linux-zen-desktop/drivers/net/ethernet/intel/ice/ice_devlink.c

1915 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020, Intel Corporation. */
#include <linux/vmalloc.h>
#include "ice.h"
#include "ice_lib.h"
#include "ice_devlink.h"
#include "ice_eswitch.h"
#include "ice_fw_update.h"
#include "ice_dcb_lib.h"
static int ice_active_port_option = -1;
/* context for devlink info version reporting */
struct ice_info_ctx {
char buf[128];
struct ice_orom_info pending_orom;
struct ice_nvm_info pending_nvm;
struct ice_netlist_info pending_netlist;
struct ice_hw_dev_caps dev_caps;
};
/* The following functions are used to format specific strings for various
* devlink info versions. The ctx parameter is used to provide the storage
* buffer, as well as any ancillary information calculated when the info
* request was made.
*
* If a version does not exist, for example when attempting to get the
* inactive version of flash when there is no pending update, the function
* should leave the buffer in the ctx structure empty.
*/
static void ice_info_get_dsn(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
u8 dsn[8];
/* Copy the DSN into an array in Big Endian format */
put_unaligned_be64(pci_get_dsn(pf->pdev), dsn);
snprintf(ctx->buf, sizeof(ctx->buf), "%8phD", dsn);
}
static void ice_info_pba(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
int status;
status = ice_read_pba_string(hw, (u8 *)ctx->buf, sizeof(ctx->buf));
if (status)
/* We failed to locate the PBA, so just skip this entry */
dev_dbg(ice_pf_to_dev(pf), "Failed to read Product Board Assembly string, status %d\n",
status);
}
static void ice_info_fw_mgmt(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch);
}
static void ice_info_fw_api(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u", hw->api_maj_ver,
hw->api_min_ver, hw->api_patch);
}
static void ice_info_fw_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", hw->fw_build);
}
static void ice_info_orom_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_orom_info *orom = &pf->hw.flash.orom;
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
orom->major, orom->build, orom->patch);
}
static void
ice_info_pending_orom_ver(struct ice_pf __always_unused *pf,
struct ice_info_ctx *ctx)
{
struct ice_orom_info *orom = &ctx->pending_orom;
if (ctx->dev_caps.common_cap.nvm_update_pending_orom)
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u",
orom->major, orom->build, orom->patch);
}
static void ice_info_nvm_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x", nvm->major, nvm->minor);
}
static void
ice_info_pending_nvm_ver(struct ice_pf __always_unused *pf,
struct ice_info_ctx *ctx)
{
struct ice_nvm_info *nvm = &ctx->pending_nvm;
if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
snprintf(ctx->buf, sizeof(ctx->buf), "%x.%02x",
nvm->major, nvm->minor);
}
static void ice_info_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_nvm_info *nvm = &pf->hw.flash.nvm;
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
}
static void
ice_info_pending_eetrack(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_nvm_info *nvm = &ctx->pending_nvm;
if (ctx->dev_caps.common_cap.nvm_update_pending_nvm)
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", nvm->eetrack);
}
static void ice_info_ddp_pkg_name(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_hw *hw = &pf->hw;
snprintf(ctx->buf, sizeof(ctx->buf), "%s", hw->active_pkg_name);
}
static void
ice_info_ddp_pkg_version(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_pkg_ver *pkg = &pf->hw.active_pkg_ver;
snprintf(ctx->buf, sizeof(ctx->buf), "%u.%u.%u.%u",
pkg->major, pkg->minor, pkg->update, pkg->draft);
}
static void
ice_info_ddp_pkg_bundle_id(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", pf->hw.active_track_id);
}
static void ice_info_netlist_ver(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
/* The netlist version fields are BCD formatted */
snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
netlist->major, netlist->minor,
netlist->type >> 16, netlist->type & 0xFFFF,
netlist->rev, netlist->cust_ver);
}
static void ice_info_netlist_build(struct ice_pf *pf, struct ice_info_ctx *ctx)
{
struct ice_netlist_info *netlist = &pf->hw.flash.netlist;
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
}
static void
ice_info_pending_netlist_ver(struct ice_pf __always_unused *pf,
struct ice_info_ctx *ctx)
{
struct ice_netlist_info *netlist = &ctx->pending_netlist;
/* The netlist version fields are BCD formatted */
if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
snprintf(ctx->buf, sizeof(ctx->buf), "%x.%x.%x-%x.%x.%x",
netlist->major, netlist->minor,
netlist->type >> 16, netlist->type & 0xFFFF,
netlist->rev, netlist->cust_ver);
}
static void
ice_info_pending_netlist_build(struct ice_pf __always_unused *pf,
struct ice_info_ctx *ctx)
{
struct ice_netlist_info *netlist = &ctx->pending_netlist;
if (ctx->dev_caps.common_cap.nvm_update_pending_netlist)
snprintf(ctx->buf, sizeof(ctx->buf), "0x%08x", netlist->hash);
}
#define fixed(key, getter) { ICE_VERSION_FIXED, key, getter, NULL }
#define running(key, getter) { ICE_VERSION_RUNNING, key, getter, NULL }
#define stored(key, getter, fallback) { ICE_VERSION_STORED, key, getter, fallback }
/* The combined() macro inserts both the running entry as well as a stored
* entry. The running entry will always report the version from the active
* handler. The stored entry will first try the pending handler, and fallback
* to the active handler if the pending function does not report a version.
* The pending handler should check the status of a pending update for the
* relevant flash component. It should only fill in the buffer in the case
* where a valid pending version is available. This ensures that the related
* stored and running versions remain in sync, and that stored versions are
* correctly reported as expected.
*/
#define combined(key, active, pending) \
running(key, active), \
stored(key, pending, active)
enum ice_version_type {
ICE_VERSION_FIXED,
ICE_VERSION_RUNNING,
ICE_VERSION_STORED,
};
static const struct ice_devlink_version {
enum ice_version_type type;
const char *key;
void (*getter)(struct ice_pf *pf, struct ice_info_ctx *ctx);
void (*fallback)(struct ice_pf *pf, struct ice_info_ctx *ctx);
} ice_devlink_versions[] = {
fixed(DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, ice_info_pba),
running(DEVLINK_INFO_VERSION_GENERIC_FW_MGMT, ice_info_fw_mgmt),
running("fw.mgmt.api", ice_info_fw_api),
running("fw.mgmt.build", ice_info_fw_build),
combined(DEVLINK_INFO_VERSION_GENERIC_FW_UNDI, ice_info_orom_ver, ice_info_pending_orom_ver),
combined("fw.psid.api", ice_info_nvm_ver, ice_info_pending_nvm_ver),
combined(DEVLINK_INFO_VERSION_GENERIC_FW_BUNDLE_ID, ice_info_eetrack, ice_info_pending_eetrack),
running("fw.app.name", ice_info_ddp_pkg_name),
running(DEVLINK_INFO_VERSION_GENERIC_FW_APP, ice_info_ddp_pkg_version),
running("fw.app.bundle_id", ice_info_ddp_pkg_bundle_id),
combined("fw.netlist", ice_info_netlist_ver, ice_info_pending_netlist_ver),
combined("fw.netlist.build", ice_info_netlist_build, ice_info_pending_netlist_build),
};
/**
* ice_devlink_info_get - .info_get devlink handler
* @devlink: devlink instance structure
* @req: the devlink info request
* @extack: extended netdev ack structure
*
* Callback for the devlink .info_get operation. Reports information about the
* device.
