linux-zen-desktop/drivers/net/ethernet/marvell/mvpp2/mvpp2_main.c

7746 lines
209 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Marvell PPv2 network controller for Armada 375 SoC.
*
* Copyright (C) 2014 Marvell
*
* Marcin Wojtas <mw@semihalf.com>
*/
#include <linux/acpi.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/inetdevice.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/mfd/syscon.h>
#include <linux/interrupt.h>
#include <linux/cpumask.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/phy.h>
#include <linux/phylink.h>
#include <linux/phy/phy.h>
#include <linux/ptp_classify.h>
#include <linux/clk.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <linux/regmap.h>
#include <uapi/linux/ppp_defs.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tso.h>
#include <linux/bpf_trace.h>
#include "mvpp2.h"
#include "mvpp2_prs.h"
#include "mvpp2_cls.h"
enum mvpp2_bm_pool_log_num {
MVPP2_BM_SHORT,
MVPP2_BM_LONG,
MVPP2_BM_JUMBO,
MVPP2_BM_POOLS_NUM
};
static struct {
int pkt_size;
int buf_num;
} mvpp2_pools[MVPP2_BM_POOLS_NUM];
/* The prototype is added here to be used in start_dev when using ACPI. This
* will be removed once phylink is used for all modes (dt+ACPI).
*/
static void mvpp2_acpi_start(struct mvpp2_port *port);
/* Queue modes */
#define MVPP2_QDIST_SINGLE_MODE 0
#define MVPP2_QDIST_MULTI_MODE 1
static int queue_mode = MVPP2_QDIST_MULTI_MODE;
module_param(queue_mode, int, 0444);
MODULE_PARM_DESC(queue_mode, "Set queue_mode (single=0, multi=1)");
/* Utility/helper methods */
void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
{
writel(data, priv->swth_base[0] + offset);
}
u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
{
return readl(priv->swth_base[0] + offset);
}
static u32 mvpp2_read_relaxed(struct mvpp2 *priv, u32 offset)
{
return readl_relaxed(priv->swth_base[0] + offset);
}
static inline u32 mvpp2_cpu_to_thread(struct mvpp2 *priv, int cpu)
{
return cpu % priv->nthreads;
}
static void mvpp2_cm3_write(struct mvpp2 *priv, u32 offset, u32 data)
{
writel(data, priv->cm3_base + offset);
}
static u32 mvpp2_cm3_read(struct mvpp2 *priv, u32 offset)
{
return readl(priv->cm3_base + offset);
}
static struct page_pool *
mvpp2_create_page_pool(struct device *dev, int num, int len,
enum dma_data_direction dma_dir)
{
struct page_pool_params pp_params = {
/* internal DMA mapping in page_pool */
.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
.pool_size = num,
.nid = NUMA_NO_NODE,
.dev = dev,
.dma_dir = dma_dir,
.offset = MVPP2_SKB_HEADROOM,
.max_len = len,
};
return page_pool_create(&pp_params);
}
/* These accessors should be used to access:
*
* - per-thread registers, where each thread has its own copy of the
* register.
*
* MVPP2_BM_VIRT_ALLOC_REG
* MVPP2_BM_ADDR_HIGH_ALLOC
* MVPP22_BM_ADDR_HIGH_RLS_REG
* MVPP2_BM_VIRT_RLS_REG
* MVPP2_ISR_RX_TX_CAUSE_REG
* MVPP2_ISR_RX_TX_MASK_REG
* MVPP2_TXQ_NUM_REG
* MVPP2_AGGR_TXQ_UPDATE_REG
* MVPP2_TXQ_RSVD_REQ_REG
* MVPP2_TXQ_RSVD_RSLT_REG
* MVPP2_TXQ_SENT_REG
* MVPP2_RXQ_NUM_REG
*
* - global registers that must be accessed through a specific thread
* window, because they are related to an access to a per-thread
* register
*
* MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG)
* MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG)
* MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG)
* MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG)
* MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG)
* MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG)
* MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
* MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
*/
static void mvpp2_thread_write(struct mvpp2 *priv, unsigned int thread,
u32 offset, u32 data)
{
writel(data, priv->swth_base[thread] + offset);
}
static u32 mvpp2_thread_read(struct mvpp2 *priv, unsigned int thread,
u32 offset)
{
return readl(priv->swth_base[thread] + offset);
}
static void mvpp2_thread_write_relaxed(struct mvpp2 *priv, unsigned int thread,
u32 offset, u32 data)
{
writel_relaxed(data, priv->swth_base[thread] + offset);
}
static u32 mvpp2_thread_read_relaxed(struct mvpp2 *priv, unsigned int thread,
u32 offset)
{
return readl_relaxed(priv->swth_base[thread] + offset);
}
static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc)
{
if (port->priv->hw_version == MVPP21)
return le32_to_cpu(tx_desc->pp21.buf_dma_addr);
else
return le64_to_cpu(tx_desc->pp22.buf_dma_addr_ptp) &
MVPP2_DESC_DMA_MASK;
}
static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
dma_addr_t dma_addr)
{
dma_addr_t addr, offset;
addr = dma_addr & ~MVPP2_TX_DESC_ALIGN;
offset = dma_addr & MVPP2_TX_DESC_ALIGN;
if (port->priv->hw_version == MVPP21) {
tx_desc->pp21.buf_dma_addr = cpu_to_le32(addr);
tx_desc->pp21.packet_offset = offset;
} else {
__le64 val = cpu_to_le64(addr);
tx_desc->pp22.buf_dma_addr_ptp &= ~cpu_to_le64(MVPP2_DESC_DMA_MASK);
tx_desc->pp22.buf_dma_addr_ptp |= val;
tx_desc->pp22.packet_offset = offset;
}
}
static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc)
{
if (port->priv->hw_version == MVPP21)
return le16_to_cpu(tx_desc->pp21.data_size);
else
return le16_to_cpu(tx_desc->pp22.data_size);
}
static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
size_t size)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.data_size = cpu_to_le16(size);
else
tx_desc->pp22.data_size = cpu_to_le16(size);
}
static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int txq)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.phys_txq = txq;
else
tx_desc->pp22.phys_txq = txq;
}
static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int command)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.command = cpu_to_le32(command);
else
tx_desc->pp22.command = cpu_to_le32(command);
}
static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc)
{
if (port->priv->hw_version == MVPP21)
return tx_desc->pp21.packet_offset;
else
return tx_desc->pp22.packet_offset;
}
static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return le32_to_cpu(rx_desc->pp21.buf_dma_addr);
else
return le64_to_cpu(rx_desc->pp22.buf_dma_addr_key_hash) &
MVPP2_DESC_DMA_MASK;
}
static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return le32_to_cpu(rx_desc->pp21.buf_cookie);
else
return le64_to_cpu(rx_desc->pp22.buf_cookie_misc) &
MVPP2_DESC_DMA_MASK;
}
static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return le16_to_cpu(rx_desc->pp21.data_size);
else
return le16_to_cpu(rx_desc->pp22.data_size);
}
static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return le32_to_cpu(rx_desc->pp21.status);
else
return le32_to_cpu(rx_desc->pp22.status);
}
static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
{
txq_pcpu->txq_get_index++;
if (txq_pcpu->txq_get_index == txq_pcpu->size)
txq_pcpu->txq_get_index = 0;
}
static void mvpp2_txq_inc_put(struct mvpp2_port *port,
struct mvpp2_txq_pcpu *txq_pcpu,
void *data,
struct mvpp2_tx_desc *tx_desc,
enum mvpp2_tx_buf_type buf_type)
{
struct mvpp2_txq_pcpu_buf *tx_buf =
txq_pcpu->buffs + txq_pcpu->txq_put_index;
tx_buf->type = buf_type;
if (buf_type == MVPP2_TYPE_SKB)
tx_buf->skb = data;
else
tx_buf->xdpf = data;
tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
mvpp2_txdesc_offset_get(port, tx_desc);
txq_pcpu->txq_put_index++;
if (txq_pcpu->txq_put_index == txq_pcpu->size)
txq_pcpu->txq_put_index = 0;
}
/* Get number of maximum RXQ */
static int mvpp2_get_nrxqs(struct mvpp2 *priv)
{
unsigned int nrxqs;
if (priv->hw_version >= MVPP22 && queue_mode == MVPP2_QDIST_SINGLE_MODE)
return 1;
/* According to the PPv2.2 datasheet and our experiments on
* PPv2.1, RX queues have an allocation granularity of 4 (when
* more than a single one on PPv2.2).
* Round up to nearest multiple of 4.
*/
nrxqs = (num_possible_cpus() + 3) & ~0x3;
if (nrxqs > MVPP2_PORT_MAX_RXQ)
nrxqs = MVPP2_PORT_MAX_RXQ;
return nrxqs;
}
/* Get number of physical egress port */
static inline int mvpp2_egress_port(struct mvpp2_port *port)
{
return MVPP2_MAX_TCONT + port->id;
}
/* Get number of physical TXQ */
static inline int mvpp2_txq_phys(int port, int txq)
{
return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
}
/* Returns a struct page if page_pool is set, otherwise a buffer */
static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool,
struct page_pool *page_pool)
{
if (page_pool)
return page_pool_dev_alloc_pages(page_pool);
if (likely(pool->frag_size <= PAGE_SIZE))
return netdev_alloc_frag(pool->frag_size);
return kmalloc(pool->frag_size, GFP_ATOMIC);
}
static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool,
struct page_pool *page_pool, void *data)
{
if (page_pool)
page_pool_put_full_page(page_pool, virt_to_head_page(data), false);
else if (likely(pool->frag_size <= PAGE_SIZE))
skb_free_frag(data);
else
kfree(data);
}
/* Buffer Manager configuration routines */
/* Create pool */
static int mvpp2_bm_pool_create(struct device *dev, struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool, int size)
{
u32 val;
/* Number of buffer pointers must be a multiple of 16, as per
* hardware constraints
*/
if (!IS_ALIGNED(size, 16))
return -EINVAL;
/* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 and PPv2.3 needs 16
* bytes per buffer pointer
*/
if (priv->hw_version == MVPP21)
bm_pool->size_bytes = 2 * sizeof(u32) * size;
else
bm_pool->size_bytes = 2 * sizeof(u64) * size;
bm_pool->virt_addr = dma_alloc_coherent(dev, bm_pool->size_bytes,
&bm_pool->dma_addr,
GFP_KERNEL);
if (!bm_pool->virt_addr)
return -ENOMEM;
if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
MVPP2_BM_POOL_PTR_ALIGN)) {
dma_free_coherent(dev, bm_pool->size_bytes,
bm_pool->virt_addr, bm_pool->dma_addr);
dev_err(dev, "BM pool %d is not %d bytes aligned\n",
bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
return -ENOMEM;
}
mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
lower_32_bits(bm_pool->dma_addr));
mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
val |= MVPP2_BM_START_MASK;
val &= ~MVPP2_BM_LOW_THRESH_MASK;
val &= ~MVPP2_BM_HIGH_THRESH_MASK;
/* Set 8 Pools BPPI threshold for MVPP23 */
if (priv->hw_version == MVPP23) {
val |= MVPP2_BM_LOW_THRESH_VALUE(MVPP23_BM_BPPI_LOW_THRESH);
val |= MVPP2_BM_HIGH_THRESH_VALUE(MVPP23_BM_BPPI_HIGH_THRESH);
} else {
val |= MVPP2_BM_LOW_THRESH_VALUE(MVPP2_BM_BPPI_LOW_THRESH);
val |= MVPP2_BM_HIGH_THRESH_VALUE(MVPP2_BM_BPPI_HIGH_THRESH);
}
mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
bm_pool->size = size;
bm_pool->pkt_size = 0;
bm_pool->buf_num = 0;
return 0;
}
/* Set pool buffer size */
static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool,
int buf_size)
{
u32 val;
bm_pool->buf_size = buf_size;
val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
}
static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool,
dma_addr_t *dma_addr,
phys_addr_t *phys_addr)
{
unsigned int thread = mvpp2_cpu_to_thread(priv, get_cpu());
*dma_addr = mvpp2_thread_read(priv, thread,
MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
*phys_addr = mvpp2_thread_read(priv, thread, MVPP2_BM_VIRT_ALLOC_REG);
if (priv->hw_version >= MVPP22) {
u32 val;
u32 dma_addr_highbits, phys_addr_highbits;
val = mvpp2_thread_read(priv, thread, MVPP22_BM_ADDR_HIGH_ALLOC);
dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;
if (sizeof(dma_addr_t) == 8)
*dma_addr |= (u64)dma_addr_highbits << 32;
if (sizeof(phys_addr_t) == 8)
*phys_addr |= (u64)phys_addr_highbits << 32;
}
put_cpu();
}
/* Free all buffers from the pool */
static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool, int buf_num)
{
struct page_pool *pp = NULL;
int i;
if (buf_num > bm_pool->buf_num) {
WARN(1, "Pool does not have so many bufs pool(%d) bufs(%d)\n",
bm_pool->id, buf_num);
buf_num = bm_pool->buf_num;
}
if (priv->percpu_pools)
pp = priv->page_pool[bm_pool->id];
for (i = 0; i < buf_num; i++) {
