speed_66 : e1000_bus_speed_120;
} else if (hw->bus_type == e1000_bus_type_pci) {
hw->bus_speed = (status & E1000_STATUS_PCI66) ?
e1000_bus_speed_66 : e1000_bus_speed_33;
} else {
switch (status & E1000_STATUS_PCIX_SPEED) {
case E1000_STATUS_PCIX_SPEED_66:
hw->bus_speed = e1000_bus_speed_66;
break;
case E1000_STATUS_PCIX_SPEED_100:
hw->bus_speed = e1000_bus_speed_100;
break;
case E1000_STATUS_PCIX_SPEED_133:
hw->bus_speed = e1000_bus_speed_133;
break;
default:
hw->bus_speed = e1000_bus_speed_reserved;
break;
}
}
hw->bus_width = (status & E1000_STATUS_BUS64) ?
e1000_bus_width_64 : e1000_bus_width_32;
break;
}
}
/**
* e1000_write_reg_io
* @hw: Struct containing variables accessed by shared code
* @offset: offset to write to
* @value: value to write
*
* Writes a value to one of the devices registers using port I/O (as opposed to
* memory mapped I/O). Only 82544 and newer devices support port I/O.
*/
static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
{
unsigned long io_addr = hw->io_base;
unsigned long io_data = hw->io_base + 4;
e1000_io_write(hw, io_addr, offset);
e1000_io_write(hw, io_data, value);
}
/**
* e1000_get_cable_length - Estimates the cable length.
* @hw: Struct containing variables accessed by shared code
* @min_length: The estimated minimum length
* @max_length: The estimated maximum length
*
* returns: - E1000_ERR_XXX
* E1000_SUCCESS
*
* This function always returns a ranged length (minimum & maximum).
* So for M88 phy's, this function interprets the one value returned from the
* register to the minimum and maximum range.
* For IGP phy's, the function calculates the range by the AGC registers.
*/
static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
u16 *max_length)
{
s32 ret_val;
u16 agc_value = 0;
u16 i, phy_data;
u16 cable_length;
*min_length = *max_length = 0;
/* Use old method for Phy older than IGP */
if (hw->phy_type == e1000_phy_m88) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
if (ret_val)
return ret_val;
cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
/* Convert the enum value to ranged values */
switch (cable_length) {
case e1000_cable_length_50:
*min_length = 0;
*max_length = e1000_igp_cable_length_50;
break;
case e1000_cable_length_50_80:
*min_length = e1000_igp_cable_length_50;
*max_length = e1000_igp_cable_length_80;
break;
case e1000_cable_length_80_110:
*min_length = e1000_igp_cable_length_80;
*max_length = e1000_igp_cable_length_110;
break;
case e1000_cable_length_110_140:
*min_length = e1000_igp_cable_length_110;
*max_length = e1000_igp_cable_length_140;
break;
case e1000_cable_length_140:
*min_length = e1000_igp_cable_length_140;
*max_length = e1000_igp_cable_length_170;
break;
default:
return -E1000_ERR_PHY;
}
} else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
u16 cur_agc_value;
u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
IGP01E1000_PHY_AGC_A,
IGP01E1000_PHY_AGC_B,
IGP01E1000_PHY_AGC_C,
IGP01E1000_PHY_AGC_D
};
/* Read the AGC registers for all channels */
for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val =
e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
if (ret_val)
return ret_val;
cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
/* Value bound check. */
if ((cur_agc_value >=
IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
(cur_agc_value == 0))
return -E1000_ERR_PHY;
agc_value += cur_agc_value;
/* Update minimal AGC value. */
if (min_agc_value > cur_agc_value)
min_agc_value = cur_agc_value;
}
/* Remove the minimal AGC result for length < 50m */
if (agc_value <
IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
agc_value -= min_agc_value;
/* Get the average length of the remaining 3 channels */
agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
} else {
/* Get the average length of all the 4 channels. */
agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
}
/* Set the range of the calculated length. */
*min_length = ((e1000_igp_cable_length_table[agc_value] -
IGP01E1000_AGC_RANGE) > 0) ?
(e1000_igp_cable_length_table[agc_value] -
IGP01E1000_AGC_RANGE) : 0;
*max_length = e1000_igp_cable_length_table[agc_value] +
IGP01E1000_AGC_RANGE;
}
return E1000_SUCCESS;
}
/**
* e1000_check_polarity - Check the cable polarity
* @hw: Struct containing variables accessed by shared code
* @polarity: output parameter : 0 - Polarity is not reversed
* 1 - Polarity is reversed.
*
* returns: - E1000_ERR_XXX
* E1000_SUCCESS
*
* For phy's older than IGP, this function simply reads the polarity bit in the
* Phy Status register. For IGP phy's, this bit is valid only if link speed is
* 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
* return 0. If the link speed is 1000 Mbps the polarity status is in the
* IGP01E1000_PHY_PCS_INIT_REG.