*
* Return: zero on success or an error code on failure.
*/
static int ice_devlink_info_get(struct devlink *devlink,
struct devlink_info_req *req,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
struct ice_info_ctx *ctx;
size_t i;
int err;
err = ice_wait_for_reset(pf, 10 * HZ);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Device is busy resetting");
return err;
}
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
/* discover capabilities first */
err = ice_discover_dev_caps(hw, &ctx->dev_caps);
if (err) {
dev_dbg(dev, "Failed to discover device capabilities, status %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
NL_SET_ERR_MSG_MOD(extack, "Unable to discover device capabilities");
goto out_free_ctx;
}
if (ctx->dev_caps.common_cap.nvm_update_pending_orom) {
err = ice_get_inactive_orom_ver(hw, &ctx->pending_orom);
if (err) {
dev_dbg(dev, "Unable to read inactive Option ROM version data, status %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
/* disable display of pending Option ROM */
ctx->dev_caps.common_cap.nvm_update_pending_orom = false;
}
}
if (ctx->dev_caps.common_cap.nvm_update_pending_nvm) {
err = ice_get_inactive_nvm_ver(hw, &ctx->pending_nvm);
if (err) {
dev_dbg(dev, "Unable to read inactive NVM version data, status %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
/* disable display of pending Option ROM */
ctx->dev_caps.common_cap.nvm_update_pending_nvm = false;
}
}
if (ctx->dev_caps.common_cap.nvm_update_pending_netlist) {
err = ice_get_inactive_netlist_ver(hw, &ctx->pending_netlist);
if (err) {
dev_dbg(dev, "Unable to read inactive Netlist version data, status %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
/* disable display of pending Option ROM */
ctx->dev_caps.common_cap.nvm_update_pending_netlist = false;
}
}
ice_info_get_dsn(pf, ctx);
err = devlink_info_serial_number_put(req, ctx->buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set serial number");
goto out_free_ctx;
}
for (i = 0; i < ARRAY_SIZE(ice_devlink_versions); i++) {
enum ice_version_type type = ice_devlink_versions[i].type;
const char *key = ice_devlink_versions[i].key;
memset(ctx->buf, 0, sizeof(ctx->buf));
ice_devlink_versions[i].getter(pf, ctx);
/* If the default getter doesn't report a version, use the
* fallback function. This is primarily useful in the case of
* "stored" versions that want to report the same value as the
* running version in the normal case of no pending update.
*/
if (ctx->buf[0] == '\0' && ice_devlink_versions[i].fallback)
ice_devlink_versions[i].fallback(pf, ctx);
/* Do not report missing versions */
if (ctx->buf[0] == '\0')
continue;
switch (type) {
case ICE_VERSION_FIXED:
err = devlink_info_version_fixed_put(req, key, ctx->buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set fixed version");
goto out_free_ctx;
}
break;
case ICE_VERSION_RUNNING:
err = devlink_info_version_running_put(req, key, ctx->buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set running version");
goto out_free_ctx;
}
break;
case ICE_VERSION_STORED:
err = devlink_info_version_stored_put(req, key, ctx->buf);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Unable to set stored version");
goto out_free_ctx;
}
break;
}
}
out_free_ctx:
kfree(ctx);
return err;
}
/**
* ice_devlink_reload_empr_start - Start EMP reset to activate new firmware
* @pf: pointer to the pf instance
* @extack: netlink extended ACK structure
*
* Allow user to activate new Embedded Management Processor firmware by
* issuing device specific EMP reset. Called in response to
* a DEVLINK_CMD_RELOAD with the DEVLINK_RELOAD_ACTION_FW_ACTIVATE.
*
* Note that teardown and rebuild of the driver state happens automatically as
* part of an interrupt and watchdog task. This is because all physical
* functions on the device must be able to reset when an EMP reset occurs from
* any source.
*/
static int
ice_devlink_reload_empr_start(struct ice_pf *pf,
struct netlink_ext_ack *extack)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
u8 pending;
int err;
err = ice_get_pending_updates(pf, &pending, extack);
if (err)
return err;
/* pending is a bitmask of which flash banks have a pending update,
* including the main NVM bank, the Option ROM bank, and the netlist
* bank. If any of these bits are set, then there is a pending update
* waiting to be activated.
*/
if (!pending) {
NL_SET_ERR_MSG_MOD(extack, "No pending firmware update");
return -ECANCELED;
}
if (pf->fw_emp_reset_disabled) {
NL_SET_ERR_MSG_MOD(extack, "EMP reset is not available. To activate firmware, a reboot or power cycle is needed");
return -ECANCELED;
}
dev_dbg(dev, "Issuing device EMP reset to activate firmware\n");
err = ice_aq_nvm_update_empr(hw);
if (err) {
dev_err(dev, "Failed to trigger EMP device reset to reload firmware, err %d aq_err %s\n",
err, ice_aq_str(hw->adminq.sq_last_status));
NL_SET_ERR_MSG_MOD(extack, "Failed to trigger EMP device reset to reload firmware");
return err;
}
return 0;
}
/**
* ice_devlink_reload_down - prepare for reload
* @devlink: pointer to the devlink instance to reload
* @netns_change: if true, the network namespace is changing
* @action: the action to perform
* @limit: limits on what reload should do, such as not resetting
* @extack: netlink extended ACK structure
*/
static int
ice_devlink_reload_down(struct devlink *devlink, bool netns_change,
enum devlink_reload_action action,
enum devlink_reload_limit limit,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
switch (action) {
case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
if (ice_is_eswitch_mode_switchdev(pf)) {
NL_SET_ERR_MSG_MOD(extack,
"Go to legacy mode before doing reinit\n");
return -EOPNOTSUPP;
}
if (ice_is_adq_active(pf)) {
NL_SET_ERR_MSG_MOD(extack,
"Turn off ADQ before doing reinit\n");
return -EOPNOTSUPP;
}
if (ice_has_vfs(pf)) {
NL_SET_ERR_MSG_MOD(extack,
"Remove all VFs before doing reinit\n");
return -EOPNOTSUPP;
}
ice_unload(pf);
return 0;
case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
return ice_devlink_reload_empr_start(pf, extack);
default:
WARN_ON(1);
return -EOPNOTSUPP;
}
}
/**
* ice_devlink_reload_empr_finish - Wait for EMP reset to finish
* @pf: pointer to the pf instance
* @extack: netlink extended ACK structure
*
* Wait for driver to finish rebuilding after EMP reset is completed. This
* includes time to wait for both the actual device reset as well as the time
* for the driver's rebuild to complete.