dma_addr_t buf_dma_addr;
phys_addr_t buf_phys_addr;
void *data;
mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
&buf_dma_addr, &buf_phys_addr);
if (!pp)
dma_unmap_single(dev, buf_dma_addr,
bm_pool->buf_size, DMA_FROM_DEVICE);
data = (void *)phys_to_virt(buf_phys_addr);
if (!data)
break;
mvpp2_frag_free(bm_pool, pp, data);
}
/* Update BM driver with number of buffers removed from pool */
bm_pool->buf_num -= i;
}
/* Check number of buffers in BM pool */
static int mvpp2_check_hw_buf_num(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool)
{
int buf_num = 0;
buf_num += mvpp2_read(priv, MVPP2_BM_POOL_PTRS_NUM_REG(bm_pool->id)) &
MVPP22_BM_POOL_PTRS_NUM_MASK;
buf_num += mvpp2_read(priv, MVPP2_BM_BPPI_PTRS_NUM_REG(bm_pool->id)) &
MVPP2_BM_BPPI_PTR_NUM_MASK;
/* HW has one buffer ready which is not reflected in the counters */
if (buf_num)
buf_num += 1;
return buf_num;
}
/* Cleanup pool */
static int mvpp2_bm_pool_destroy(struct device *dev, struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool)
{
int buf_num;
u32 val;
buf_num = mvpp2_check_hw_buf_num(priv, bm_pool);
mvpp2_bm_bufs_free(dev, priv, bm_pool, buf_num);
/* Check buffer counters after free */
buf_num = mvpp2_check_hw_buf_num(priv, bm_pool);
if (buf_num) {
WARN(1, "cannot free all buffers in pool %d, buf_num left %d\n",
bm_pool->id, bm_pool->buf_num);
return 0;
}
val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
val |= MVPP2_BM_STOP_MASK;
mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
if (priv->percpu_pools) {
page_pool_destroy(priv->page_pool[bm_pool->id]);
priv->page_pool[bm_pool->id] = NULL;
}
dma_free_coherent(dev, bm_pool->size_bytes,
bm_pool->virt_addr,
bm_pool->dma_addr);
return 0;
}
static int mvpp2_bm_pools_init(struct device *dev, struct mvpp2 *priv)
{
int i, err, size, poolnum = MVPP2_BM_POOLS_NUM;
struct mvpp2_bm_pool *bm_pool;
if (priv->percpu_pools)
poolnum = mvpp2_get_nrxqs(priv) * 2;
/* Create all pools with maximum size */
size = MVPP2_BM_POOL_SIZE_MAX;
for (i = 0; i < poolnum; i++) {
bm_pool = &priv->bm_pools[i];
bm_pool->id = i;
err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
if (err)
goto err_unroll_pools;
mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
}
return 0;
err_unroll_pools:
dev_err(dev, "failed to create BM pool %d, size %d\n", i, size);
for (i = i - 1; i >= 0; i--)
mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
return err;
}
/* Routine enable PPv23 8 pool mode */
static void mvpp23_bm_set_8pool_mode(struct mvpp2 *priv)
{
int val;
val = mvpp2_read(priv, MVPP22_BM_POOL_BASE_ADDR_HIGH_REG);
val |= MVPP23_BM_8POOL_MODE;
mvpp2_write(priv, MVPP22_BM_POOL_BASE_ADDR_HIGH_REG, val);
}
static int mvpp2_bm_init(struct device *dev, struct mvpp2 *priv)
{
enum dma_data_direction dma_dir = DMA_FROM_DEVICE;
int i, err, poolnum = MVPP2_BM_POOLS_NUM;
struct mvpp2_port *port;
if (priv->percpu_pools) {
for (i = 0; i < priv->port_count; i++) {
port = priv->port_list[i];
if (port->xdp_prog) {
dma_dir = DMA_BIDIRECTIONAL;
break;
}
}
poolnum = mvpp2_get_nrxqs(priv) * 2;
for (i = 0; i < poolnum; i++) {
/* the pool in use */
int pn = i / (poolnum / 2);
priv->page_pool[i] =
mvpp2_create_page_pool(dev,
mvpp2_pools[pn].buf_num,
mvpp2_pools[pn].pkt_size,
dma_dir);
if (IS_ERR(priv->page_pool[i])) {
int j;
for (j = 0; j < i; j++) {
page_pool_destroy(priv->page_pool[j]);
priv->page_pool[j] = NULL;
}
return PTR_ERR(priv->page_pool[i]);
}
}
}
dev_info(dev, "using %d %s buffers\n", poolnum,
priv->percpu_pools ? "per-cpu" : "shared");
for (i = 0; i < poolnum; i++) {
/* Mask BM all interrupts */
mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
/* Clear BM cause register */
mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
}
/* Allocate and initialize BM pools */
priv->bm_pools = devm_kcalloc(dev, poolnum,
sizeof(*priv->bm_pools), GFP_KERNEL);
if (!priv->bm_pools)
return -ENOMEM;
if (priv->hw_version == MVPP23)
mvpp23_bm_set_8pool_mode(priv);
err = mvpp2_bm_pools_init(dev, priv);
if (err < 0)
return err;
return 0;
}
static void mvpp2_setup_bm_pool(void)
{
/* Short pool */
mvpp2_pools[MVPP2_BM_SHORT].buf_num = MVPP2_BM_SHORT_BUF_NUM;
mvpp2_pools[MVPP2_BM_SHORT].pkt_size = MVPP2_BM_SHORT_PKT_SIZE;
/* Long pool */
mvpp2_pools[MVPP2_BM_LONG].buf_num = MVPP2_BM_LONG_BUF_NUM;
mvpp2_pools[MVPP2_BM_LONG].pkt_size = MVPP2_BM_LONG_PKT_SIZE;
/* Jumbo pool */
mvpp2_pools[MVPP2_BM_JUMBO].buf_num = MVPP2_BM_JUMBO_BUF_NUM;
mvpp2_pools[MVPP2_BM_JUMBO].pkt_size = MVPP2_BM_JUMBO_PKT_SIZE;
}
/* Attach long pool to rxq */
static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
int lrxq, int long_pool)
{
u32 val, mask;
int prxq;
/* Get queue physical ID */
prxq = port->rxqs[lrxq]->id;
if (port->priv->hw_version == MVPP21)
mask = MVPP21_RXQ_POOL_LONG_MASK;
else
mask = MVPP22_RXQ_POOL_LONG_MASK;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~mask;
val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
/* Attach short pool to rxq */
static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
int lrxq, int short_pool)
{
u32 val, mask;
int prxq;
/* Get queue physical ID */
prxq = port->rxqs[lrxq]->id;
if (port->priv->hw_version == MVPP21)
mask = MVPP21_RXQ_POOL_SHORT_MASK;
else
mask = MVPP22_RXQ_POOL_SHORT_MASK;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~mask;
val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
static void *mvpp2_buf_alloc(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool,
struct page_pool *page_pool,
dma_addr_t *buf_dma_addr,
phys_addr_t *buf_phys_addr,
gfp_t gfp_mask)
{
dma_addr_t dma_addr;
struct page *page;
void *data;
data = mvpp2_frag_alloc(bm_pool, page_pool);
if (!data)
return NULL;
if (page_pool) {
page = (struct page *)data;
dma_addr = page_pool_get_dma_addr(page);
data = page_to_virt(page);
} else {
dma_addr = dma_map_single(port->dev->dev.parent, data,
MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
mvpp2_frag_free(bm_pool, NULL, data);
return NULL;
}
}
*buf_dma_addr = dma_addr;
*buf_phys_addr = virt_to_phys(data);
return data;
}
/* Routine enable flow control for RXQs condition */
static void mvpp2_rxq_enable_fc(struct mvpp2_port *port)
{
int val, cm3_state, host_id, q;
int fq = port->first_rxq;
unsigned long flags;
spin_lock_irqsave(&port->priv->mss_spinlock, flags);
/* Remove Flow control enable bit to prevent race between FW and Kernel
* If Flow control was enabled, it would be re-enabled.
*/
val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG);
cm3_state = (val & FLOW_CONTROL_ENABLE_BIT);
val &= ~FLOW_CONTROL_ENABLE_BIT;
mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val);
/* Set same Flow control for all RXQs */
for (q = 0; q < port->nrxqs; q++) {
/* Set stop and start Flow control RXQ thresholds */
val = MSS_THRESHOLD_START;
val |= (MSS_THRESHOLD_STOP << MSS_RXQ_TRESH_STOP_OFFS);
mvpp2_cm3_write(port->priv, MSS_RXQ_TRESH_REG(q, fq), val);
val = mvpp2_cm3_read(port->priv, MSS_RXQ_ASS_REG(q, fq));
/* Set RXQ port ID */
val &= ~(MSS_RXQ_ASS_PORTID_MASK << MSS_RXQ_ASS_Q_BASE(q, fq));
val |= (port->id << MSS_RXQ_ASS_Q_BASE(q, fq));
val &= ~(MSS_RXQ_ASS_HOSTID_MASK << (MSS_RXQ_ASS_Q_BASE(q, fq)
+ MSS_RXQ_ASS_HOSTID_OFFS));
/* Calculate RXQ host ID:
* In Single queue mode: Host ID equal to Host ID used for
* shared RX interrupt
* In Multi queue mode: Host ID equal to number of
* RXQ ID / number of CoS queues
* In Single resource mode: Host ID always equal to 0
*/
if (queue_mode == MVPP2_QDIST_SINGLE_MODE)
host_id = port->nqvecs;
else if (queue_mode == MVPP2_QDIST_MULTI_MODE)
host_id = q;
else
host_id = 0;
/* Set RXQ host ID */
val |= (host_id << (MSS_RXQ_ASS_Q_BASE(q, fq)
+ MSS_RXQ_ASS_HOSTID_OFFS));
mvpp2_cm3_write(port->priv, MSS_RXQ_ASS_REG(q, fq), val);
}
/* Notify Firmware that Flow control config space ready for update */
val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG);
val |= FLOW_CONTROL_UPDATE_COMMAND_BIT;
val |= cm3_state;
mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val);
spin_unlock_irqrestore(&port->priv->mss_spinlock, flags);
}
/* Routine disable flow control for RXQs condition */
static void mvpp2_rxq_disable_fc(struct mvpp2_port *port)
{
int val, cm3_state, q;
unsigned long flags;
int fq = port->first_rxq;
spin_lock_irqsave(&port->priv->mss_spinlock, flags);
/* Remove Flow control enable bit to prevent race between FW and Kernel
* If Flow control was enabled, it would be re-enabled.
*/
val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG);
cm3_state = (val & FLOW_CONTROL_ENABLE_BIT);
val &= ~FLOW_CONTROL_ENABLE_BIT;
mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val);
/* Disable Flow control for all RXQs */
for (q = 0; q < port->nrxqs; q++) {
/* Set threshold 0 to disable Flow control */
val = 0;
val |= (0 << MSS_RXQ_TRESH_STOP_OFFS);
mvpp2_cm3_write(port->priv, MSS_RXQ_TRESH_REG(q, fq), val);
val = mvpp2_cm3_read(port->priv, MSS_RXQ_ASS_REG(q, fq));
val &= ~(MSS_RXQ_ASS_PORTID_MASK << MSS_RXQ_ASS_Q_BASE(q, fq));
val &= ~(MSS_RXQ_ASS_HOSTID_MASK << (MSS_RXQ_ASS_Q_BASE(q, fq)
+ MSS_RXQ_ASS_HOSTID_OFFS));
mvpp2_cm3_write(port->priv, MSS_RXQ_ASS_REG(q, fq), val);
}
/* Notify Firmware that Flow control config space ready for update */
val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG);
val |= FLOW_CONTROL_UPDATE_COMMAND_BIT;
val |= cm3_state;
mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val);
spin_unlock_irqrestore(&port->priv->mss_spinlock, flags);
}
/* Routine disable/enable flow control for BM pool condition */
static void mvpp2_bm_pool_update_fc(struct mvpp2_port *port,
struct mvpp2_bm_pool *pool,
bool en)
{
int val, cm3_state;
unsigned long flags;
spin_lock_irqsave(&port->priv->mss_spinlock, flags);
/* Remove Flow control enable bit to prevent race between FW and Kernel
* If Flow control were enabled, it would be re-enabled.
*/
val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG);
cm3_state = (val & FLOW_CONTROL_ENABLE_BIT);
val &= ~FLOW_CONTROL_ENABLE_BIT;
mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val);
/* Check if BM pool should be enabled/disable */
if (en) {
/* Set BM pool start and stop thresholds per port */
val = mvpp2_cm3_read(port->priv, MSS_BUF_POOL_REG(pool->id));
val |= MSS_BUF_POOL_PORT_OFFS(port->id);
val &= ~MSS_BUF_POOL_START_MASK;
val |= (MSS_THRESHOLD_START << MSS_BUF_POOL_START_OFFS);
val &= ~MSS_BUF_POOL_STOP_MASK;
val |= MSS_THRESHOLD_STOP;
mvpp2_cm3_write(port->priv, MSS_BUF_POOL_REG(pool->id), val);
} else {
/* Remove BM pool from the port */
val = mvpp2_cm3_read(port->priv, MSS_BUF_POOL_REG(pool->id));
val &= ~MSS_BUF_POOL_PORT_OFFS(port->id);
/* Zero BM pool start and stop thresholds to disable pool
* flow control if pool empty (not used by any port)
*/
if (!pool->buf_num) {
val &= ~MSS_BUF_POOL_START_MASK;
val &= ~MSS_BUF_POOL_STOP_MASK;
}
mvpp2_cm3_write(port->priv, MSS_BUF_POOL_REG(pool->id), val);
}
/* Notify Firmware that Flow control config space ready for update */
val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG);
val |= FLOW_CONTROL_UPDATE_COMMAND_BIT;
val |= cm3_state;
mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val);
spin_unlock_irqrestore(&port->priv->mss_spinlock, flags);
}
/* disable/enable flow control for BM pool on all ports */
static void mvpp2_bm_pool_update_priv_fc(struct mvpp2 *priv, bool en)
{
struct mvpp2_port *port;
int i;
for (i = 0; i < priv->port_count; i++) {
port = priv->port_list[i];
if (port->priv->percpu_pools) {
for (i = 0; i < port->nrxqs; i++)
mvpp2_bm_pool_update_fc(port, &port->priv->bm_pools[i],
port->tx_fc & en);
} else {
mvpp2_bm_pool_update_fc(port, port->pool_long, port->tx_fc & en);
mvpp2_bm_pool_update_fc(port, port->pool_short, port->tx_fc & en);
}
}
}
static int mvpp2_enable_global_fc(struct mvpp2 *priv)
{
int val, timeout = 0;
/* Enable global flow control. In this stage global
* flow control enabled, but still disabled per port.