*/
static s32 e1000_check_polarity(struct e1000_hw *hw,
e1000_rev_polarity *polarity)
{
s32 ret_val;
u16 phy_data;
if (hw->phy_type == e1000_phy_m88) {
/* return the Polarity bit in the Status register. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
if (ret_val)
return ret_val;
*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
M88E1000_PSSR_REV_POLARITY_SHIFT) ?
e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
} else if (hw->phy_type == e1000_phy_igp) {
/* Read the Status register to check the speed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
&phy_data);
if (ret_val)
return ret_val;
/* If speed is 1000 Mbps, must read the
* IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
*/
if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Read the GIG initialization PCS register (0x00B4) */
ret_val =
e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
&phy_data);
if (ret_val)
return ret_val;
/* Check the polarity bits */
*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
e1000_rev_polarity_reversed :
e1000_rev_polarity_normal;
} else {
/* For 10 Mbps, read the polarity bit in the status
* register. (for 100 Mbps this bit is always 0)
*/
*polarity =
(phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
e1000_rev_polarity_reversed :
e1000_rev_polarity_normal;
}
}
return E1000_SUCCESS;
}
/**
* e1000_check_downshift - Check if Downshift occurred
* @hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_XXX
* E1000_SUCCESS
*
* For phy's older than IGP, this function reads the Downshift bit in the Phy
* Specific Status register. For IGP phy's, it reads the Downgrade bit in the
* Link Health register. In IGP this bit is latched high, so the driver must
* read it immediately after link is established.
*/
static s32 e1000_check_downshift(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
if (hw->phy_type == e1000_phy_igp) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
&phy_data);
if (ret_val)
return ret_val;
hw->speed_downgraded =
(phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
} else if (hw->phy_type == e1000_phy_m88) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
if (ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
M88E1000_PSSR_DOWNSHIFT_SHIFT;
}
return E1000_SUCCESS;
}
static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
IGP01E1000_PHY_AGC_PARAM_A,
IGP01E1000_PHY_AGC_PARAM_B,
IGP01E1000_PHY_AGC_PARAM_C,
IGP01E1000_PHY_AGC_PARAM_D
};
static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
{
u16 min_length, max_length;
u16 phy_data, i;
s32 ret_val;
ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
if (ret_val)
return ret_val;
if (hw->dsp_config_state != e1000_dsp_config_enabled)
return 0;
if (min_length >= e1000_igp_cable_length_50) {
for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
phy_data);
if (ret_val)
return ret_val;
}
hw->dsp_config_state = e1000_dsp_config_activated;
} else {
u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
u32 idle_errs = 0;
/* clear previous idle error counts */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
return ret_val;
for (i = 0; i < ffe_idle_err_timeout; i++) {
udelay(1000);
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
if (ret_val)
return ret_val;
idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
hw->ffe_config_state = e1000_ffe_config_active;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_CM_CP);
if (ret_val)
return ret_val;
break;
}
if (idle_errs)
ffe_idle_err_timeout =
FFE_IDLE_ERR_COUNT_TIMEOUT_100;
}
}
return 0;
}
/**
* e1000_config_dsp_after_link_change
* @hw: Struct containing variables accessed by shared code
* @link_up: was link up at the time this was called
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
* 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
* gigabit link is achieved to improve link quality.
*/
static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
{
s32 ret_val;
u16 phy_data, phy_saved_data, speed, duplex, i;
if (hw->phy_type != e1000_phy_igp)
return E1000_SUCCESS;
if (link_up) {
ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
e_dbg("Error getting link speed and duplex\n");
return ret_val;
}
if (speed == SPEED_1000) {
ret_val = e1000_1000Mb_check_cable_length(hw);
if (ret_val)
return ret_val;
}
} else {
if (hw->dsp_config_state == e1000_dsp_config_activated) {
/* Save off the current value of register 0x2F5B to be
* restored at the end of the routines.
*/
ret_val =
e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
if (ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
if (ret_val)
return ret_val;
msleep(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
if (ret_val)
return ret_val;
for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val =
e1000_read_phy_reg(hw, dsp_reg_array[i],
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
ret_val =
e1000_write_phy_reg(hw, dsp_reg_array[i],
phy_data);
if (ret_val)
return ret_val;
}
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
if (ret_val)
return ret_val;
msleep(20);
/* Now enable the transmitter */
ret_val =
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if (ret_val)
return ret_val;
hw->dsp_config_state = e1000_dsp_config_enabled;
}
if (hw->ffe_config_state == e1000_ffe_config_active) {
/* Save off the current value of register 0x2F5B to be
* restored at the end of the routines.