*/
static int
ice_devlink_reload_empr_finish(struct ice_pf *pf,
struct netlink_ext_ack *extack)
{
int err;
err = ice_wait_for_reset(pf, 60 * HZ);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Device still resetting after 1 minute");
return err;
}
return 0;
}
/**
* ice_devlink_port_opt_speed_str - convert speed to a string
* @speed: speed value
*/
static const char *ice_devlink_port_opt_speed_str(u8 speed)
{
switch (speed & ICE_AQC_PORT_OPT_MAX_LANE_M) {
case ICE_AQC_PORT_OPT_MAX_LANE_100M:
return "0.1";
case ICE_AQC_PORT_OPT_MAX_LANE_1G:
return "1";
case ICE_AQC_PORT_OPT_MAX_LANE_2500M:
return "2.5";
case ICE_AQC_PORT_OPT_MAX_LANE_5G:
return "5";
case ICE_AQC_PORT_OPT_MAX_LANE_10G:
return "10";
case ICE_AQC_PORT_OPT_MAX_LANE_25G:
return "25";
case ICE_AQC_PORT_OPT_MAX_LANE_50G:
return "50";
case ICE_AQC_PORT_OPT_MAX_LANE_100G:
return "100";
}
return "-";
}
#define ICE_PORT_OPT_DESC_LEN 50
/**
* ice_devlink_port_options_print - Print available port split options
* @pf: the PF to print split port options
*
* Prints a table with available port split options and max port speeds
*/
static void ice_devlink_port_options_print(struct ice_pf *pf)
{
u8 i, j, options_count, cnt, speed, pending_idx, active_idx;
struct ice_aqc_get_port_options_elem *options, *opt;
struct device *dev = ice_pf_to_dev(pf);
bool active_valid, pending_valid;
char desc[ICE_PORT_OPT_DESC_LEN];
const char *str;
int status;
options = kcalloc(ICE_AQC_PORT_OPT_MAX * ICE_MAX_PORT_PER_PCI_DEV,
sizeof(*options), GFP_KERNEL);
if (!options)
return;
for (i = 0; i < ICE_MAX_PORT_PER_PCI_DEV; i++) {
opt = options + i * ICE_AQC_PORT_OPT_MAX;
options_count = ICE_AQC_PORT_OPT_MAX;
active_valid = 0;
status = ice_aq_get_port_options(&pf->hw, opt, &options_count,
i, true, &active_idx,
&active_valid, &pending_idx,
&pending_valid);
if (status) {
dev_dbg(dev, "Couldn't read port option for port %d, err %d\n",
i, status);
goto err;
}
}
dev_dbg(dev, "Available port split options and max port speeds (Gbps):\n");
dev_dbg(dev, "Status Split Quad 0 Quad 1\n");
dev_dbg(dev, " count L0 L1 L2 L3 L4 L5 L6 L7\n");
for (i = 0; i < options_count; i++) {
cnt = 0;
if (i == ice_active_port_option)
str = "Active";
else if ((i == pending_idx) && pending_valid)
str = "Pending";
else
str = "";
cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
"%-8s", str);
cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
"%-6u", options[i].pmd);
for (j = 0; j < ICE_MAX_PORT_PER_PCI_DEV; ++j) {
speed = options[i + j * ICE_AQC_PORT_OPT_MAX].max_lane_speed;
str = ice_devlink_port_opt_speed_str(speed);
cnt += snprintf(&desc[cnt], ICE_PORT_OPT_DESC_LEN - cnt,
"%3s ", str);
}
dev_dbg(dev, "%s\n", desc);
}
err:
kfree(options);
}
/**
* ice_devlink_aq_set_port_option - Send set port option admin queue command
* @pf: the PF to print split port options
* @option_idx: selected port option
* @extack: extended netdev ack structure
*
* Sends set port option admin queue command with selected port option and
* calls NVM write activate.
*/
static int
ice_devlink_aq_set_port_option(struct ice_pf *pf, u8 option_idx,
struct netlink_ext_ack *extack)
{
struct device *dev = ice_pf_to_dev(pf);
int status;
status = ice_aq_set_port_option(&pf->hw, 0, true, option_idx);
if (status) {
dev_dbg(dev, "ice_aq_set_port_option, err %d aq_err %d\n",
status, pf->hw.adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Port split request failed");
return -EIO;
}
status = ice_acquire_nvm(&pf->hw, ICE_RES_WRITE);
if (status) {
dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
status, pf->hw.adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
return -EIO;
}
status = ice_nvm_write_activate(&pf->hw, ICE_AQC_NVM_ACTIV_REQ_EMPR, NULL);
if (status) {
dev_dbg(dev, "ice_nvm_write_activate failed, err %d aq_err %d\n",
status, pf->hw.adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Port split request failed to save data");
ice_release_nvm(&pf->hw);
return -EIO;
}
ice_release_nvm(&pf->hw);
NL_SET_ERR_MSG_MOD(extack, "Reboot required to finish port split");
return 0;
}
/**
* ice_devlink_port_split - .port_split devlink handler
* @devlink: devlink instance structure
* @port: devlink port structure
* @count: number of ports to split to
* @extack: extended netdev ack structure
*
* Callback for the devlink .port_split operation.
*
* Unfortunately, the devlink expression of available options is limited
* to just a number, so search for an FW port option which supports
* the specified number. As there could be multiple FW port options with
* the same port split count, allow switching between them. When the same
* port split count request is issued again, switch to the next FW port
* option with the same port split count.
*
* Return: zero on success or an error code on failure.
*/
static int
ice_devlink_port_split(struct devlink *devlink, struct devlink_port *port,
unsigned int count, struct netlink_ext_ack *extack)
{
struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
u8 i, j, active_idx, pending_idx, new_option;
struct ice_pf *pf = devlink_priv(devlink);
u8 option_count = ICE_AQC_PORT_OPT_MAX;
struct device *dev = ice_pf_to_dev(pf);
bool active_valid, pending_valid;
int status;
status = ice_aq_get_port_options(&pf->hw, options, &option_count,
0, true, &active_idx, &active_valid,
&pending_idx, &pending_valid);
if (status) {
dev_dbg(dev, "Couldn't read port split options, err = %d\n",
status);
NL_SET_ERR_MSG_MOD(extack, "Failed to get available port split options");
return -EIO;
}
new_option = ICE_AQC_PORT_OPT_MAX;
active_idx = pending_valid ? pending_idx : active_idx;
for (i = 1; i <= option_count; i++) {
/* In order to allow switching between FW port options with
* the same port split count, search for a new option starting
* from the active/pending option (with array wrap around).
*/
j = (active_idx + i) % option_count;
if (count == options[j].pmd) {
new_option = j;
break;
}
}
if (new_option == active_idx) {
dev_dbg(dev, "request to split: count: %u is already set and there are no other options\n",
count);
NL_SET_ERR_MSG_MOD(extack, "Requested split count is already set");
ice_devlink_port_options_print(pf);
return -EINVAL;
}
if (new_option == ICE_AQC_PORT_OPT_MAX) {
dev_dbg(dev, "request to split: count: %u not found\n", count);
NL_SET_ERR_MSG_MOD(extack, "Port split requested unsupported port config");
ice_devlink_port_options_print(pf);
return -EINVAL;
}
status = ice_devlink_aq_set_port_option(pf, new_option, extack);
if (status)
return status;
ice_devlink_port_options_print(pf);
return 0;
}
/**
* ice_devlink_port_unsplit - .port_unsplit devlink handler
* @devlink: devlink instance structure
* @port: devlink port structure
* @extack: extended netdev ack structure
*
* Callback for the devlink .port_unsplit operation.