*/
val = mvpp2_cm3_read(priv, MSS_FC_COM_REG);
val |= FLOW_CONTROL_ENABLE_BIT;
mvpp2_cm3_write(priv, MSS_FC_COM_REG, val);
/* Check if Firmware running and disable FC if not*/
val |= FLOW_CONTROL_UPDATE_COMMAND_BIT;
mvpp2_cm3_write(priv, MSS_FC_COM_REG, val);
while (timeout < MSS_FC_MAX_TIMEOUT) {
val = mvpp2_cm3_read(priv, MSS_FC_COM_REG);
if (!(val & FLOW_CONTROL_UPDATE_COMMAND_BIT))
return 0;
usleep_range(10, 20);
timeout++;
}
priv->global_tx_fc = false;
return -EOPNOTSUPP;
}
/* Release buffer to BM */
static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
dma_addr_t buf_dma_addr,
phys_addr_t buf_phys_addr)
{
unsigned int thread = mvpp2_cpu_to_thread(port->priv, get_cpu());
unsigned long flags = 0;
if (test_bit(thread, &port->priv->lock_map))
spin_lock_irqsave(&port->bm_lock[thread], flags);
if (port->priv->hw_version >= MVPP22) {
u32 val = 0;
if (sizeof(dma_addr_t) == 8)
val |= upper_32_bits(buf_dma_addr) &
MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
if (sizeof(phys_addr_t) == 8)
val |= (upper_32_bits(buf_phys_addr)
<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
mvpp2_thread_write_relaxed(port->priv, thread,
MVPP22_BM_ADDR_HIGH_RLS_REG, val);
}
/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
* returned in the "cookie" field of the RX
* descriptor. Instead of storing the virtual address, we
* store the physical address
*/
mvpp2_thread_write_relaxed(port->priv, thread,
MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
mvpp2_thread_write_relaxed(port->priv, thread,
MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
if (test_bit(thread, &port->priv->lock_map))
spin_unlock_irqrestore(&port->bm_lock[thread], flags);
put_cpu();
}
/* Allocate buffers for the pool */
static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool, int buf_num)
{
int i, buf_size, total_size;
dma_addr_t dma_addr;
phys_addr_t phys_addr;
struct page_pool *pp = NULL;
void *buf;
if (port->priv->percpu_pools &&
bm_pool->pkt_size > MVPP2_BM_LONG_PKT_SIZE) {
netdev_err(port->dev,
"attempted to use jumbo frames with per-cpu pools");
return 0;
}
buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
if (buf_num < 0 ||
(buf_num + bm_pool->buf_num > bm_pool->size)) {
netdev_err(port->dev,
"cannot allocate %d buffers for pool %d\n",
buf_num, bm_pool->id);
return 0;
}
if (port->priv->percpu_pools)
pp = port->priv->page_pool[bm_pool->id];
for (i = 0; i < buf_num; i++) {
buf = mvpp2_buf_alloc(port, bm_pool, pp, &dma_addr,
&phys_addr, GFP_KERNEL);
if (!buf)
break;
mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
phys_addr);
}
/* Update BM driver with number of buffers added to pool */
bm_pool->buf_num += i;
netdev_dbg(port->dev,
"pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
netdev_dbg(port->dev,
"pool %d: %d of %d buffers added\n",
bm_pool->id, i, buf_num);
return i;
}
/* Notify the driver that BM pool is being used as specific type and return the
* pool pointer on success
*/
static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port *port, unsigned pool, int pkt_size)
{
struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
int num;
if ((port->priv->percpu_pools && pool > mvpp2_get_nrxqs(port->priv) * 2) ||
(!port->priv->percpu_pools && pool >= MVPP2_BM_POOLS_NUM)) {
netdev_err(port->dev, "Invalid pool %d\n", pool);
return NULL;
}
/* Allocate buffers in case BM pool is used as long pool, but packet
* size doesn't match MTU or BM pool hasn't being used yet
*/
if (new_pool->pkt_size == 0) {
int pkts_num;
/* Set default buffer number or free all the buffers in case
* the pool is not empty
*/
pkts_num = new_pool->buf_num;
if (pkts_num == 0) {
if (port->priv->percpu_pools) {
if (pool < port->nrxqs)
pkts_num = mvpp2_pools[MVPP2_BM_SHORT].buf_num;
else
pkts_num = mvpp2_pools[MVPP2_BM_LONG].buf_num;
} else {
pkts_num = mvpp2_pools[pool].buf_num;
}
} else {
mvpp2_bm_bufs_free(port->dev->dev.parent,
port->priv, new_pool, pkts_num);
}
new_pool->pkt_size = pkt_size;
new_pool->frag_size =
SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
MVPP2_SKB_SHINFO_SIZE;
/* Allocate buffers for this pool */
num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
if (num != pkts_num) {
WARN(1, "pool %d: %d of %d allocated\n",
new_pool->id, num, pkts_num);
return NULL;
}
}
mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
return new_pool;
}
static struct mvpp2_bm_pool *
mvpp2_bm_pool_use_percpu(struct mvpp2_port *port, int type,
unsigned int pool, int pkt_size)
{
struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
int num;
if (pool > port->nrxqs * 2) {
netdev_err(port->dev, "Invalid pool %d\n", pool);
return NULL;
}
/* Allocate buffers in case BM pool is used as long pool, but packet
* size doesn't match MTU or BM pool hasn't being used yet
*/
if (new_pool->pkt_size == 0) {
int pkts_num;
/* Set default buffer number or free all the buffers in case
* the pool is not empty
*/
pkts_num = new_pool->buf_num;
if (pkts_num == 0)
pkts_num = mvpp2_pools[type].buf_num;
else
mvpp2_bm_bufs_free(port->dev->dev.parent,
port->priv, new_pool, pkts_num);
new_pool->pkt_size = pkt_size;
new_pool->frag_size =
SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
MVPP2_SKB_SHINFO_SIZE;
/* Allocate buffers for this pool */
num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
if (num != pkts_num) {
WARN(1, "pool %d: %d of %d allocated\n",
new_pool->id, num, pkts_num);
return NULL;
}
}
mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
return new_pool;
}
/* Initialize pools for swf, shared buffers variant */
static int mvpp2_swf_bm_pool_init_shared(struct mvpp2_port *port)
{
enum mvpp2_bm_pool_log_num long_log_pool, short_log_pool;
int rxq;
/* If port pkt_size is higher than 1518B:
* HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool
* else: HW Long pool - SW Long pool, HW Short pool - SW Short pool
*/
if (port->pkt_size > MVPP2_BM_LONG_PKT_SIZE) {
long_log_pool = MVPP2_BM_JUMBO;
short_log_pool = MVPP2_BM_LONG;
} else {
long_log_pool = MVPP2_BM_LONG;
short_log_pool = MVPP2_BM_SHORT;
}
if (!port->pool_long) {
port->pool_long =
mvpp2_bm_pool_use(port, long_log_pool,
mvpp2_pools[long_log_pool].pkt_size);
if (!port->pool_long)
return -ENOMEM;
port->pool_long->port_map |= BIT(port->id);
for (rxq = 0; rxq < port->nrxqs; rxq++)
mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
}
if (!port->pool_short) {
port->pool_short =
mvpp2_bm_pool_use(port, short_log_pool,
mvpp2_pools[short_log_pool].pkt_size);
if (!port->pool_short)
return -ENOMEM;
port->pool_short->port_map |= BIT(port->id);
for (rxq = 0; rxq < port->nrxqs; rxq++)
mvpp2_rxq_short_pool_set(port, rxq,
port->pool_short->id);
}
return 0;
}
/* Initialize pools for swf, percpu buffers variant */
static int mvpp2_swf_bm_pool_init_percpu(struct mvpp2_port *port)
{
struct mvpp2_bm_pool *bm_pool;
int i;
for (i = 0; i < port->nrxqs; i++) {
bm_pool = mvpp2_bm_pool_use_percpu(port, MVPP2_BM_SHORT, i,
mvpp2_pools[MVPP2_BM_SHORT].pkt_size);
if (!bm_pool)
return -ENOMEM;
bm_pool->port_map |= BIT(port->id);
mvpp2_rxq_short_pool_set(port, i, bm_pool->id);
}
for (i = 0; i < port->nrxqs; i++) {
bm_pool = mvpp2_bm_pool_use_percpu(port, MVPP2_BM_LONG, i + port->nrxqs,
mvpp2_pools[MVPP2_BM_LONG].pkt_size);
if (!bm_pool)
return -ENOMEM;
bm_pool->port_map |= BIT(port->id);
mvpp2_rxq_long_pool_set(port, i, bm_pool->id);
}
port->pool_long = NULL;
port->pool_short = NULL;
return 0;
}
static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
{
if (port->priv->percpu_pools)
return mvpp2_swf_bm_pool_init_percpu(port);
else
return mvpp2_swf_bm_pool_init_shared(port);
}
static void mvpp2_set_hw_csum(struct mvpp2_port *port,
enum mvpp2_bm_pool_log_num new_long_pool)
{
const netdev_features_t csums = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
/* Update L4 checksum when jumbo enable/disable on port.
* Only port 0 supports hardware checksum offload due to
* the Tx FIFO size limitation.
* Also, don't set NETIF_F_HW_CSUM because L3_offset in TX descriptor
* has 7 bits, so the maximum L3 offset is 128.
*/
if (new_long_pool == MVPP2_BM_JUMBO && port->id != 0) {
port->dev->features &= ~csums;
port->dev->hw_features &= ~csums;
} else {
port->dev->features |= csums;
port->dev->hw_features |= csums;
}
}
static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
{
struct mvpp2_port *port = netdev_priv(dev);
enum mvpp2_bm_pool_log_num new_long_pool;
int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
if (port->priv->percpu_pools)
goto out_set;
/* If port MTU is higher than 1518B:
* HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool
* else: HW Long pool - SW Long pool, HW Short pool - SW Short pool
*/
if (pkt_size > MVPP2_BM_LONG_PKT_SIZE)
new_long_pool = MVPP2_BM_JUMBO;
else
new_long_pool = MVPP2_BM_LONG;
if (new_long_pool != port->pool_long->id) {
if (port->tx_fc) {
if (pkt_size > MVPP2_BM_LONG_PKT_SIZE)
mvpp2_bm_pool_update_fc(port,
port->pool_short,
false);
else
mvpp2_bm_pool_update_fc(port, port->pool_long,
false);
}
/* Remove port from old short & long pool */
port->pool_long = mvpp2_bm_pool_use(port, port->pool_long->id,
port->pool_long->pkt_size);
port->pool_long->port_map &= ~BIT(port->id);
port->pool_long = NULL;
port->pool_short = mvpp2_bm_pool_use(port, port->pool_short->id,
port->pool_short->pkt_size);
port->pool_short->port_map &= ~BIT(port->id);
port->pool_short = NULL;
port->pkt_size = pkt_size;
/* Add port to new short & long pool */
mvpp2_swf_bm_pool_init(port);
mvpp2_set_hw_csum(port, new_long_pool);
if (port->tx_fc) {
if (pkt_size > MVPP2_BM_LONG_PKT_SIZE)
mvpp2_bm_pool_update_fc(port, port->pool_long,
true);
else
mvpp2_bm_pool_update_fc(port, port->pool_short,
true);
}
/* Update L4 checksum when jumbo enable/disable on port */
if (new_long_pool == MVPP2_BM_JUMBO && port->id != 0) {
dev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
dev->hw_features &= ~(NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM);
} else {
dev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
}
}
out_set:
dev->mtu = mtu;
dev->wanted_features = dev->features;
netdev_update_features(dev);
return 0;
}
static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
{
int i, sw_thread_mask = 0;
for (i = 0; i < port->nqvecs; i++)
sw_thread_mask |= port->qvecs[i].sw_thread_mask;
mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask));
}
static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
{
int i, sw_thread_mask = 0;
for (i = 0; i < port->nqvecs; i++)
sw_thread_mask |= port->qvecs[i].sw_thread_mask;
mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask));
}
static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector *qvec)
{
struct mvpp2_port *port = qvec->port;
mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
MVPP2_ISR_ENABLE_INTERRUPT(qvec->sw_thread_mask));
}
static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector *qvec)
{
struct mvpp2_port *port = qvec->port;
mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
MVPP2_ISR_DISABLE_INTERRUPT(qvec->sw_thread_mask));
}
/* Mask the current thread's Rx/Tx interrupts
* Called by on_each_cpu(), guaranteed to run with migration disabled,
* using smp_processor_id() is OK.
*/
static void mvpp2_interrupts_mask(void *arg)
{
struct mvpp2_port *port = arg;
int cpu = smp_processor_id();
u32 thread;
/* If the thread isn't used, don't do anything */
if (cpu > port->priv->nthreads)
return;
thread = mvpp2_cpu_to_thread(port->priv, cpu);
mvpp2_thread_write(port->priv, thread,
MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
mvpp2_thread_write(port->priv, thread,
MVPP2_ISR_RX_ERR_CAUSE_REG(port->id), 0);
}
/* Unmask the current thread's Rx/Tx interrupts.
* Called by on_each_cpu(), guaranteed to run with migration disabled,
* using smp_processor_id() is OK.