*/
ret_val =
e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
if (ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
if (ret_val)
return ret_val;
msleep(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
if (ret_val)
return ret_val;
ret_val =
e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_DEFAULT);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
if (ret_val)
return ret_val;
msleep(20);
/* Now enable the transmitter */
ret_val =
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if (ret_val)
return ret_val;
hw->ffe_config_state = e1000_ffe_config_enabled;
}
}
return E1000_SUCCESS;
}
/**
* e1000_set_phy_mode - Set PHY to class A mode
* @hw: Struct containing variables accessed by shared code
*
* Assumes the following operations will follow to enable the new class mode.
* 1. Do a PHY soft reset
* 2. Restart auto-negotiation or force link.
*/
static s32 e1000_set_phy_mode(struct e1000_hw *hw)
{
s32 ret_val;
u16 eeprom_data;
if ((hw->mac_type == e1000_82545_rev_3) &&
(hw->media_type == e1000_media_type_copper)) {
ret_val =
e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
&eeprom_data);
if (ret_val)
return ret_val;
if ((eeprom_data != EEPROM_RESERVED_WORD) &&
(eeprom_data & EEPROM_PHY_CLASS_A)) {
ret_val =
e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
0x000B);
if (ret_val)
return ret_val;
ret_val =
e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
0x8104);
if (ret_val)
return ret_val;
hw->phy_reset_disable = false;
}
}
return E1000_SUCCESS;
}
/**
* e1000_set_d3_lplu_state - set d3 link power state
* @hw: Struct containing variables accessed by shared code
* @active: true to enable lplu false to disable lplu.
*
* This function sets the lplu state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisement
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*/
static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
s32 ret_val;
u16 phy_data;
if (hw->phy_type != e1000_phy_igp)
return E1000_SUCCESS;
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used
* for Dx transitions and states
*/
if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
ret_val =
e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
if (ret_val)
return ret_val;
}
if (!active) {
if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
ret_val =
e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
phy_data);
if (ret_val)
return ret_val;
}
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val =
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val =
e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if (ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val =
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val =
e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if (ret_val)
return ret_val;
}
} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data |= IGP01E1000_GMII_FLEX_SPD;
ret_val =
e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
phy_data);
if (ret_val)
return ret_val;
}
/* When LPLU is enabled we should disable SmartSpeed */
ret_val =
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val =
e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/**
* e1000_set_vco_speed
* @hw: Struct containing variables accessed by shared code
*
* Change VCO speed register to improve Bit Error Rate performance of SERDES.
*/
static s32 e1000_set_vco_speed(struct e1000_hw *hw)
{
s32 ret_val;
u16 default_page = 0;
u16 phy_data;
switch (hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
return E1000_SUCCESS;
}
/* Set PHY register 30, page 5, bit 8 to 0 */
ret_val =
e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
if (ret_val)
return ret_val;
/* Set PHY register 30, page 4, bit 11 to 1 */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PHY_VCO_REG_BIT11;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
if (ret_val)
return ret_val;
ret_val =
e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
if (ret_val)
return ret_val;
return E1000_SUCCESS;
}
/**
* e1000_enable_mng_pass_thru - check for bmc pass through
* @hw: Struct containing variables accessed by shared code
*
* Verifies the hardware needs to allow ARPs to be processed by the host
* returns: - true/false
*/
u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
{
u32 manc;
if (hw->asf_firmware_present) {
manc = er32(MANC);
if (!(manc & E1000_MANC_RCV_TCO_EN) ||
!(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
return false;
if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
return true;
}
return false;
}
static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
{
s32 ret_val;
u16 mii_status_reg;
u16 i;
/* Polarity reversal workaround for forced 10F/10H links. */
/* Disable the transmitter on the PHY */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
if (ret_val)
return ret_val;
/* This loop will early-out if the NO link condition has been met. */
for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be clear.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
break;
msleep(100);
}
/* Recommended delay time after link has been lost */
msleep(1000);
/* Now we will re-enable th transmitter on the PHY */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
if (ret_val)
return ret_val;
msleep(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
if (ret_val)
return ret_val;
msleep(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
if (ret_val)
return ret_val;
msleep(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
if (ret_val)
return ret_val;
/* This loop will early-out if the link condition has been met. */
for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if (mii_status_reg & MII_SR_LINK_STATUS)
break;
msleep(100);
}
return E1000_SUCCESS;
}
/**
* e1000_get_auto_rd_done
* @hw: Struct containing variables accessed by shared code
*
* Check for EEPROM Auto Read bit done.
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
*/
static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
{
msleep(5);
return E1000_SUCCESS;
}
/**
* e1000_get_phy_cfg_done
* @hw: Struct containing variables accessed by shared code
*
* Checks if the PHY configuration is done
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
*/
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
msleep(10);
return E1000_SUCCESS;
}