* Calls ice_devlink_port_split with split count set to 1.
* There could be no FW option available with split count 1.
*
* Return: zero on success or an error code on failure.
*/
static int
ice_devlink_port_unsplit(struct devlink *devlink, struct devlink_port *port,
struct netlink_ext_ack *extack)
{
return ice_devlink_port_split(devlink, port, 1, extack);
}
/**
* ice_tear_down_devlink_rate_tree - removes devlink-rate exported tree
* @pf: pf struct
*
* This function tears down tree exported during VF's creation.
*/
void ice_tear_down_devlink_rate_tree(struct ice_pf *pf)
{
struct devlink *devlink;
struct ice_vf *vf;
unsigned int bkt;
devlink = priv_to_devlink(pf);
devl_lock(devlink);
mutex_lock(&pf->vfs.table_lock);
ice_for_each_vf(pf, bkt, vf) {
if (vf->devlink_port.devlink_rate)
devl_rate_leaf_destroy(&vf->devlink_port);
}
mutex_unlock(&pf->vfs.table_lock);
devl_rate_nodes_destroy(devlink);
devl_unlock(devlink);
}
/**
* ice_enable_custom_tx - try to enable custom Tx feature
* @pf: pf struct
*
* This function tries to enable custom Tx feature,
* it's not possible to enable it, if DCB or ADQ is active.
*/
static bool ice_enable_custom_tx(struct ice_pf *pf)
{
struct ice_port_info *pi = ice_get_main_vsi(pf)->port_info;
struct device *dev = ice_pf_to_dev(pf);
if (pi->is_custom_tx_enabled)
/* already enabled, return true */
return true;
if (ice_is_adq_active(pf)) {
dev_err(dev, "ADQ active, can't modify Tx scheduler tree\n");
return false;
}
if (ice_is_dcb_active(pf)) {
dev_err(dev, "DCB active, can't modify Tx scheduler tree\n");
return false;
}
pi->is_custom_tx_enabled = true;
return true;
}
/**
* ice_traverse_tx_tree - traverse Tx scheduler tree
* @devlink: devlink struct
* @node: current node, used for recursion
* @tc_node: tc_node struct, that is treated as a root
* @pf: pf struct
*
* This function traverses Tx scheduler tree and exports
* entire structure to the devlink-rate.
*/
static void ice_traverse_tx_tree(struct devlink *devlink, struct ice_sched_node *node,
struct ice_sched_node *tc_node, struct ice_pf *pf)
{
struct devlink_rate *rate_node = NULL;
struct ice_vf *vf;
int i;
if (node->parent == tc_node) {
/* create root node */
rate_node = devl_rate_node_create(devlink, node, node->name, NULL);
} else if (node->vsi_handle &&
pf->vsi[node->vsi_handle]->vf) {
vf = pf->vsi[node->vsi_handle]->vf;
if (!vf->devlink_port.devlink_rate)
/* leaf nodes doesn't have children
* so we don't set rate_node
*/
devl_rate_leaf_create(&vf->devlink_port, node,
node->parent->rate_node);
} else if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF &&
node->parent->rate_node) {
rate_node = devl_rate_node_create(devlink, node, node->name,
node->parent->rate_node);
}
if (rate_node && !IS_ERR(rate_node))
node->rate_node = rate_node;
for (i = 0; i < node->num_children; i++)
ice_traverse_tx_tree(devlink, node->children[i], tc_node, pf);
}
/**
* ice_devlink_rate_init_tx_topology - export Tx scheduler tree to devlink rate
* @devlink: devlink struct
* @vsi: main vsi struct
*
* This function finds a root node, then calls ice_traverse_tx tree, which
* traverses the tree and exports it's contents to devlink rate.
*/
int ice_devlink_rate_init_tx_topology(struct devlink *devlink, struct ice_vsi *vsi)
{
struct ice_port_info *pi = vsi->port_info;
struct ice_sched_node *tc_node;
struct ice_pf *pf = vsi->back;
int i;
tc_node = pi->root->children[0];
mutex_lock(&pi->sched_lock);
devl_lock(devlink);
for (i = 0; i < tc_node->num_children; i++)
ice_traverse_tx_tree(devlink, tc_node->children[i], tc_node, pf);
devl_unlock(devlink);
mutex_unlock(&pi->sched_lock);
return 0;
}
/**
* ice_set_object_tx_share - sets node scheduling parameter
* @pi: devlink struct instance
* @node: node struct instance
* @bw: bandwidth in bytes per second
* @extack: extended netdev ack structure
*
* This function sets ICE_MIN_BW scheduling BW limit.
*/
static int ice_set_object_tx_share(struct ice_port_info *pi, struct ice_sched_node *node,
u64 bw, struct netlink_ext_ack *extack)
{
int status;
mutex_lock(&pi->sched_lock);
/* converts bytes per second to kilo bits per second */
node->tx_share = div_u64(bw, 125);
status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW, node->tx_share);
mutex_unlock(&pi->sched_lock);
if (status)
NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_share");
return status;
}
/**
* ice_set_object_tx_max - sets node scheduling parameter
* @pi: devlink struct instance
* @node: node struct instance
* @bw: bandwidth in bytes per second
* @extack: extended netdev ack structure
*
* This function sets ICE_MAX_BW scheduling BW limit.
*/
static int ice_set_object_tx_max(struct ice_port_info *pi, struct ice_sched_node *node,
u64 bw, struct netlink_ext_ack *extack)
{
int status;
mutex_lock(&pi->sched_lock);
/* converts bytes per second value to kilo bits per second */
node->tx_max = div_u64(bw, 125);
status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW, node->tx_max);
mutex_unlock(&pi->sched_lock);
if (status)
NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_max");
return status;
}
/**
* ice_set_object_tx_priority - sets node scheduling parameter
* @pi: devlink struct instance
* @node: node struct instance
* @priority: value representing priority for strict priority arbitration
* @extack: extended netdev ack structure
*
* This function sets priority of node among siblings.
*/
static int ice_set_object_tx_priority(struct ice_port_info *pi, struct ice_sched_node *node,
u32 priority, struct netlink_ext_ack *extack)
{
int status;
if (priority >= 8) {
NL_SET_ERR_MSG_MOD(extack, "Priority should be less than 8");
return -EINVAL;
}
mutex_lock(&pi->sched_lock);
node->tx_priority = priority;
status = ice_sched_set_node_priority(pi, node, node->tx_priority);
mutex_unlock(&pi->sched_lock);
if (status)
NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_priority");
return status;
}
/**
* ice_set_object_tx_weight - sets node scheduling parameter
* @pi: devlink struct instance
* @node: node struct instance
* @weight: value represeting relative weight for WFQ arbitration
* @extack: extended netdev ack structure
*
* This function sets node weight for WFQ algorithm.