*/
static void mvpp2_interrupts_unmask(void *arg)
{
struct mvpp2_port *port = arg;
int cpu = smp_processor_id();
u32 val, thread;
/* If the thread isn't used, don't do anything */
if (cpu >= port->priv->nthreads)
return;
thread = mvpp2_cpu_to_thread(port->priv, cpu);
val = MVPP2_CAUSE_MISC_SUM_MASK |
MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK(port->priv->hw_version);
if (port->has_tx_irqs)
val |= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
mvpp2_thread_write(port->priv, thread,
MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
mvpp2_thread_write(port->priv, thread,
MVPP2_ISR_RX_ERR_CAUSE_REG(port->id),
MVPP2_ISR_RX_ERR_CAUSE_NONOCC_MASK);
}
static void
mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port *port, bool mask)
{
u32 val;
int i;
if (port->priv->hw_version == MVPP21)
return;
if (mask)
val = 0;
else
val = MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK(MVPP22);
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *v = port->qvecs + i;
if (v->type != MVPP2_QUEUE_VECTOR_SHARED)
continue;
mvpp2_thread_write(port->priv, v->sw_thread_id,
MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
mvpp2_thread_write(port->priv, v->sw_thread_id,
MVPP2_ISR_RX_ERR_CAUSE_REG(port->id),
MVPP2_ISR_RX_ERR_CAUSE_NONOCC_MASK);
}
}
/* Only GOP port 0 has an XLG MAC */
static bool mvpp2_port_supports_xlg(struct mvpp2_port *port)
{
return port->gop_id == 0;
}
static bool mvpp2_port_supports_rgmii(struct mvpp2_port *port)
{
return !(port->priv->hw_version >= MVPP22 && port->gop_id == 0);
}
/* Port configuration routines */
static bool mvpp2_is_xlg(phy_interface_t interface)
{
return interface == PHY_INTERFACE_MODE_10GBASER ||
interface == PHY_INTERFACE_MODE_5GBASER ||
interface == PHY_INTERFACE_MODE_XAUI;
}
static void mvpp2_modify(void __iomem *ptr, u32 mask, u32 set)
{
u32 old, val;
old = val = readl(ptr);
val &= ~mask;
val |= set;
if (old != val)
writel(val, ptr);
}
static void mvpp22_gop_init_rgmii(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
u32 val;
regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT;
regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
if (port->gop_id == 2)
val |= GENCONF_CTRL0_PORT2_RGMII;
else if (port->gop_id == 3)
val |= GENCONF_CTRL0_PORT3_RGMII_MII;
regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
}
static void mvpp22_gop_init_sgmii(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
u32 val;
regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT |
GENCONF_PORT_CTRL0_RX_DATA_SAMPLE;
regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
if (port->gop_id > 1) {
regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
if (port->gop_id == 2)
val &= ~GENCONF_CTRL0_PORT2_RGMII;
else if (port->gop_id == 3)
val &= ~GENCONF_CTRL0_PORT3_RGMII_MII;
regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
}
}
static void mvpp22_gop_init_10gkr(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
void __iomem *mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
void __iomem *xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
u32 val;
val = readl(xpcs + MVPP22_XPCS_CFG0);
val &= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) |
MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3));
val |= MVPP22_XPCS_CFG0_ACTIVE_LANE(2);
writel(val, xpcs + MVPP22_XPCS_CFG0);
val = readl(mpcs + MVPP22_MPCS_CTRL);
val &= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN;
writel(val, mpcs + MVPP22_MPCS_CTRL);
val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
val &= ~MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7);
val |= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1);
writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
}
static void mvpp22_gop_fca_enable_periodic(struct mvpp2_port *port, bool en)
{
struct mvpp2 *priv = port->priv;
void __iomem *fca = priv->iface_base + MVPP22_FCA_BASE(port->gop_id);
u32 val;
val = readl(fca + MVPP22_FCA_CONTROL_REG);
val &= ~MVPP22_FCA_ENABLE_PERIODIC;
if (en)
val |= MVPP22_FCA_ENABLE_PERIODIC;
writel(val, fca + MVPP22_FCA_CONTROL_REG);
}
static void mvpp22_gop_fca_set_timer(struct mvpp2_port *port, u32 timer)
{
struct mvpp2 *priv = port->priv;
void __iomem *fca = priv->iface_base + MVPP22_FCA_BASE(port->gop_id);
u32 lsb, msb;
lsb = timer & MVPP22_FCA_REG_MASK;
msb = timer >> MVPP22_FCA_REG_SIZE;
writel(lsb, fca + MVPP22_PERIODIC_COUNTER_LSB_REG);
writel(msb, fca + MVPP22_PERIODIC_COUNTER_MSB_REG);
}
/* Set Flow Control timer x100 faster than pause quanta to ensure that link
* partner won't send traffic if port is in XOFF mode.
*/
static void mvpp22_gop_fca_set_periodic_timer(struct mvpp2_port *port)
{
u32 timer;
timer = (port->priv->tclk / (USEC_PER_SEC * FC_CLK_DIVIDER))
* FC_QUANTA;
mvpp22_gop_fca_enable_periodic(port, false);
mvpp22_gop_fca_set_timer(port, timer);
mvpp22_gop_fca_enable_periodic(port, true);
}
static int mvpp22_gop_init(struct mvpp2_port *port, phy_interface_t interface)
{
struct mvpp2 *priv = port->priv;
u32 val;
if (!priv->sysctrl_base)
return 0;
switch (interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
if (!mvpp2_port_supports_rgmii(port))
goto invalid_conf;
mvpp22_gop_init_rgmii(port);
break;
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
mvpp22_gop_init_sgmii(port);
break;
case PHY_INTERFACE_MODE_5GBASER:
case PHY_INTERFACE_MODE_10GBASER:
if (!mvpp2_port_supports_xlg(port))
goto invalid_conf;
mvpp22_gop_init_10gkr(port);
break;
default:
goto unsupported_conf;
}
regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL1, &val);
val |= GENCONF_PORT_CTRL1_RESET(port->gop_id) |
GENCONF_PORT_CTRL1_EN(port->gop_id);
regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL1, val);
regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
val |= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR;
regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
regmap_read(priv->sysctrl_base, GENCONF_SOFT_RESET1, &val);
val |= GENCONF_SOFT_RESET1_GOP;
regmap_write(priv->sysctrl_base, GENCONF_SOFT_RESET1, val);
mvpp22_gop_fca_set_periodic_timer(port);
unsupported_conf:
return 0;
invalid_conf:
netdev_err(port->dev, "Invalid port configuration\n");
return -EINVAL;
}
static void mvpp22_gop_unmask_irq(struct mvpp2_port *port)
{
u32 val;
if (phy_interface_mode_is_rgmii(port->phy_interface) ||
phy_interface_mode_is_8023z(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
/* Enable the GMAC link status irq for this port */
val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
val |= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
}
if (mvpp2_port_supports_xlg(port)) {
/* Enable the XLG/GIG irqs for this port */
val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
if (mvpp2_is_xlg(port->phy_interface))
val |= MVPP22_XLG_EXT_INT_MASK_XLG;
else
val |= MVPP22_XLG_EXT_INT_MASK_GIG;
writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
}
}
static void mvpp22_gop_mask_irq(struct mvpp2_port *port)
{
u32 val;
if (mvpp2_port_supports_xlg(port)) {
val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
val &= ~(MVPP22_XLG_EXT_INT_MASK_XLG |
MVPP22_XLG_EXT_INT_MASK_GIG);
writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
}
if (phy_interface_mode_is_rgmii(port->phy_interface) ||
phy_interface_mode_is_8023z(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
val &= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
}
}
static void mvpp22_gop_setup_irq(struct mvpp2_port *port)
{
u32 val;
mvpp2_modify(port->base + MVPP22_GMAC_INT_SUM_MASK,
MVPP22_GMAC_INT_SUM_MASK_PTP,
MVPP22_GMAC_INT_SUM_MASK_PTP);
if (port->phylink ||
phy_interface_mode_is_rgmii(port->phy_interface) ||
phy_interface_mode_is_8023z(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val = readl(port->base + MVPP22_GMAC_INT_MASK);
val |= MVPP22_GMAC_INT_MASK_LINK_STAT;
writel(val, port->base + MVPP22_GMAC_INT_MASK);
}
if (mvpp2_port_supports_xlg(port)) {
val = readl(port->base + MVPP22_XLG_INT_MASK);
val |= MVPP22_XLG_INT_MASK_LINK;
writel(val, port->base + MVPP22_XLG_INT_MASK);
mvpp2_modify(port->base + MVPP22_XLG_EXT_INT_MASK,
MVPP22_XLG_EXT_INT_MASK_PTP,
MVPP22_XLG_EXT_INT_MASK_PTP);
}
mvpp22_gop_unmask_irq(port);
}
/* Sets the PHY mode of the COMPHY (which configures the serdes lanes).
*
* The PHY mode used by the PPv2 driver comes from the network subsystem, while
* the one given to the COMPHY comes from the generic PHY subsystem. Hence they
* differ.
*
* The COMPHY configures the serdes lanes regardless of the actual use of the
* lanes by the physical layer. This is why configurations like
* "PPv2 (2500BaseX) - COMPHY (2500SGMII)" are valid.
*/
static int mvpp22_comphy_init(struct mvpp2_port *port,
phy_interface_t interface)
{
int ret;
if (!port->comphy)
return 0;
ret = phy_set_mode_ext(port->comphy, PHY_MODE_ETHERNET, interface);
if (ret)
return ret;
return phy_power_on(port->comphy);
}
static void mvpp2_port_enable(struct mvpp2_port *port)
{
u32 val;
if (mvpp2_port_supports_xlg(port) &&
mvpp2_is_xlg(port->phy_interface)) {
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val |= MVPP22_XLG_CTRL0_PORT_EN;
val &= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
} else {
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val |= MVPP2_GMAC_PORT_EN_MASK;
val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
}
static void mvpp2_port_disable(struct mvpp2_port *port)
{
u32 val;
if (mvpp2_port_supports_xlg(port) &&
mvpp2_is_xlg(port->phy_interface)) {
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val &= ~MVPP22_XLG_CTRL0_PORT_EN;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
}
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~(MVPP2_GMAC_PORT_EN_MASK);
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}
/* Configure loopback port */
static void mvpp2_port_loopback_set(struct mvpp2_port *port,
const struct phylink_link_state *state)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
if (state->speed == 1000)
val |= MVPP2_GMAC_GMII_LB_EN_MASK;
else
val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
if (phy_interface_mode_is_8023z(state->interface) ||
state->interface == PHY_INTERFACE_MODE_SGMII)
val |= MVPP2_GMAC_PCS_LB_EN_MASK;
else
val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}
enum {
ETHTOOL_XDP_REDIRECT,
ETHTOOL_XDP_PASS,
ETHTOOL_XDP_DROP,
ETHTOOL_XDP_TX,
ETHTOOL_XDP_TX_ERR,
ETHTOOL_XDP_XMIT,
ETHTOOL_XDP_XMIT_ERR,
};
struct mvpp2_ethtool_counter {
unsigned int offset;
const char string[ETH_GSTRING_LEN];
bool reg_is_64b;
};
static u64 mvpp2_read_count(struct mvpp2_port *port,
const struct mvpp2_ethtool_counter *counter)
{
u64 val;
val = readl(port->stats_base + counter->offset);
if (counter->reg_is_64b)
val += (u64)readl(port->stats_base + counter->offset + 4) << 32;
return val;
}
/* Some counters are accessed indirectly by first writing an index to
* MVPP2_CTRS_IDX. The index can represent various resources depending on the
* register we access, it can be a hit counter for some classification tables,
* a counter specific to a rxq, a txq or a buffer pool.
*/
static u32 mvpp2_read_index(struct mvpp2 *priv, u32 index, u32 reg)
{
mvpp2_write(priv, MVPP2_CTRS_IDX, index);
return mvpp2_read(priv, reg);
}
/* Due to the fact that software statistics and hardware statistics are, by
* design, incremented at different moments in the chain of packet processing,
* it is very likely that incoming packets could have been dropped after being
* counted by hardware but before reaching software statistics (most probably
* multicast packets), and in the opposite way, during transmission, FCS bytes
* are added in between as well as TSO skb will be split and header bytes added.
* Hence, statistics gathered from userspace with ifconfig (software) and
* ethtool (hardware) cannot be compared.
*/
static const struct mvpp2_ethtool_counter mvpp2_ethtool_mib_regs[] = {
{ MVPP2_MIB_GOOD_OCTETS_RCVD, "good_octets_received", true },
{ MVPP2_MIB_BAD_OCTETS_RCVD, "bad_octets_received" },
{ MVPP2_MIB_CRC_ERRORS_SENT, "crc_errors_sent" },
{ MVPP2_MIB_UNICAST_FRAMES_RCVD, "unicast_frames_received" },
{ MVPP2_MIB_BROADCAST_FRAMES_RCVD, "broadcast_frames_received" },
{ MVPP2_MIB_MULTICAST_FRAMES_RCVD, "multicast_frames_received" },
{ MVPP2_MIB_FRAMES_64_OCTETS, "frames_64_octets" },
{ MVPP2_MIB_FRAMES_65_TO_127_OCTETS, "frames_65_to_127_octet" },
{ MVPP2_MIB_FRAMES_128_TO_255_OCTETS, "frames_128_to_255_octet" },
{ MVPP2_MIB_FRAMES_256_TO_511_OCTETS, "frames_256_to_511_octet" },
{ MVPP2_MIB_FRAMES_512_TO_1023_OCTETS, "frames_512_to_1023_octet" },
{ MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS, "frames_1024_to_max_octet" },
{ MVPP2_MIB_GOOD_OCTETS_SENT, "good_octets_sent", true },
{ MVPP2_MIB_UNICAST_FRAMES_SENT, "unicast_frames_sent" },
{ MVPP2_MIB_MULTICAST_FRAMES_SENT, "multicast_frames_sent" },
{ MVPP2_MIB_BROADCAST_FRAMES_SENT, "broadcast_frames_sent" },
{ MVPP2_MIB_FC_SENT, "fc_sent" },
{ MVPP2_MIB_FC_RCVD, "fc_received" },
{ MVPP2_MIB_RX_FIFO_OVERRUN, "rx_fifo_overrun" },
{ MVPP2_MIB_UNDERSIZE_RCVD, "undersize_received" },
{ MVPP2_MIB_FRAGMENTS_RCVD, "fragments_received" },
{ MVPP2_MIB_OVERSIZE_RCVD, "oversize_received" },
{ MVPP2_MIB_JABBER_RCVD, "jabber_received" },
{ MVPP2_MIB_MAC_RCV_ERROR, "mac_receive_error" },
{ MVPP2_MIB_BAD_CRC_EVENT, "bad_crc_event" },
{ MVPP2_MIB_COLLISION, "collision" },
{ MVPP2_MIB_LATE_COLLISION, "late_collision" },
};
static const struct mvpp2_ethtool_counter mvpp2_ethtool_port_regs[] = {
{ MVPP2_OVERRUN_ETH_DROP, "rx_fifo_or_parser_overrun_drops" },
{ MVPP2_CLS_ETH_DROP, "rx_classifier_drops" },
};
static const struct mvpp2_ethtool_counter mvpp2_ethtool_txq_regs[] = {
{ MVPP2_TX_DESC_ENQ_CTR, "txq_%d_desc_enqueue" },
{ MVPP2_TX_DESC_ENQ_TO_DDR_CTR, "txq_%d_desc_enqueue_to_ddr" },
{ MVPP2_TX_BUFF_ENQ_TO_DDR_CTR, "txq_%d_buff_euqueue_to_ddr" },
{ MVPP2_TX_DESC_ENQ_HW_FWD_CTR, "txq_%d_desc_hardware_forwarded" },
{ MVPP2_TX_PKTS_DEQ_CTR, "txq_%d_packets_dequeued" },
{ MVPP2_TX_PKTS_FULL_QUEUE_DROP_CTR, "txq_%d_queue_full_drops" },