*/
static int ice_set_object_tx_weight(struct ice_port_info *pi, struct ice_sched_node *node,
u32 weight, struct netlink_ext_ack *extack)
{
int status;
if (weight > 200 || weight < 1) {
NL_SET_ERR_MSG_MOD(extack, "Weight must be between 1 and 200");
return -EINVAL;
}
mutex_lock(&pi->sched_lock);
node->tx_weight = weight;
status = ice_sched_set_node_weight(pi, node, node->tx_weight);
mutex_unlock(&pi->sched_lock);
if (status)
NL_SET_ERR_MSG_MOD(extack, "Can't set scheduling node tx_weight");
return status;
}
/**
* ice_get_pi_from_dev_rate - get port info from devlink_rate
* @rate_node: devlink struct instance
*
* This function returns corresponding port_info struct of devlink_rate
*/
static struct ice_port_info *ice_get_pi_from_dev_rate(struct devlink_rate *rate_node)
{
struct ice_pf *pf = devlink_priv(rate_node->devlink);
return ice_get_main_vsi(pf)->port_info;
}
static int ice_devlink_rate_node_new(struct devlink_rate *rate_node, void **priv,
struct netlink_ext_ack *extack)
{
struct ice_sched_node *node;
struct ice_port_info *pi;
pi = ice_get_pi_from_dev_rate(rate_node);
if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
return -EBUSY;
/* preallocate memory for ice_sched_node */
node = devm_kzalloc(ice_hw_to_dev(pi->hw), sizeof(*node), GFP_KERNEL);
*priv = node;
return 0;
}
static int ice_devlink_rate_node_del(struct devlink_rate *rate_node, void *priv,
struct netlink_ext_ack *extack)
{
struct ice_sched_node *node, *tc_node;
struct ice_port_info *pi;
pi = ice_get_pi_from_dev_rate(rate_node);
tc_node = pi->root->children[0];
node = priv;
if (!rate_node->parent || !node || tc_node == node || !extack)
return 0;
if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
return -EBUSY;
/* can't allow to delete a node with children */
if (node->num_children)
return -EINVAL;
mutex_lock(&pi->sched_lock);
ice_free_sched_node(pi, node);
mutex_unlock(&pi->sched_lock);
return 0;
}
static int ice_devlink_rate_leaf_tx_max_set(struct devlink_rate *rate_leaf, void *priv,
u64 tx_max, struct netlink_ext_ack *extack)
{
struct ice_sched_node *node = priv;
if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
return -EBUSY;
if (!node)
return 0;
return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_leaf),
node, tx_max, extack);
}
static int ice_devlink_rate_leaf_tx_share_set(struct devlink_rate *rate_leaf, void *priv,
u64 tx_share, struct netlink_ext_ack *extack)
{
struct ice_sched_node *node = priv;
if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
return -EBUSY;
if (!node)
return 0;
return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_leaf), node,
tx_share, extack);
}
static int ice_devlink_rate_leaf_tx_priority_set(struct devlink_rate *rate_leaf, void *priv,
u32 tx_priority, struct netlink_ext_ack *extack)
{
struct ice_sched_node *node = priv;
if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
return -EBUSY;
if (!node)
return 0;
return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_leaf), node,
tx_priority, extack);
}
static int ice_devlink_rate_leaf_tx_weight_set(struct devlink_rate *rate_leaf, void *priv,
u32 tx_weight, struct netlink_ext_ack *extack)
{
struct ice_sched_node *node = priv;
if (!ice_enable_custom_tx(devlink_priv(rate_leaf->devlink)))
return -EBUSY;
if (!node)
return 0;
return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_leaf), node,
tx_weight, extack);
}
static int ice_devlink_rate_node_tx_max_set(struct devlink_rate *rate_node, void *priv,
u64 tx_max, struct netlink_ext_ack *extack)
{
struct ice_sched_node *node = priv;
if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
return -EBUSY;
if (!node)
return 0;
return ice_set_object_tx_max(ice_get_pi_from_dev_rate(rate_node),
node, tx_max, extack);
}
static int ice_devlink_rate_node_tx_share_set(struct devlink_rate *rate_node, void *priv,
u64 tx_share, struct netlink_ext_ack *extack)
{
struct ice_sched_node *node = priv;
if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
return -EBUSY;
if (!node)
return 0;
return ice_set_object_tx_share(ice_get_pi_from_dev_rate(rate_node),
node, tx_share, extack);
}
static int ice_devlink_rate_node_tx_priority_set(struct devlink_rate *rate_node, void *priv,
u32 tx_priority, struct netlink_ext_ack *extack)
{
struct ice_sched_node *node = priv;
if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
return -EBUSY;
if (!node)
return 0;
return ice_set_object_tx_priority(ice_get_pi_from_dev_rate(rate_node),
node, tx_priority, extack);
}
static int ice_devlink_rate_node_tx_weight_set(struct devlink_rate *rate_node, void *priv,
u32 tx_weight, struct netlink_ext_ack *extack)
{
struct ice_sched_node *node = priv;
if (!ice_enable_custom_tx(devlink_priv(rate_node->devlink)))
return -EBUSY;
if (!node)
return 0;
return ice_set_object_tx_weight(ice_get_pi_from_dev_rate(rate_node),
node, tx_weight, extack);
}
static int ice_devlink_set_parent(struct devlink_rate *devlink_rate,
struct devlink_rate *parent,
void *priv, void *parent_priv,
struct netlink_ext_ack *extack)
{
struct ice_port_info *pi = ice_get_pi_from_dev_rate(devlink_rate);
struct ice_sched_node *tc_node, *node, *parent_node;
u16 num_nodes_added;
u32 first_node_teid;
u32 node_teid;
int status;
tc_node = pi->root->children[0];
node = priv;
if (!extack)
return 0;
if (!ice_enable_custom_tx(devlink_priv(devlink_rate->devlink)))
return -EBUSY;
if (!parent) {
if (!node || tc_node == node || node->num_children)
return -EINVAL;
mutex_lock(&pi->sched_lock);
ice_free_sched_node(pi, node);
mutex_unlock(&pi->sched_lock);
return 0;
}
parent_node = parent_priv;
/* if the node doesn't exist, create it */
if (!node->parent) {
mutex_lock(&pi->sched_lock);
status = ice_sched_add_elems(pi, tc_node, parent_node,
parent_node->tx_sched_layer + 1,
1, &num_nodes_added, &first_node_teid,
&node);
mutex_unlock(&pi->sched_lock);
if (status) {
NL_SET_ERR_MSG_MOD(extack, "Can't add a new node");
return status;
}
if (devlink_rate->tx_share)
ice_set_object_tx_share(pi, node, devlink_rate->tx_share, extack);
if (devlink_rate->tx_max)
ice_set_object_tx_max(pi, node, devlink_rate->tx_max, extack);
if (devlink_rate->tx_priority)
ice_set_object_tx_priority(pi, node, devlink_rate->tx_priority, extack);
if (devlink_rate->tx_weight)
ice_set_object_tx_weight(pi, node, devlink_rate->tx_weight, extack);
} else {
node_teid = le32_to_cpu(node->info.node_teid);
mutex_lock(&pi->sched_lock);
status = ice_sched_move_nodes(pi, parent_node, 1, &node_teid);
mutex_unlock(&pi->sched_lock);
if (status)
NL_SET_ERR_MSG_MOD(extack, "Can't move existing node to a new parent");
}
return status;
}
/**
* ice_devlink_reload_up - do reload up after reinit
* @devlink: pointer to the devlink instance reloading
* @action: the action requested
* @limit: limits imposed by userspace, such as not resetting
* @actions_performed: on return, indicate what actions actually performed
* @extack: netlink extended ACK structure
*/
static int
ice_devlink_reload_up(struct devlink *devlink,
enum devlink_reload_action action,
enum devlink_reload_limit limit,
u32 *actions_performed,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
switch (action) {
case DEVLINK_RELOAD_ACTION_DRIVER_REINIT:
*actions_performed = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT);
return ice_load(pf);
case DEVLINK_RELOAD_ACTION_FW_ACTIVATE:
*actions_performed = BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE);
return ice_devlink_reload_empr_finish(pf, extack);
default:
WARN_ON(1);
return -EOPNOTSUPP;
}
}
static const struct devlink_ops ice_devlink_ops = {
.supported_flash_update_params = DEVLINK_SUPPORT_FLASH_UPDATE_OVERWRITE_MASK,
.reload_actions = BIT(DEVLINK_RELOAD_ACTION_DRIVER_REINIT) |
BIT(DEVLINK_RELOAD_ACTION_FW_ACTIVATE),
/* The ice driver currently does not support driver reinit */
.reload_down = ice_devlink_reload_down,
.reload_up = ice_devlink_reload_up,
.port_split = ice_devlink_port_split,
.port_unsplit = ice_devlink_port_unsplit,
.eswitch_mode_get = ice_eswitch_mode_get,
.eswitch_mode_set = ice_eswitch_mode_set,
.info_get = ice_devlink_info_get,
.flash_update = ice_devlink_flash_update,
.rate_node_new = ice_devlink_rate_node_new,
.rate_node_del = ice_devlink_rate_node_del,
.rate_leaf_tx_max_set = ice_devlink_rate_leaf_tx_max_set,
.rate_leaf_tx_share_set = ice_devlink_rate_leaf_tx_share_set,
.rate_leaf_tx_priority_set = ice_devlink_rate_leaf_tx_priority_set,
.rate_leaf_tx_weight_set = ice_devlink_rate_leaf_tx_weight_set,
.rate_node_tx_max_set = ice_devlink_rate_node_tx_max_set,
.rate_node_tx_share_set = ice_devlink_rate_node_tx_share_set,
.rate_node_tx_priority_set = ice_devlink_rate_node_tx_priority_set,
.rate_node_tx_weight_set = ice_devlink_rate_node_tx_weight_set,
.rate_leaf_parent_set = ice_devlink_set_parent,
.rate_node_parent_set = ice_devlink_set_parent,
};
static int
ice_devlink_enable_roce_get(struct devlink *devlink, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct ice_pf *pf = devlink_priv(devlink);
ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2 ? true : false;
return 0;
}
static int
ice_devlink_enable_roce_set(struct devlink *devlink, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct ice_pf *pf = devlink_priv(devlink);
bool roce_ena = ctx->val.vbool;
int ret;
if (!roce_ena) {
ice_unplug_aux_dev(pf);
pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
return 0;
}
pf->rdma_mode |= IIDC_RDMA_PROTOCOL_ROCEV2;
ret = ice_plug_aux_dev(pf);
if (ret)
pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_ROCEV2;
return ret;
}
static int
ice_devlink_enable_roce_validate(struct devlink *devlink, u32 id,
union devlink_param_value val,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
return -EOPNOTSUPP;
if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP) {
NL_SET_ERR_MSG_MOD(extack, "iWARP is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
return -EOPNOTSUPP;
}
return 0;
}
static int
ice_devlink_enable_iw_get(struct devlink *devlink, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct ice_pf *pf = devlink_priv(devlink);
ctx->val.vbool = pf->rdma_mode & IIDC_RDMA_PROTOCOL_IWARP;
return 0;
}
static int
ice_devlink_enable_iw_set(struct devlink *devlink, u32 id,
struct devlink_param_gset_ctx *ctx)
{
struct ice_pf *pf = devlink_priv(devlink);
bool iw_ena = ctx->val.vbool;
int ret;
if (!iw_ena) {
ice_unplug_aux_dev(pf);
pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
return 0;
}
pf->rdma_mode |= IIDC_RDMA_PROTOCOL_IWARP;
ret = ice_plug_aux_dev(pf);
if (ret)
pf->rdma_mode &= ~IIDC_RDMA_PROTOCOL_IWARP;
return ret;
}
static int
ice_devlink_enable_iw_validate(struct devlink *devlink, u32 id,
union devlink_param_value val,
struct netlink_ext_ack *extack)
{
struct ice_pf *pf = devlink_priv(devlink);
if (!test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
return -EOPNOTSUPP;
if (pf->rdma_mode & IIDC_RDMA_PROTOCOL_ROCEV2) {
NL_SET_ERR_MSG_MOD(extack, "RoCEv2 is currently enabled. This device cannot enable iWARP and RoCEv2 simultaneously");
return -EOPNOTSUPP;
}
return 0;
}
static const struct devlink_param ice_devlink_params[] = {
DEVLINK_PARAM_GENERIC(ENABLE_ROCE, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
ice_devlink_enable_roce_get,
ice_devlink_enable_roce_set,
ice_devlink_enable_roce_validate),
DEVLINK_PARAM_GENERIC(ENABLE_IWARP, BIT(DEVLINK_PARAM_CMODE_RUNTIME),
ice_devlink_enable_iw_get,
ice_devlink_enable_iw_set,
ice_devlink_enable_iw_validate),
};
static void ice_devlink_free(void *devlink_ptr)
{
devlink_free((struct devlink *)devlink_ptr);
}
/**
* ice_allocate_pf - Allocate devlink and return PF structure pointer
* @dev: the device to allocate for
*
* Allocate a devlink instance for this device and return the private area as
* the PF structure. The devlink memory is kept track of through devres by
* adding an action to remove it when unwinding.
*/
struct ice_pf *ice_allocate_pf(struct device *dev)
{
struct devlink *devlink;
devlink = devlink_alloc(&ice_devlink_ops, sizeof(struct ice_pf), dev);
if (!devlink)
return NULL;
/* Add an action to teardown the devlink when unwinding the driver */
if (devm_add_action_or_reset(dev, ice_devlink_free, devlink))
return NULL;
return devlink_priv(devlink);
}
/**
* ice_devlink_register - Register devlink interface for this PF
* @pf: the PF to register the devlink for.
*
* Register the devlink instance associated with this physical function.