{ MVPP2_TX_PKTS_EARLY_DROP_CTR, "txq_%d_packets_early_drops" },
{ MVPP2_TX_PKTS_BM_DROP_CTR, "txq_%d_packets_bm_drops" },
{ MVPP2_TX_PKTS_BM_MC_DROP_CTR, "txq_%d_packets_rep_bm_drops" },
};
static const struct mvpp2_ethtool_counter mvpp2_ethtool_rxq_regs[] = {
{ MVPP2_RX_DESC_ENQ_CTR, "rxq_%d_desc_enqueue" },
{ MVPP2_RX_PKTS_FULL_QUEUE_DROP_CTR, "rxq_%d_queue_full_drops" },
{ MVPP2_RX_PKTS_EARLY_DROP_CTR, "rxq_%d_packets_early_drops" },
{ MVPP2_RX_PKTS_BM_DROP_CTR, "rxq_%d_packets_bm_drops" },
};
static const struct mvpp2_ethtool_counter mvpp2_ethtool_xdp[] = {
{ ETHTOOL_XDP_REDIRECT, "rx_xdp_redirect", },
{ ETHTOOL_XDP_PASS, "rx_xdp_pass", },
{ ETHTOOL_XDP_DROP, "rx_xdp_drop", },
{ ETHTOOL_XDP_TX, "rx_xdp_tx", },
{ ETHTOOL_XDP_TX_ERR, "rx_xdp_tx_errors", },
{ ETHTOOL_XDP_XMIT, "tx_xdp_xmit", },
{ ETHTOOL_XDP_XMIT_ERR, "tx_xdp_xmit_errors", },
};
#define MVPP2_N_ETHTOOL_STATS(ntxqs, nrxqs) (ARRAY_SIZE(mvpp2_ethtool_mib_regs) + \
ARRAY_SIZE(mvpp2_ethtool_port_regs) + \
(ARRAY_SIZE(mvpp2_ethtool_txq_regs) * (ntxqs)) + \
(ARRAY_SIZE(mvpp2_ethtool_rxq_regs) * (nrxqs)) + \
ARRAY_SIZE(mvpp2_ethtool_xdp))
static void mvpp2_ethtool_get_strings(struct net_device *netdev, u32 sset,
u8 *data)
{
struct mvpp2_port *port = netdev_priv(netdev);
int i, q;
if (sset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_mib_regs); i++) {
strscpy(data, mvpp2_ethtool_mib_regs[i].string,
ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_port_regs); i++) {
strscpy(data, mvpp2_ethtool_port_regs[i].string,
ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
for (q = 0; q < port->ntxqs; q++) {
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_txq_regs); i++) {
snprintf(data, ETH_GSTRING_LEN,
mvpp2_ethtool_txq_regs[i].string, q);
data += ETH_GSTRING_LEN;
}
}
for (q = 0; q < port->nrxqs; q++) {
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_rxq_regs); i++) {
snprintf(data, ETH_GSTRING_LEN,
mvpp2_ethtool_rxq_regs[i].string,
q);
data += ETH_GSTRING_LEN;
}
}
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_xdp); i++) {
strscpy(data, mvpp2_ethtool_xdp[i].string,
ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
}
static void
mvpp2_get_xdp_stats(struct mvpp2_port *port, struct mvpp2_pcpu_stats *xdp_stats)
{
unsigned int start;
unsigned int cpu;
/* Gather XDP Statistics */
for_each_possible_cpu(cpu) {
struct mvpp2_pcpu_stats *cpu_stats;
u64 xdp_redirect;
u64 xdp_pass;
u64 xdp_drop;
u64 xdp_xmit;
u64 xdp_xmit_err;
u64 xdp_tx;
u64 xdp_tx_err;
cpu_stats = per_cpu_ptr(port->stats, cpu);
do {
start = u64_stats_fetch_begin(&cpu_stats->syncp);
xdp_redirect = cpu_stats->xdp_redirect;
xdp_pass = cpu_stats->xdp_pass;
xdp_drop = cpu_stats->xdp_drop;
xdp_xmit = cpu_stats->xdp_xmit;
xdp_xmit_err = cpu_stats->xdp_xmit_err;
xdp_tx = cpu_stats->xdp_tx;
xdp_tx_err = cpu_stats->xdp_tx_err;
} while (u64_stats_fetch_retry(&cpu_stats->syncp, start));
xdp_stats->xdp_redirect += xdp_redirect;
xdp_stats->xdp_pass += xdp_pass;
xdp_stats->xdp_drop += xdp_drop;
xdp_stats->xdp_xmit += xdp_xmit;
xdp_stats->xdp_xmit_err += xdp_xmit_err;
xdp_stats->xdp_tx += xdp_tx;
xdp_stats->xdp_tx_err += xdp_tx_err;
}
}
static void mvpp2_read_stats(struct mvpp2_port *port)
{
struct mvpp2_pcpu_stats xdp_stats = {};
const struct mvpp2_ethtool_counter *s;
u64 *pstats;
int i, q;
pstats = port->ethtool_stats;
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_mib_regs); i++)
*pstats++ += mvpp2_read_count(port, &mvpp2_ethtool_mib_regs[i]);
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_port_regs); i++)
*pstats++ += mvpp2_read(port->priv,
mvpp2_ethtool_port_regs[i].offset +
4 * port->id);
for (q = 0; q < port->ntxqs; q++)
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_txq_regs); i++)
*pstats++ += mvpp2_read_index(port->priv,
MVPP22_CTRS_TX_CTR(port->id, q),
mvpp2_ethtool_txq_regs[i].offset);
/* Rxqs are numbered from 0 from the user standpoint, but not from the
* driver's. We need to add the port->first_rxq offset.
*/
for (q = 0; q < port->nrxqs; q++)
for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_rxq_regs); i++)
*pstats++ += mvpp2_read_index(port->priv,
port->first_rxq + q,
mvpp2_ethtool_rxq_regs[i].offset);
/* Gather XDP Statistics */
mvpp2_get_xdp_stats(port, &xdp_stats);
for (i = 0, s = mvpp2_ethtool_xdp;
s < mvpp2_ethtool_xdp + ARRAY_SIZE(mvpp2_ethtool_xdp);
s++, i++) {
switch (s->offset) {
case ETHTOOL_XDP_REDIRECT:
*pstats++ = xdp_stats.xdp_redirect;
break;
case ETHTOOL_XDP_PASS:
*pstats++ = xdp_stats.xdp_pass;
break;
case ETHTOOL_XDP_DROP:
*pstats++ = xdp_stats.xdp_drop;
break;
case ETHTOOL_XDP_TX:
*pstats++ = xdp_stats.xdp_tx;
break;
case ETHTOOL_XDP_TX_ERR:
*pstats++ = xdp_stats.xdp_tx_err;
break;
case ETHTOOL_XDP_XMIT:
*pstats++ = xdp_stats.xdp_xmit;
break;
case ETHTOOL_XDP_XMIT_ERR:
*pstats++ = xdp_stats.xdp_xmit_err;
break;
}
}
}
static void mvpp2_gather_hw_statistics(struct work_struct *work)
{
struct delayed_work *del_work = to_delayed_work(work);
struct mvpp2_port *port = container_of(del_work, struct mvpp2_port,
stats_work);
mutex_lock(&port->gather_stats_lock);
mvpp2_read_stats(port);
/* No need to read again the counters right after this function if it
* was called asynchronously by the user (ie. use of ethtool).
*/
cancel_delayed_work(&port->stats_work);
queue_delayed_work(port->priv->stats_queue, &port->stats_work,
MVPP2_MIB_COUNTERS_STATS_DELAY);
mutex_unlock(&port->gather_stats_lock);
}
static void mvpp2_ethtool_get_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct mvpp2_port *port = netdev_priv(dev);
/* Update statistics for the given port, then take the lock to avoid
* concurrent accesses on the ethtool_stats structure during its copy.
*/
mvpp2_gather_hw_statistics(&port->stats_work.work);
mutex_lock(&port->gather_stats_lock);
memcpy(data, port->ethtool_stats,
sizeof(u64) * MVPP2_N_ETHTOOL_STATS(port->ntxqs, port->nrxqs));
mutex_unlock(&port->gather_stats_lock);
}
static int mvpp2_ethtool_get_sset_count(struct net_device *dev, int sset)
{
struct mvpp2_port *port = netdev_priv(dev);
if (sset == ETH_SS_STATS)
return MVPP2_N_ETHTOOL_STATS(port->ntxqs, port->nrxqs);
return -EOPNOTSUPP;
}
static void mvpp2_mac_reset_assert(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) |
MVPP2_GMAC_PORT_RESET_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
if (port->priv->hw_version >= MVPP22 && port->gop_id == 0) {
val = readl(port->base + MVPP22_XLG_CTRL0_REG) &
~MVPP22_XLG_CTRL0_MAC_RESET_DIS;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
}
}
static void mvpp22_pcs_reset_assert(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
void __iomem *mpcs, *xpcs;
u32 val;
if (port->priv->hw_version == MVPP21 || port->gop_id != 0)
return;
mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
val &= ~(MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX);
val |= MVPP22_MPCS_CLK_RESET_DIV_SET;
writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
val = readl(xpcs + MVPP22_XPCS_CFG0);
writel(val & ~MVPP22_XPCS_CFG0_RESET_DIS, xpcs + MVPP22_XPCS_CFG0);
}
static void mvpp22_pcs_reset_deassert(struct mvpp2_port *port,
phy_interface_t interface)
{
struct mvpp2 *priv = port->priv;
void __iomem *mpcs, *xpcs;
u32 val;
if (port->priv->hw_version == MVPP21 || port->gop_id != 0)
return;
mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
switch (interface) {
case PHY_INTERFACE_MODE_5GBASER:
case PHY_INTERFACE_MODE_10GBASER:
val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
val |= MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX |
MAC_CLK_RESET_SD_TX;
val &= ~MVPP22_MPCS_CLK_RESET_DIV_SET;
writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
break;
case PHY_INTERFACE_MODE_XAUI:
case PHY_INTERFACE_MODE_RXAUI:
val = readl(xpcs + MVPP22_XPCS_CFG0);
writel(val | MVPP22_XPCS_CFG0_RESET_DIS, xpcs + MVPP22_XPCS_CFG0);
break;
default:
break;
}
}
/* Change maximum receive size of the port */
static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
MVPP2_GMAC_MAX_RX_SIZE_OFFS);
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
/* Change maximum receive size of the port */
static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP22_XLG_CTRL1_REG);
val &= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK;
val |= ((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS;
writel(val, port->base + MVPP22_XLG_CTRL1_REG);
}
/* Set defaults to the MVPP2 port */
static void mvpp2_defaults_set(struct mvpp2_port *port)
{
int tx_port_num, val, queue, lrxq;
if (port->priv->hw_version == MVPP21) {
/* Update TX FIFO MIN Threshold */
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
/* Min. TX threshold must be less than minimal packet length */
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
}
/* Disable Legacy WRR, Disable EJP, Release from reset */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
tx_port_num);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
/* Set TXQ scheduling to Round-Robin */
mvpp2_write(port->priv, MVPP2_TXP_SCHED_FIXED_PRIO_REG, 0);
/* Close bandwidth for all queues */
for (queue = 0; queue < MVPP2_MAX_TXQ; queue++)
mvpp2_write(port->priv,
MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(queue), 0);
/* Set refill period to 1 usec, refill tokens
* and bucket size to maximum
*/
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
port->priv->tclk / USEC_PER_SEC);
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
val = MVPP2_TXP_TOKEN_SIZE_MAX;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
/* Set MaximumLowLatencyPacketSize value to 256 */
mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
/* Enable Rx cache snoop */
for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val |= MVPP2_SNOOP_PKT_SIZE_MASK |
MVPP2_SNOOP_BUF_HDR_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
/* At default, mask all interrupts to all present cpus */
mvpp2_interrupts_disable(port);
}
/* Enable/disable receiving packets */
static void mvpp2_ingress_enable(struct mvpp2_port *port)
{
u32 val;
int lrxq, queue;
for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val &= ~MVPP2_RXQ_DISABLE_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
static void mvpp2_ingress_disable(struct mvpp2_port *port)
{
u32 val;
int lrxq, queue;
for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val |= MVPP2_RXQ_DISABLE_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
/* Enable transmit via physical egress queue
* - HW starts take descriptors from DRAM
*/
static void mvpp2_egress_enable(struct mvpp2_port *port)
{
u32 qmap;
int queue;
int tx_port_num = mvpp2_egress_port(port);
/* Enable all initialized TXs. */
qmap = 0;
for (queue = 0; queue < port->ntxqs; queue++) {
struct mvpp2_tx_queue *txq = port->txqs[queue];
if (txq->descs)
qmap |= (1 << queue);
}
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
}
/* Disable transmit via physical egress queue
* - HW doesn't take descriptors from DRAM
*/
static void mvpp2_egress_disable(struct mvpp2_port *port)
{
u32 reg_data;
int delay;
int tx_port_num = mvpp2_egress_port(port);
/* Issue stop command for active channels only */
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
MVPP2_TXP_SCHED_ENQ_MASK;
if (reg_data != 0)
mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
(reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
/* Wait for all Tx activity to terminate. */
delay = 0;
do {
if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
netdev_warn(port->dev,
"Tx stop timed out, status=0x%08x\n",
reg_data);
break;
}
mdelay(1);
delay++;
/* Check port TX Command register that all
* Tx queues are stopped
*/
reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
}
/* Rx descriptors helper methods */
/* Get number of Rx descriptors occupied by received packets */
static inline int
mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
{
u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
return val & MVPP2_RXQ_OCCUPIED_MASK;
}
/* Update Rx queue status with the number of occupied and available
* Rx descriptor slots.
*/
static inline void
mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
int used_count, int free_count)
{
/* Decrement the number of used descriptors and increment count
* increment the number of free descriptors.
*/
u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
}
/* Get pointer to next RX descriptor to be processed by SW */
static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
{
int rx_desc = rxq->next_desc_to_proc;
rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
prefetch(rxq->descs + rxq->next_desc_to_proc);
return rxq->descs + rx_desc;
}
/* Set rx queue offset */
static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
int prxq, int offset)
{
u32 val;
/* Convert offset from bytes to units of 32 bytes */
offset = offset >> 5;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
/* Offset is in */
val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
MVPP2_RXQ_PACKET_OFFSET_MASK);
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
/* Tx descriptors helper methods */
/* Get pointer to next Tx descriptor to be processed (send) by HW */
static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
{
int tx_desc = txq->next_desc_to_proc;
txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
return txq->descs + tx_desc;
}
/* Update HW with number of aggregated Tx descriptors to be sent
*
* Called only from mvpp2_tx(), so migration is disabled, using
* smp_processor_id() is OK.
*/
static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
{
/* aggregated access - relevant TXQ number is written in TX desc */
mvpp2_thread_write(port->priv,
mvpp2_cpu_to_thread(port->priv, smp_processor_id()),
MVPP2_AGGR_TXQ_UPDATE_REG, pending);
}
/* Check if there are enough free descriptors in aggregated txq.
* If not, update the number of occupied descriptors and repeat the check.
*
* Called only from mvpp2_tx(), so migration is disabled, using
* smp_processor_id() is OK.