*
* Return: zero on success or an error code on failure.
*/
void ice_devlink_register(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
devlink_register(devlink);
}
/**
* ice_devlink_unregister - Unregister devlink resources for this PF.
* @pf: the PF structure to cleanup
*
* Releases resources used by devlink and cleans up associated memory.
*/
void ice_devlink_unregister(struct ice_pf *pf)
{
devlink_unregister(priv_to_devlink(pf));
}
/**
* ice_devlink_set_switch_id - Set unique switch id based on pci dsn
* @pf: the PF to create a devlink port for
* @ppid: struct with switch id information
*/
static void
ice_devlink_set_switch_id(struct ice_pf *pf, struct netdev_phys_item_id *ppid)
{
struct pci_dev *pdev = pf->pdev;
u64 id;
id = pci_get_dsn(pdev);
ppid->id_len = sizeof(id);
put_unaligned_be64(id, &ppid->id);
}
int ice_devlink_register_params(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
return devlink_params_register(devlink, ice_devlink_params,
ARRAY_SIZE(ice_devlink_params));
}
void ice_devlink_unregister_params(struct ice_pf *pf)
{
devlink_params_unregister(priv_to_devlink(pf), ice_devlink_params,
ARRAY_SIZE(ice_devlink_params));
}
/**
* ice_devlink_set_port_split_options - Set port split options
* @pf: the PF to set port split options
* @attrs: devlink attributes
*
* Sets devlink port split options based on available FW port options
*/
static void
ice_devlink_set_port_split_options(struct ice_pf *pf,
struct devlink_port_attrs *attrs)
{
struct ice_aqc_get_port_options_elem options[ICE_AQC_PORT_OPT_MAX];
u8 i, active_idx, pending_idx, option_count = ICE_AQC_PORT_OPT_MAX;
bool active_valid, pending_valid;
int status;
status = ice_aq_get_port_options(&pf->hw, options, &option_count,
0, true, &active_idx, &active_valid,
&pending_idx, &pending_valid);
if (status) {
dev_dbg(ice_pf_to_dev(pf), "Couldn't read port split options, err = %d\n",
status);
return;
}
/* find the biggest available port split count */
for (i = 0; i < option_count; i++)
attrs->lanes = max_t(int, attrs->lanes, options[i].pmd);
attrs->splittable = attrs->lanes ? 1 : 0;
ice_active_port_option = active_idx;
}
/**
* ice_devlink_create_pf_port - Create a devlink port for this PF
* @pf: the PF to create a devlink port for
*
* Create and register a devlink_port for this PF.
*
* Return: zero on success or an error code on failure.
*/
int ice_devlink_create_pf_port(struct ice_pf *pf)
{
struct devlink_port_attrs attrs = {};
struct devlink_port *devlink_port;
struct devlink *devlink;
struct ice_vsi *vsi;
struct device *dev;
int err;
dev = ice_pf_to_dev(pf);
devlink_port = &pf->devlink_port;
vsi = ice_get_main_vsi(pf);
if (!vsi)
return -EIO;
attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
attrs.phys.port_number = pf->hw.bus.func;
/* As FW supports only port split options for whole device,
* set port split options only for first PF.
*/
if (pf->hw.pf_id == 0)
ice_devlink_set_port_split_options(pf, &attrs);
ice_devlink_set_switch_id(pf, &attrs.switch_id);
devlink_port_attrs_set(devlink_port, &attrs);
devlink = priv_to_devlink(pf);
err = devlink_port_register(devlink, devlink_port, vsi->idx);
if (err) {
dev_err(dev, "Failed to create devlink port for PF %d, error %d\n",
pf->hw.pf_id, err);
return err;
}
return 0;
}
/**
* ice_devlink_destroy_pf_port - Destroy the devlink_port for this PF
* @pf: the PF to cleanup
*
* Unregisters the devlink_port structure associated with this PF.
*/
void ice_devlink_destroy_pf_port(struct ice_pf *pf)
{
devlink_port_unregister(&pf->devlink_port);
}
/**
* ice_devlink_create_vf_port - Create a devlink port for this VF
* @vf: the VF to create a port for
*
* Create and register a devlink_port for this VF.
*
* Return: zero on success or an error code on failure.
*/
int ice_devlink_create_vf_port(struct ice_vf *vf)
{
struct devlink_port_attrs attrs = {};
struct devlink_port *devlink_port;
struct devlink *devlink;
struct ice_vsi *vsi;
struct device *dev;
struct ice_pf *pf;
int err;
pf = vf->pf;
dev = ice_pf_to_dev(pf);
devlink_port = &vf->devlink_port;
vsi = ice_get_vf_vsi(vf);
if (!vsi)
return -EINVAL;
attrs.flavour = DEVLINK_PORT_FLAVOUR_PCI_VF;
attrs.pci_vf.pf = pf->hw.bus.func;
attrs.pci_vf.vf = vf->vf_id;
ice_devlink_set_switch_id(pf, &attrs.switch_id);
devlink_port_attrs_set(devlink_port, &attrs);
devlink = priv_to_devlink(pf);
err = devlink_port_register(devlink, devlink_port, vsi->idx);
if (err) {
dev_err(dev, "Failed to create devlink port for VF %d, error %d\n",
vf->vf_id, err);
return err;
}
return 0;
}
/**
* ice_devlink_destroy_vf_port - Destroy the devlink_port for this VF
* @vf: the VF to cleanup
*
* Unregisters the devlink_port structure associated with this VF.
*/
void ice_devlink_destroy_vf_port(struct ice_vf *vf)
{
devl_rate_leaf_destroy(&vf->devlink_port);
devlink_port_unregister(&vf->devlink_port);
}
#define ICE_DEVLINK_READ_BLK_SIZE (1024 * 1024)
static const struct devlink_region_ops ice_nvm_region_ops;
static const struct devlink_region_ops ice_sram_region_ops;
/**
* ice_devlink_nvm_snapshot - Capture a snapshot of the NVM flash contents
* @devlink: the devlink instance
* @ops: the devlink region to snapshot
* @extack: extended ACK response structure
* @data: on exit points to snapshot data buffer
*
* This function is called in response to a DEVLINK_CMD_REGION_NEW for either
* the nvm-flash or shadow-ram region.
*
* It captures a snapshot of the NVM or Shadow RAM flash contents. This
* snapshot can then later be viewed via the DEVLINK_CMD_REGION_READ netlink
* interface.
*
* @returns zero on success, and updates the data pointer. Returns a non-zero
* error code on failure.
*/
static int ice_devlink_nvm_snapshot(struct devlink *devlink,
const struct devlink_region_ops *ops,
struct netlink_ext_ack *extack, u8 **data)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
bool read_shadow_ram;
u8 *nvm_data, *tmp, i;
u32 nvm_size, left;
s8 num_blks;
int status;
if (ops == &ice_nvm_region_ops) {
read_shadow_ram = false;
nvm_size = hw->flash.flash_size;
} else if (ops == &ice_sram_region_ops) {
read_shadow_ram = true;
nvm_size = hw->flash.sr_words * 2u;
} else {
NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
return -EOPNOTSUPP;
}
nvm_data = vzalloc(nvm_size);
if (!nvm_data)
return -ENOMEM;
num_blks = DIV_ROUND_UP(nvm_size, ICE_DEVLINK_READ_BLK_SIZE);
tmp = nvm_data;
left = nvm_size;
/* Some systems take longer to read the NVM than others which causes the
* FW to reclaim the NVM lock before the entire NVM has been read. Fix
* this by breaking the reads of the NVM into smaller chunks that will
* probably not take as long. This has some overhead since we are
* increasing the number of AQ commands, but it should always work
*/
for (i = 0; i < num_blks; i++) {
u32 read_sz = min_t(u32, ICE_DEVLINK_READ_BLK_SIZE, left);
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status) {
dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
vfree(nvm_data);
return -EIO;
}
status = ice_read_flat_nvm(hw, i * ICE_DEVLINK_READ_BLK_SIZE,
&read_sz, tmp, read_shadow_ram);
if (status) {
dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
read_sz, status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
ice_release_nvm(hw);
vfree(nvm_data);
return -EIO;
}
ice_release_nvm(hw);
tmp += read_sz;
left -= read_sz;
}
*data = nvm_data;
return 0;
}
/**
* ice_devlink_nvm_read - Read a portion of NVM flash contents
* @devlink: the devlink instance
* @ops: the devlink region to snapshot
* @extack: extended ACK response structure
* @offset: the offset to start at
* @size: the amount to read
* @data: the data buffer to read into
*
* This function is called in response to DEVLINK_CMD_REGION_READ to directly
* read a section of the NVM contents.
*
* It reads from either the nvm-flash or shadow-ram region contents.
*
* @returns zero on success, and updates the data pointer. Returns a non-zero
* error code on failure.
*/
static int ice_devlink_nvm_read(struct devlink *devlink,
const struct devlink_region_ops *ops,
struct netlink_ext_ack *extack,
u64 offset, u32 size, u8 *data)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
bool read_shadow_ram;
u64 nvm_size;
int status;
if (ops == &ice_nvm_region_ops) {
read_shadow_ram = false;
nvm_size = hw->flash.flash_size;
} else if (ops == &ice_sram_region_ops) {
read_shadow_ram = true;
nvm_size = hw->flash.sr_words * 2u;
} else {
NL_SET_ERR_MSG_MOD(extack, "Unexpected region in snapshot function");
return -EOPNOTSUPP;
}
if (offset + size >= nvm_size) {
NL_SET_ERR_MSG_MOD(extack, "Cannot read beyond the region size");
return -ERANGE;
}
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status) {
dev_dbg(dev, "ice_acquire_nvm failed, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to acquire NVM semaphore");
return -EIO;
}
status = ice_read_flat_nvm(hw, (u32)offset, &size, data,
read_shadow_ram);
if (status) {
dev_dbg(dev, "ice_read_flat_nvm failed after reading %u bytes, err %d aq_err %d\n",
size, status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to read NVM contents");
ice_release_nvm(hw);
return -EIO;
}
ice_release_nvm(hw);
return 0;
}
/**
* ice_devlink_devcaps_snapshot - Capture snapshot of device capabilities
* @devlink: the devlink instance
* @ops: the devlink region being snapshotted
* @extack: extended ACK response structure
* @data: on exit points to snapshot data buffer
*
* This function is called in response to the DEVLINK_CMD_REGION_TRIGGER for
* the device-caps devlink region. It captures a snapshot of the device
* capabilities reported by firmware.
*
* @returns zero on success, and updates the data pointer. Returns a non-zero
* error code on failure.
*/
static int
ice_devlink_devcaps_snapshot(struct devlink *devlink,
const struct devlink_region_ops *ops,
struct netlink_ext_ack *extack, u8 **data)
{
struct ice_pf *pf = devlink_priv(devlink);
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
void *devcaps;
int status;
devcaps = vzalloc(ICE_AQ_MAX_BUF_LEN);
if (!devcaps)
return -ENOMEM;
status = ice_aq_list_caps(hw, devcaps, ICE_AQ_MAX_BUF_LEN, NULL,
ice_aqc_opc_list_dev_caps, NULL);
if (status) {
dev_dbg(dev, "ice_aq_list_caps: failed to read device capabilities, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
NL_SET_ERR_MSG_MOD(extack, "Failed to read device capabilities");
vfree(devcaps);
return status;
}
*data = (u8 *)devcaps;
return 0;
}
static const struct devlink_region_ops ice_nvm_region_ops = {
.name = "nvm-flash",
.destructor = vfree,
.snapshot = ice_devlink_nvm_snapshot,
.read = ice_devlink_nvm_read,
};
static const struct devlink_region_ops ice_sram_region_ops = {
.name = "shadow-ram",
.destructor = vfree,
.snapshot = ice_devlink_nvm_snapshot,
.read = ice_devlink_nvm_read,
};
static const struct devlink_region_ops ice_devcaps_region_ops = {
.name = "device-caps",
.destructor = vfree,
.snapshot = ice_devlink_devcaps_snapshot,
};
/**
* ice_devlink_init_regions - Initialize devlink regions
* @pf: the PF device structure
*
* Create devlink regions used to enable access to dump the contents of the
* flash memory on the device.
*/
void ice_devlink_init_regions(struct ice_pf *pf)
{
struct devlink *devlink = priv_to_devlink(pf);
struct device *dev = ice_pf_to_dev(pf);
u64 nvm_size, sram_size;
nvm_size = pf->hw.flash.flash_size;
pf->nvm_region = devlink_region_create(devlink, &ice_nvm_region_ops, 1,
nvm_size);
if (IS_ERR(pf->nvm_region)) {
dev_err(dev, "failed to create NVM devlink region, err %ld\n",
PTR_ERR(pf->nvm_region));
pf->nvm_region = NULL;
}
sram_size = pf->hw.flash.sr_words * 2u;
pf->sram_region = devlink_region_create(devlink, &ice_sram_region_ops,
1, sram_size);
if (IS_ERR(pf->sram_region)) {
dev_err(dev, "failed to create shadow-ram devlink region, err %ld\n",
PTR_ERR(pf->sram_region));
pf->sram_region = NULL;
}
pf->devcaps_region = devlink_region_create(devlink,
&ice_devcaps_region_ops, 10,
ICE_AQ_MAX_BUF_LEN);
if (IS_ERR(pf->devcaps_region)) {
dev_err(dev, "failed to create device-caps devlink region, err %ld\n",
PTR_ERR(pf->devcaps_region));
pf->devcaps_region = NULL;
}
}
/**
* ice_devlink_destroy_regions - Destroy devlink regions
* @pf: the PF device structure
*
* Remove previously created regions for this PF.
*/
void ice_devlink_destroy_regions(struct ice_pf *pf)
{
if (pf->nvm_region)
devlink_region_destroy(pf->nvm_region);
if (pf->sram_region)
devlink_region_destroy(pf->sram_region);
if (pf->devcaps_region)
devlink_region_destroy(pf->devcaps_region);
}