*/
static int mvpp2_aggr_desc_num_check(struct mvpp2_port *port,
struct mvpp2_tx_queue *aggr_txq, int num)
{
if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE) {
/* Update number of occupied aggregated Tx descriptors */
unsigned int thread =
mvpp2_cpu_to_thread(port->priv, smp_processor_id());
u32 val = mvpp2_read_relaxed(port->priv,
MVPP2_AGGR_TXQ_STATUS_REG(thread));
aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE)
return -ENOMEM;
}
return 0;
}
/* Reserved Tx descriptors allocation request
*
* Called only from mvpp2_txq_reserved_desc_num_proc(), itself called
* only by mvpp2_tx(), so migration is disabled, using
* smp_processor_id() is OK.
*/
static int mvpp2_txq_alloc_reserved_desc(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq, int num)
{
unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id());
struct mvpp2 *priv = port->priv;
u32 val;
val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
mvpp2_thread_write_relaxed(priv, thread, MVPP2_TXQ_RSVD_REQ_REG, val);
val = mvpp2_thread_read_relaxed(priv, thread, MVPP2_TXQ_RSVD_RSLT_REG);
return val & MVPP2_TXQ_RSVD_RSLT_MASK;
}
/* Check if there are enough reserved descriptors for transmission.
* If not, request chunk of reserved descriptors and check again.
*/
static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq,
struct mvpp2_txq_pcpu *txq_pcpu,
int num)
{
int req, desc_count;
unsigned int thread;
if (txq_pcpu->reserved_num >= num)
return 0;
/* Not enough descriptors reserved! Update the reserved descriptor
* count and check again.
*/
desc_count = 0;
/* Compute total of used descriptors */
for (thread = 0; thread < port->priv->nthreads; thread++) {
struct mvpp2_txq_pcpu *txq_pcpu_aux;
txq_pcpu_aux = per_cpu_ptr(txq->pcpu, thread);
desc_count += txq_pcpu_aux->count;
desc_count += txq_pcpu_aux->reserved_num;
}
req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
desc_count += req;
if (desc_count >
(txq->size - (MVPP2_MAX_THREADS * MVPP2_CPU_DESC_CHUNK)))
return -ENOMEM;
txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(port, txq, req);
/* OK, the descriptor could have been updated: check again. */
if (txq_pcpu->reserved_num < num)
return -ENOMEM;
return 0;
}
/* Release the last allocated Tx descriptor. Useful to handle DMA
* mapping failures in the Tx path.
*/
static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
{
if (txq->next_desc_to_proc == 0)
txq->next_desc_to_proc = txq->last_desc - 1;
else
txq->next_desc_to_proc--;
}
/* Set Tx descriptors fields relevant for CSUM calculation */
static u32 mvpp2_txq_desc_csum(int l3_offs, __be16 l3_proto,
int ip_hdr_len, int l4_proto)
{
u32 command;
/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
* G_L4_chk, L4_type required only for checksum calculation
*/
command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
command |= MVPP2_TXD_IP_CSUM_DISABLE;
if (l3_proto == htons(ETH_P_IP)) {
command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
} else {
command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
}
if (l4_proto == IPPROTO_TCP) {
command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
} else if (l4_proto == IPPROTO_UDP) {
command |= MVPP2_TXD_L4_UDP; /* enable UDP */
command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
} else {
command |= MVPP2_TXD_L4_CSUM_NOT;
}
return command;
}
/* Get number of sent descriptors and decrement counter.
* The number of sent descriptors is returned.
* Per-thread access
*
* Called only from mvpp2_txq_done(), called from mvpp2_tx()
* (migration disabled) and from the TX completion tasklet (migration
* disabled) so using smp_processor_id() is OK.
*/
static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
/* Reading status reg resets transmitted descriptor counter */
val = mvpp2_thread_read_relaxed(port->priv,
mvpp2_cpu_to_thread(port->priv, smp_processor_id()),
MVPP2_TXQ_SENT_REG(txq->id));
return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
MVPP2_TRANSMITTED_COUNT_OFFSET;
}
/* Called through on_each_cpu(), so runs on all CPUs, with migration
* disabled, therefore using smp_processor_id() is OK.
*/
static void mvpp2_txq_sent_counter_clear(void *arg)
{
struct mvpp2_port *port = arg;
int queue;
/* If the thread isn't used, don't do anything */
if (smp_processor_id() >= port->priv->nthreads)
return;
for (queue = 0; queue < port->ntxqs; queue++) {
int id = port->txqs[queue]->id;
mvpp2_thread_read(port->priv,
mvpp2_cpu_to_thread(port->priv, smp_processor_id()),
MVPP2_TXQ_SENT_REG(id));
}
}
/* Set max sizes for Tx queues */
static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
{
u32 val, size, mtu;
int txq, tx_port_num;
mtu = port->pkt_size * 8;
if (mtu > MVPP2_TXP_MTU_MAX)
mtu = MVPP2_TXP_MTU_MAX;
/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
mtu = 3 * mtu;
/* Indirect access to registers */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
/* Set MTU */
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
val &= ~MVPP2_TXP_MTU_MAX;
val |= mtu;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
/* TXP token size and all TXQs token size must be larger that MTU */
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
val |= size;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
}
for (txq = 0; txq < port->ntxqs; txq++) {
val = mvpp2_read(port->priv,
MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
val |= size;
mvpp2_write(port->priv,
MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
val);
}
}
}
/* Set the number of non-occupied descriptors threshold */
static void mvpp2_set_rxq_free_tresh(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
u32 val;
mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
val = mvpp2_read(port->priv, MVPP2_RXQ_THRESH_REG);
val &= ~MVPP2_RXQ_NON_OCCUPIED_MASK;
val |= MSS_THRESHOLD_STOP << MVPP2_RXQ_NON_OCCUPIED_OFFSET;
mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
}
/* Set the number of packets that will be received before Rx interrupt
* will be generated by HW.
*/
static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
unsigned int thread = mvpp2_cpu_to_thread(port->priv, get_cpu());
if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_NUM_REG, rxq->id);
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_THRESH_REG,
rxq->pkts_coal);
put_cpu();
}
/* For some reason in the LSP this is done on each CPU. Why ? */
static void mvpp2_tx_pkts_coal_set(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
unsigned int thread;
u32 val;
if (txq->done_pkts_coal > MVPP2_TXQ_THRESH_MASK)
txq->done_pkts_coal = MVPP2_TXQ_THRESH_MASK;
val = (txq->done_pkts_coal << MVPP2_TXQ_THRESH_OFFSET);
/* PKT-coalescing registers are per-queue + per-thread */
for (thread = 0; thread < MVPP2_MAX_THREADS; thread++) {
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_THRESH_REG, val);
}
}
static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
{
u64 tmp = (u64)clk_hz * usec;
do_div(tmp, USEC_PER_SEC);
return tmp > U32_MAX ? U32_MAX : tmp;
}
static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
{
u64 tmp = (u64)cycles * USEC_PER_SEC;
do_div(tmp, clk_hz);
return tmp > U32_MAX ? U32_MAX : tmp;
}
/* Set the time delay in usec before Rx interrupt */
static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
unsigned long freq = port->priv->tclk;
u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
rxq->time_coal =
mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);
/* re-evaluate to get actual register value */
val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
}
mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
}
static void mvpp2_tx_time_coal_set(struct mvpp2_port *port)
{
unsigned long freq = port->priv->tclk;
u32 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
if (val > MVPP2_MAX_ISR_TX_THRESHOLD) {
port->tx_time_coal =
mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD, freq);
/* re-evaluate to get actual register value */
val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
}
mvpp2_write(port->priv, MVPP2_ISR_TX_THRESHOLD_REG(port->id), val);
}
/* Free Tx queue skbuffs */
static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq,
struct mvpp2_txq_pcpu *txq_pcpu, int num)
{
struct xdp_frame_bulk bq;
int i;
xdp_frame_bulk_init(&bq);
rcu_read_lock(); /* need for xdp_return_frame_bulk */
for (i = 0; i < num; i++) {
struct mvpp2_txq_pcpu_buf *tx_buf =
txq_pcpu->buffs + txq_pcpu->txq_get_index;
if (!IS_TSO_HEADER(txq_pcpu, tx_buf->dma) &&
tx_buf->type != MVPP2_TYPE_XDP_TX)
dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
tx_buf->size, DMA_TO_DEVICE);
if (tx_buf->type == MVPP2_TYPE_SKB && tx_buf->skb)
dev_kfree_skb_any(tx_buf->skb);
else if (tx_buf->type == MVPP2_TYPE_XDP_TX ||
tx_buf->type == MVPP2_TYPE_XDP_NDO)
xdp_return_frame_bulk(tx_buf->xdpf, &bq);
mvpp2_txq_inc_get(txq_pcpu);
}
xdp_flush_frame_bulk(&bq);
rcu_read_unlock();
}
static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
u32 cause)
{
int queue = fls(cause) - 1;
return port->rxqs[queue];
}
static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
u32 cause)
{
int queue = fls(cause) - 1;
return port->txqs[queue];
}
/* Handle end of transmission */
static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
struct mvpp2_txq_pcpu *txq_pcpu)
{
struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
int tx_done;
if (txq_pcpu->thread != mvpp2_cpu_to_thread(port->priv, smp_processor_id()))
netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
tx_done = mvpp2_txq_sent_desc_proc(port, txq);
if (!tx_done)
return;
mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
txq_pcpu->count -= tx_done;
if (netif_tx_queue_stopped(nq))
if (txq_pcpu->count <= txq_pcpu->wake_threshold)
netif_tx_wake_queue(nq);
}
static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause,
unsigned int thread)
{
struct mvpp2_tx_queue *txq;
struct mvpp2_txq_pcpu *txq_pcpu;
unsigned int tx_todo = 0;
while (cause) {
txq = mvpp2_get_tx_queue(port, cause);
if (!txq)
break;
txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
if (txq_pcpu->count) {
mvpp2_txq_done(port, txq, txq_pcpu);
tx_todo += txq_pcpu->count;
}
cause &= ~(1 << txq->log_id);
}
return tx_todo;
}
/* Rx/Tx queue initialization/cleanup methods */
/* Allocate and initialize descriptors for aggr TXQ */
static int mvpp2_aggr_txq_init(struct platform_device *pdev,
struct mvpp2_tx_queue *aggr_txq,
unsigned int thread, struct mvpp2 *priv)
{
u32 txq_dma;
/* Allocate memory for TX descriptors */
aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
&aggr_txq->descs_dma, GFP_KERNEL);
if (!aggr_txq->descs)
return -ENOMEM;
aggr_txq->last_desc = MVPP2_AGGR_TXQ_SIZE - 1;
/* Aggr TXQ no reset WA */
aggr_txq->next_desc_to_proc = mvpp2_read(priv,
MVPP2_AGGR_TXQ_INDEX_REG(thread));
/* Set Tx descriptors queue starting address indirect
* access
*/
if (priv->hw_version == MVPP21)
txq_dma = aggr_txq->descs_dma;
else
txq_dma = aggr_txq->descs_dma >>
MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(thread), txq_dma);
mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(thread),
MVPP2_AGGR_TXQ_SIZE);
return 0;
}
/* Create a specified Rx queue */
static int mvpp2_rxq_init(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
struct mvpp2 *priv = port->priv;
unsigned int thread;
u32 rxq_dma;
int err;
rxq->size = port->rx_ring_size;
/* Allocate memory for RX descriptors */
rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
rxq->size * MVPP2_DESC_ALIGNED_SIZE,
&rxq->descs_dma, GFP_KERNEL);
if (!rxq->descs)
return -ENOMEM;
rxq->last_desc = rxq->size - 1;
/* Zero occupied and non-occupied counters - direct access */
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
/* Set Rx descriptors queue starting address - indirect access */
thread = mvpp2_cpu_to_thread(port->priv, get_cpu());
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_NUM_REG, rxq->id);
if (port->priv->hw_version == MVPP21)
rxq_dma = rxq->descs_dma;
else
rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_INDEX_REG, 0);
put_cpu();
/* Set Offset */
mvpp2_rxq_offset_set(port, rxq->id, MVPP2_SKB_HEADROOM);
/* Set coalescing pkts and time */
mvpp2_rx_pkts_coal_set(port, rxq);
mvpp2_rx_time_coal_set(port, rxq);
/* Set the number of non occupied descriptors threshold */
mvpp2_set_rxq_free_tresh(port, rxq);
/* Add number of descriptors ready for receiving packets */
mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
if (priv->percpu_pools) {
err = xdp_rxq_info_reg(&rxq->xdp_rxq_short, port->dev, rxq->logic_rxq, 0);
if (err < 0)
goto err_free_dma;
err = xdp_rxq_info_reg(&rxq->xdp_rxq_long, port->dev, rxq->logic_rxq, 0);
if (err < 0)
goto err_unregister_rxq_short;
/* Every RXQ has a pool for short and another for long packets */
err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq_short,
MEM_TYPE_PAGE_POOL,
priv->page_pool[rxq->logic_rxq]);
if (err < 0)
goto err_unregister_rxq_long;
err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq_long,
MEM_TYPE_PAGE_POOL,
priv->page_pool[rxq->logic_rxq +
port->nrxqs]);
if (err < 0)
goto err_unregister_mem_rxq_short;
}
return 0;
err_unregister_mem_rxq_short:
xdp_rxq_info_unreg_mem_model(&rxq->xdp_rxq_short);
err_unregister_rxq_long:
xdp_rxq_info_unreg(&rxq->xdp_rxq_long);
err_unregister_rxq_short:
xdp_rxq_info_unreg(&rxq->xdp_rxq_short);
err_free_dma:
dma_free_coherent(port->dev->dev.parent,
rxq->size * MVPP2_DESC_ALIGNED_SIZE,
rxq->descs, rxq->descs_dma);
return err;
}
/* Push packets received by the RXQ to BM pool */
static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
int rx_received, i;
rx_received = mvpp2_rxq_received(port, rxq->id);
if (!rx_received)
return;
for (i = 0; i < rx_received; i++) {
struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
int pool;
pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >>
MVPP2_RXD_BM_POOL_ID_OFFS;
mvpp2_bm_pool_put(port, pool,
mvpp2_rxdesc_dma_addr_get(port, rx_desc),
mvpp2_rxdesc_cookie_get(port, rx_desc));
}
mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
}
/* Cleanup Rx queue */
static void mvpp2_rxq_deinit(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
unsigned int thread;
if (xdp_rxq_info_is_reg(&rxq->xdp_rxq_short))
xdp_rxq_info_unreg(&rxq->xdp_rxq_short);
if (xdp_rxq_info_is_reg(&rxq->xdp_rxq_long))
xdp_rxq_info_unreg(&rxq->xdp_rxq_long);
mvpp2_rxq_drop_pkts(port, rxq);
if (rxq->descs)
dma_free_coherent(port->dev->dev.parent,
rxq->size * MVPP2_DESC_ALIGNED_SIZE,
rxq->descs,
rxq->descs_dma);
rxq->descs = NULL;
rxq->last_desc = 0;
rxq->next_desc_to_proc = 0;
rxq->descs_dma = 0;
/* Clear Rx descriptors queue starting address and size;
* free descriptor number
*/
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
thread = mvpp2_cpu_to_thread(port->priv, get_cpu());
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_NUM_REG, rxq->id);
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_DESC_ADDR_REG, 0);
mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_DESC_SIZE_REG, 0);
put_cpu();
}
/* Create and initialize a Tx queue */
static int mvpp2_txq_init(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
unsigned int thread;
int desc, desc_per_txq, tx_port_num;
struct mvpp2_txq_pcpu *txq_pcpu;
txq->size = port->tx_ring_size;
/* Allocate memory for Tx descriptors */
txq->descs = dma_alloc_coherent(port->dev->dev.parent,
txq->size * MVPP2_DESC_ALIGNED_SIZE,
&txq->descs_dma, GFP_KERNEL);
if (!txq->descs)
return -ENOMEM;
txq->last_desc = txq->size - 1;
/* Set Tx descriptors queue starting address - indirect access */
thread = mvpp2_cpu_to_thread(port->priv, get_cpu());
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_DESC_ADDR_REG,
txq->descs_dma);
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_DESC_SIZE_REG,
txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_INDEX_REG, 0);
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_RSVD_CLR_REG,
txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
val = mvpp2_thread_read(port->priv, thread, MVPP2_TXQ_PENDING_REG);
val &= ~MVPP2_TXQ_PENDING_MASK;
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_PENDING_REG, val);
/* Calculate base address in prefetch buffer. We reserve 16 descriptors
* for each existing TXQ.
* TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
* GBE ports assumed to be continuous from 0 to MVPP2_MAX_PORTS
*/
desc_per_txq = 16;
desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
(txq->log_id * desc_per_txq);
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_PREF_BUF_REG,
MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
put_cpu();
/* WRR / EJP configuration - indirect access */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
val = MVPP2_TXQ_TOKEN_SIZE_MAX;
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
val);
for (thread = 0; thread < port->priv->nthreads; thread++) {
txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
txq_pcpu->size = txq->size;
txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
sizeof(*txq_pcpu->buffs),
GFP_KERNEL);
if (!txq_pcpu->buffs)
return -ENOMEM;
txq_pcpu->count = 0;
txq_pcpu->reserved_num = 0;
txq_pcpu->txq_put_index = 0;
txq_pcpu->txq_get_index = 0;
txq_pcpu->tso_headers = NULL;
txq_pcpu->stop_threshold = txq->size - MVPP2_MAX_SKB_DESCS;
txq_pcpu->wake_threshold = txq_pcpu->stop_threshold / 2;
txq_pcpu->tso_headers =
dma_alloc_coherent(port->dev->dev.parent,
txq_pcpu->size * TSO_HEADER_SIZE,
&txq_pcpu->tso_headers_dma,
GFP_KERNEL);
if (!txq_pcpu->tso_headers)
return -ENOMEM;
}
return 0;
}
/* Free allocated TXQ resources */
static void mvpp2_txq_deinit(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
struct mvpp2_txq_pcpu *txq_pcpu;
unsigned int thread;
for (thread = 0; thread < port->priv->nthreads; thread++) {
txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
kfree(txq_pcpu->buffs);
if (txq_pcpu->tso_headers)
dma_free_coherent(port->dev->dev.parent,
txq_pcpu->size * TSO_HEADER_SIZE,
txq_pcpu->tso_headers,
txq_pcpu->tso_headers_dma);
txq_pcpu->tso_headers = NULL;
}
if (txq->descs)
dma_free_coherent(port->dev->dev.parent,
txq->size * MVPP2_DESC_ALIGNED_SIZE,
txq->descs, txq->descs_dma);
txq->descs = NULL;
txq->last_desc = 0;
txq->next_desc_to_proc = 0;
txq->descs_dma = 0;
/* Set minimum bandwidth for disabled TXQs */
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->log_id), 0);
/* Set Tx descriptors queue starting address and size */
thread = mvpp2_cpu_to_thread(port->priv, get_cpu());
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_DESC_ADDR_REG, 0);
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_DESC_SIZE_REG, 0);
put_cpu();
}
/* Cleanup Tx ports */
static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
{
struct mvpp2_txq_pcpu *txq_pcpu;
int delay, pending;
unsigned int thread = mvpp2_cpu_to_thread(port->priv, get_cpu());
u32 val;
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_NUM_REG, txq->id);
val = mvpp2_thread_read(port->priv, thread, MVPP2_TXQ_PREF_BUF_REG);
val |= MVPP2_TXQ_DRAIN_EN_MASK;
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_PREF_BUF_REG, val);
/* The napi queue has been stopped so wait for all packets
* to be transmitted.
*/
delay = 0;
do {
if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
netdev_warn(port->dev,
"port %d: cleaning queue %d timed out\n",
port->id, txq->log_id);
break;
}
mdelay(1);
delay++;
pending = mvpp2_thread_read(port->priv, thread,
MVPP2_TXQ_PENDING_REG);
pending &= MVPP2_TXQ_PENDING_MASK;
} while (pending);
val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_PREF_BUF_REG, val);
put_cpu();
for (thread = 0; thread < port->priv->nthreads; thread++) {
txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
/* Release all packets */
mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
/* Reset queue */
txq_pcpu->count = 0;
txq_pcpu->txq_put_index = 0;
txq_pcpu->txq_get_index = 0;
}
}
/* Cleanup all Tx queues */
static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
{
struct mvpp2_tx_queue *txq;
int queue;
u32 val;
val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
/* Reset Tx ports and delete Tx queues */
val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
for (queue = 0; queue < port->ntxqs; queue++) {
txq = port->txqs[queue];
mvpp2_txq_clean(port, txq);
mvpp2_txq_deinit(port, txq);
}
on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
}
/* Cleanup all Rx queues */
static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
{
int queue;
for (queue = 0; queue < port->nrxqs; queue++)
mvpp2_rxq_deinit(port, port->rxqs[queue]);
if (port->tx_fc)
mvpp2_rxq_disable_fc(port);
}
/* Init all Rx queues for port */
static int mvpp2_setup_rxqs(struct mvpp2_port *port)
{
int queue, err;
for (queue = 0; queue < port->nrxqs; queue++) {
err = mvpp2_rxq_init(port, port->rxqs[queue]);
if (err)
goto err_cleanup;
}
if (port->tx_fc)
mvpp2_rxq_enable_fc(port);
return 0;
err_cleanup:
mvpp2_cleanup_rxqs(port);
return err;
}
/* Init all tx queues for port */
static int mvpp2_setup_txqs(struct mvpp2_port *port)
{
struct mvpp2_tx_queue *txq;
int queue, err;
for (queue = 0; queue < port->ntxqs; queue++) {
txq = port->txqs[queue];
err = mvpp2_txq_init(port, txq);
if (err)
goto err_cleanup;
/* Assign this queue to a CPU */
if (queue < num_possible_cpus())
netif_set_xps_queue(port->dev, cpumask_of(queue), queue);
}
if (port->has_tx_irqs) {
mvpp2_tx_time_coal_set(port);
for (queue = 0; queue < port->ntxqs; queue++) {
txq = port->txqs[queue];
mvpp2_tx_pkts_coal_set(port, txq);
}
}
on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
return 0;
err_cleanup:
mvpp2_cleanup_txqs(port);
return err;
}
/* The callback for per-port interrupt */
static irqreturn_t mvpp2_isr(int irq, void *dev_id)
{
struct mvpp2_queue_vector *qv = dev_id;
mvpp2_qvec_interrupt_disable(qv);
napi_schedule(&qv->napi);
return IRQ_HANDLED;
}
static void mvpp2_isr_handle_ptp_queue(struct mvpp2_port *port, int nq)
{
struct skb_shared_hwtstamps shhwtstamps;
struct mvpp2_hwtstamp_queue *queue;
struct sk_buff *skb;
void __iomem *ptp_q;
unsigned int id;
u32 r0, r1, r2;
ptp_q = port->priv->iface_base + MVPP22_PTP_BASE(port->gop_id);
if (nq)
ptp_q += MVPP22_PTP_TX_Q1_R0 - MVPP22_PTP_TX_Q0_R0;
queue = &port->tx_hwtstamp_queue[nq];
while (1) {
r0 = readl_relaxed(ptp_q + MVPP22_PTP_TX_Q0_R0) & 0xffff;
if (!r0)
break;
r1 = readl_relaxed(ptp_q + MVPP22_PTP_TX_Q0_R1) & 0xffff;
r2 = readl_relaxed(ptp_q + MVPP22_PTP_TX_Q0_R2) & 0xffff;
id = (r0 >> 1) & 31;
skb = queue->skb[id];
queue->skb[id] = NULL;
if (skb) {
u32 ts = r2 << 19 | r1 << 3 | r0 >> 13;
mvpp22_tai_tstamp(port->priv->tai, ts, &shhwtstamps);
skb_tstamp_tx(skb, &shhwtstamps);
dev_kfree_skb_any(skb);
}
}
}
static void mvpp2_isr_handle_ptp(struct mvpp2_port *port)
{
void __iomem *ptp;
u32 val;
ptp = port->priv->iface_base + MVPP22_PTP_BASE(port->gop_id);
val = readl(ptp + MVPP22_PTP_INT_CAUSE);
if (val & MVPP22_PTP_INT_CAUSE_QUEUE0)
mvpp2_isr_handle_ptp_queue(port, 0);
if (val & MVPP22_PTP_INT_CAUSE_QUEUE1)
mvpp2_isr_handle_ptp_queue(port, 1);
}
static void mvpp2_isr_handle_link(struct mvpp2_port *port, bool link)
{
struct net_device *dev = port->dev;
if (port->phylink) {
phylink_mac_change(port->phylink, link);
return;
}
if (!netif_running(dev))
return;
if (link) {
mvpp2_interrupts_enable(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
netif_carrier_on(dev);
netif_tx_wake_all_queues(dev);
} else {
netif_tx_stop_all_queues(dev);
netif_carrier_off(dev);
mvpp2_ingress_disable(port);
mvpp2_egress_disable(port);
mvpp2_interrupts_disable(port);
}
}
static void mvpp2_isr_handle_xlg(struct mvpp2_port *port)
{
bool link;
u32 val;
val = readl(port->base + MVPP22_XLG_INT_STAT);
if (val & MVPP22_XLG_INT_STAT_LINK) {
val = readl(port->base + MVPP22_XLG_STATUS);
link = (val & MVPP22_XLG_STATUS_LINK_UP);
mvpp2_isr_handle_link(port, link);
}
}
static void mvpp2_isr_handle_gmac_internal(struct mvpp2_port *port)
{
bool link;
u32 val;
if (phy_interface_mode_is_rgmii(port->phy_interface) ||
phy_interface_mode_is_8023z(port->phy_interface) ||
port->phy_interface == PHY_INTERFACE_MODE_SGMII) {
val = readl(port->base + MVPP22_GMAC_INT_STAT);
if (val & MVPP22_GMAC_INT_STAT_LINK) {
val = readl(port->base + MVPP2_GMAC_STATUS0);
link = (val & MVPP2_GMAC_STATUS0_LINK_UP);
mvpp2_isr_handle_link(port, link);
}
}
}
/* Per-port interrupt for link status changes */
static irqreturn_t mvpp2_port_isr(int irq, void *dev_id)
{
struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
u32 val;
mvpp22_gop_mask_irq(port);
if (mvpp2_port_supports_xlg(port) &&
mvpp2_is_xlg(port->phy_interface)) {
/* Check the external status register */
val = readl(port->base + MVPP22_XLG_EXT_INT_STAT);
if (val & MVPP22_XLG_EXT_INT_STAT_XLG)
mvpp2_isr_handle_xlg(port);
if (val & MVPP22_XLG_EXT_INT_STAT_PTP)
mvpp2_isr_handle_ptp(port);
} else {
/* If it's not the XLG, we must be using the GMAC.
* Check the summary status.
*/
val = readl(port->base + MVPP22_GMAC_INT_SUM_STAT);
if (val & MVPP22_GMAC_INT_SUM_STAT_INTERNAL)
mvpp2_isr_handle_gmac_internal(port);
if (val & MVPP22_GMAC_INT_SUM_STAT_PTP)
mvpp2_isr_handle_ptp(port);
}
mvpp22_gop_unmask_irq(port);
return IRQ_HANDLED;
}
static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
{
struct net_device *dev;
struct mvpp2_port *port;
struct mvpp2_port_pcpu *port_pcpu;
unsigned int tx_todo, cause;
port_pcpu = container_of(timer, struct mvpp2_port_pcpu, tx_done_timer);
dev = port_pcpu->dev;
if (!netif_running(dev))
return HRTIMER_NORESTART;
port_pcpu->timer_scheduled = false;
port = netdev_priv(dev);
/* Process all the Tx queues */
cause = (1 << port->ntxqs) - 1;
tx_todo = mvpp2_tx_done(port, cause,
mvpp2_cpu_to_thread(port->priv, smp_processor_id()));
/* Set the timer in case not all the packets were processed */
if (tx_todo && !port_pcpu->timer_scheduled) {
port_pcpu->timer_scheduled = true;
hrtimer_forward_now(&port_pcpu->tx_done_timer,
MVPP2_TXDONE_HRTIMER_PERIOD_NS);
return HRTIMER_RESTART;
}
return HRTIMER_NORESTART;
}
/* Main RX/TX processing routines */
/* Display more error info */
static void mvpp2_rx_error(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
char *err_str = NULL;
switch (status & MVPP2_RXD_ERR_CODE_MASK) {
case MVPP2_RXD_ERR_CRC:
err_str = "crc";
break;
case MVPP2_RXD_ERR_OVERRUN:
err_str = "overrun";
break;
case MVPP2_RXD_ERR_RESOURCE:
err_str = "resource";
break;
}
if (err_str && net_ratelimit())
netdev_err(port->dev,
"bad rx status %08x (%s error), size=%zu\n",
status, err_str, sz);
}
/* Handle RX checksum offload */
static int mvpp2_rx_csum(struct mvpp2_port *port, u32 status)
{
if (((status & MVPP2_RXD_L3_IP4) &&
!(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
(status & MVPP2_RXD_L3_IP6))
if (((status & MVPP2_RXD_L4_UDP) ||
(status & MVPP2_RXD_L4_TCP)) &&
(status & MVPP2_RXD_L4_CSUM_OK))
return CHECKSUM_UNNECESSARY;
return CHECKSUM_NONE;
}
/* Allocate a new skb and add it to BM pool */
static int mvpp2_rx_refill(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool,
struct page_pool *page_pool, int pool)
{
dma_addr_t dma_addr;
phys_addr_t phys_addr;
void *buf;
buf = mvpp2_buf_alloc(port, bm_pool, page_pool,
&dma_addr, &phys_addr, GFP_ATOMIC);
if (!buf)
return -ENOMEM;
mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
return 0;
}
/* Handle tx checksum */
static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
{
if (skb->ip_summed == CHECKSUM_PARTIAL) {
int ip_hdr_len = 0;
u8 l4_proto;
__be16 l3_proto = vlan_get_protocol(skb);
if (l3_proto == htons(ETH_P_IP)) {
struct iphdr *ip4h = ip_hdr(skb);
/* Calculate IPv4 checksum and L4 checksum */
ip_hdr_len = ip4h->ihl;
l4_proto = ip4h->protocol;
} else if (l3_proto == htons(ETH_P_IPV6)) {
struct ipv6hdr *ip6h = ipv6_hdr(skb);
/* Read l4_protocol from one of IPv6 extra headers */
if (skb_network_header_len(skb) > 0)
ip_hdr_len = (skb_network_header_len(skb) >> 2);
l4_proto = ip6h->nexthdr;
} else {
return MVPP2_TXD_L4_CSUM_NOT;
}
return mvpp2_txq_desc_csum(skb_network_offset(skb),
l3_proto, ip_hdr_len, l4_proto);
}
return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
}
static void mvpp2_xdp_finish_tx(struct mvpp2_port *port, u16 txq_id, int nxmit, int nxmit_byte)
{
unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id());
struct mvpp2_tx_queue *aggr_txq;
struct mvpp2_txq_pcpu *txq_pcpu;
struct mvpp2_tx_queue *txq;
struct netdev_queue *nq;
txq = port->txqs[txq_id];
txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
nq = netdev_get_tx_queue(port->dev, txq_id);
aggr_txq = &port->priv->aggr_txqs[thread];
txq_pcpu->reserved_num -= nxmit;
txq_pcpu->count += nxmit;
aggr_txq->count += nxmit;
/* Enable transmit */
wmb();
mvpp2_aggr_txq_pend_desc_add(port, nxmit);
if (txq_pcpu->count >= txq_pcpu->stop_threshold)
netif_tx_stop_queue(nq);
/* Finalize TX processing */
if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal)
mvpp2_txq_done(port, txq, txq_pcpu);
}
static int
mvpp2_xdp_submit_frame(struct mvpp2_port *port, u16 txq_id,
struct xdp_frame *xdpf, bool dma_map)
{
unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id());
u32 tx_cmd = MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE |
MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
enum mvpp2_tx_buf_type buf_type;
struct mvpp2_txq_pcpu *txq_pcpu;
struct mvpp2_tx_queue *aggr_txq;
struct mvpp2_tx_desc *tx_desc;
struct mvpp2_tx_queue *txq;
int ret = MVPP2_XDP_TX;
dma_addr_t dma_addr;
txq = port->txqs[txq_id];
txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
aggr_txq = &port->priv->aggr_txqs[thread];
/* Check number of available descriptors */
if (mvpp2_aggr_desc_num_check(port, aggr_txq, 1) ||
mvpp2_txq_reserved_desc_num_proc(port, txq, txq_pcpu, 1)) {
ret = MVPP2_XDP_DROPPED;
goto out;
}
/* Get a descriptor for the first part of the packet */
tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, xdpf->len);
if (dma_map) {
/* XDP_REDIRECT or AF_XDP */
dma_addr = dma_map_single(port->dev->dev.parent, xdpf->data,
xdpf->len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
mvpp2_txq_desc_put(txq);
ret = MVPP2_XDP_DROPPED;
goto out;
}
buf_type = MVPP2_TYPE_XDP_NDO;
} else {
/* XDP_TX */
struct page *page = virt_to_page(xdpf->data);
dma_addr = page_pool_get_dma_addr(page) +
sizeof(*xdpf) + xdpf->headroom;
dma_sync_single_for_device(port->dev->dev.parent, dma_addr,
xdpf->len, DMA_BIDIRECTIONAL);
buf_type = MVPP2_TYPE_XDP_TX;
}
mvpp2_txdesc_dma_addr_set(port, tx_desc, dma_addr);
mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
mvpp2_txq_inc_put(port, txq_pcpu, xdpf, tx_desc, buf_type);
out:
return ret;
}
static int
mvpp2_xdp_xmit_back(struct mvpp2_port *port, struct xdp_buff *xdp)
{
struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
struct xdp_frame *xdpf;
u16 txq_id;
int ret;
xdpf = xdp_convert_buff_to_frame(xdp);
if (unlikely(!xdpf))
return MVPP2_XDP_DROPPED;
/* The first of the TX queues are used for XPS,
* the second half for XDP_TX
*/
txq_id = mvpp2_cpu_to_thread(port->priv, smp_processor_id()) + (port->ntxqs / 2);
ret = mvpp2_xdp_submit_frame(port, txq_id, xdpf, false);
if (ret == MVPP2_XDP_TX) {
u64_stats_update_begin(&stats->syncp);
stats->tx_bytes += xdpf->len;
stats->tx_packets++;
stats->xdp_tx++;
u64_stats_update_end(&stats->syncp);
mvpp2_xdp_finish_tx(port, txq_id, 1, xdpf->len);
} else {
u64_stats_update_begin(&stats->syncp);
stats->xdp_tx_err++;
u64_stats_update_end(&stats->syncp);
}
return ret;
}
static int
mvpp2_xdp_xmit(struct net_device *dev, int num_frame,
struct xdp_frame **frames, u32 flags)
{
struct mvpp2_port *port = netdev_priv(dev);
int i, nxmit_byte = 0, nxmit = 0;
struct mvpp2_pcpu_stats *stats;
u16 txq_id;
u32 ret;
if (unlikely(test_bit(0, &port->state)))
return -ENETDOWN;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
/* The first of the TX queues are used for XPS,
* the second half for XDP_TX
*/
txq_id = mvpp2_cpu_to_thread(port->priv, smp_processor_id()) + (port->ntxqs / 2);
for (i = 0; i < num_frame; i++) {
ret = mvpp2_xdp_submit_frame(port, txq_id, frames[i], true);
if (ret != MVPP2_XDP_TX)
break;
nxmit_byte += frames[i]->len;
nxmit++;
}
if (likely(nxmit > 0))
mvpp2_xdp_finish_tx(port, txq_id, nxmit, nxmit_byte);
stats = this_cpu_ptr(port->stats);
u64_stats_update_begin(&stats->syncp);
stats->tx_bytes += nxmit_byte;
stats->tx_packets += nxmit;
stats->xdp_xmit += nxmit;
stats->xdp_xmit_err += num_frame - nxmit;
u64_stats_update_end(&stats->syncp);
return nxmit;
}
static int
mvpp2_run_xdp(struct mvpp2_port *port, struct bpf_prog *prog,
struct xdp_buff *xdp, struct page_pool *pp,
struct mvpp2_pcpu_stats *stats)
{
unsigned int len, sync, err;
struct page *page;
u32 ret, act;
len = xdp->data_end - xdp->data_hard_start - MVPP2_SKB_HEADROOM;
act = bpf_prog_run_xdp(prog, xdp);
/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
sync = xdp->data_end - xdp->data_hard_start - MVPP2_SKB_HEADROOM;
sync = max(sync, len);
switch (act) {
case XDP_PASS:
stats->xdp_pass++;
ret = MVPP2_XDP_PASS;
break;
case XDP_REDIRECT:
err = xdp_do_redirect(port->dev, xdp, prog);
if (unlikely(err)) {
ret = MVPP2_XDP_DROPPED;
page = virt_to_head_page(xdp->data);
page_pool_put_page(pp, page, sync, true);
} else {
ret = MVPP2_XDP_REDIR;
stats->xdp_redirect++;
}
break;
case XDP_TX:
ret = mvpp2_xdp_xmit_back(port, xdp);
if (ret != MVPP2_XDP_TX) {
page = virt_to_head_page(xdp->data);
page_pool_put_page(pp, page, sync, true);
}
break;
default:
bpf_warn_invalid_xdp_action(port->dev, prog, act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(port->dev, prog, act);
fallthrough;
case XDP_DROP:
page = virt_to_head_page(xdp->data);
page_pool_put_page(pp, page, sync, true);
ret = MVPP2_XDP_DROPPED;
stats->xdp_drop++;
break;
}
return ret;
}
static void mvpp2_buff_hdr_pool_put(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc,
int pool, u32 rx_status)
{
phys_addr_t phys_addr, phys_addr_next;
dma_addr_t dma_addr, dma_addr_next;
struct mvpp2_buff_hdr *buff_hdr;
phys_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
dma_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
do {
buff_hdr = (struct mvpp2_buff_hdr *)phys_to_virt(phys_addr);
phys_addr_next = le32_to_cpu(buff_hdr->next_phys_addr);
dma_addr_next = le32_to_cpu(buff_hdr->next_dma_addr);
if (port->priv->hw_version >= MVPP22) {
phys_addr_next |= ((u64)buff_hdr->next_phys_addr_high << 32);
dma_addr_next |= ((u64)buff_hdr->next_dma_addr_high << 32);
}
mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
phys_addr = phys_addr_next;
dma_addr = dma_addr_next;
} while (!MVPP2_B_HDR_INFO_IS_LAST(le16_to_cpu(buff_hdr->info)));
}
/* Main rx processing */
static int mvpp2_rx(struct mvpp2_port *port, struct napi_struct *napi,
int rx_todo, struct mvpp2_rx_queue *rxq)
{
struct net_device *dev = port->dev;
struct mvpp2_pcpu_stats ps = {};
enum dma_data_direction dma_dir;
struct bpf_prog *xdp_prog;
struct xdp_buff xdp;
int rx_received;
int rx_done = 0;
u32 xdp_ret = 0;
xdp_prog = READ_ONCE(port->xdp_prog);
/* Get number of received packets and clamp the to-do */
rx_received = mvpp2_rxq_received(port, rxq->id);
if (rx_todo > rx_received)
rx_todo = rx_received;
while (rx_done < rx_todo) {
struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
struct mvpp2_bm_pool *bm_pool;
struct page_pool *pp = NULL;
struct sk_buff *skb;
unsigned int frag_size;
dma_addr_t dma_addr;
phys_addr_t phys_addr;
u32 rx_status, timestamp;
int pool, rx_bytes, err, ret;
struct page *page;
void *data;
phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
data = (void *)phys_to_virt(phys_addr);
page = virt_to_page(data);
prefetch(page);
rx_done++;
rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
rx_bytes -= MVPP2_MH_SIZE;
dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
MVPP2_RXD_BM_POOL_ID_OFFS;
bm_pool = &port->priv->bm_pools[pool];
if (port->priv->percpu_pools) {
pp = port->priv->page_pool[pool];
dma_dir = page_pool_get_dma_dir(pp);
} else {
dma_dir = DMA_FROM_DEVICE;
}
dma_sync_single_for_cpu(dev->dev.parent, dma_addr,
rx_bytes + MVPP2_MH_SIZE,
dma_dir);
/* Buffer header not supported */
if (rx_status & MVPP2_RXD_BUF_HDR)
goto err_drop_frame;
/* In case of an error, release the requested buffer pointer
* to the Buffer Manager. This request process is controlled
* by the hardware, and the information about the buffer is
* comprised by the RX descriptor.
*/
if (rx_status & MVPP2_RXD_ERR_SUMMARY)
goto err_drop_frame;
/* Prefetch header */
prefetch(data + MVPP2_MH_SIZE + MVPP2_SKB_HEADROOM);
if (bm_pool->frag_size > PAGE_SIZE)
frag_size = 0;
else
frag_size = bm_pool->frag_size;
if (xdp_prog) {
struct xdp_rxq_info *xdp_rxq;
if (bm_pool->pkt_size == MVPP2_BM_SHORT_PKT_SIZE)
xdp_rxq = &rxq->xdp_rxq_short;
else
xdp_rxq = &rxq->xdp_rxq_long;
xdp_init_buff(&xdp, PAGE_SIZE, xdp_rxq);
xdp_prepare_buff(&xdp, data,
MVPP2_MH_SIZE + MVPP2_SKB_HEADROOM,
rx_bytes, false);
ret = mvpp2_run_xdp(port, xdp_prog, &xdp, pp, &ps);
if (ret) {
xdp_ret |= ret;
err = mvpp2_rx_refill(port, bm_pool, pp, pool);
if (err) {
netdev_err(port->dev, "failed to refill BM pools\n");
goto err_drop_frame;
}
ps.rx_packets++;
ps.rx_bytes += rx_bytes;
continue;
}
}
skb = build_skb(data, frag_size);
if (!skb) {
netdev_warn(port->dev, "skb build failed\n");
goto err_drop_frame;
}
/* If we have RX hardware timestamping enabled, grab the
* timestamp from the queue and convert.
*/
if (mvpp22_rx_hwtstamping(port)) {
timestamp = le32_to_cpu(rx_desc->pp22.timestamp);
mvpp22_tai_tstamp(port->priv->tai, timestamp,
skb_hwtstamps(skb));
}
err = mvpp2_rx_refill(port, bm_pool, pp, pool);
if (err) {
netdev_err(port->dev, "failed to refill BM pools\n");
dev_kfree_skb_any(skb);
goto err_drop_frame;
}
if (pp)
skb_mark_for_recycle(skb);
else
dma_unmap_single_attrs(dev->dev.parent, dma_addr,
bm_pool->buf_size, DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
ps.rx_packets++;
ps.rx_bytes += rx_bytes;
skb_reserve(skb, MVPP2_MH_SIZE + MVPP2_SKB_HEADROOM);
skb_put(skb, rx_bytes);
skb->ip_summed = mvpp2_rx_csum(port, rx_status);
skb->protocol = eth_type_trans(skb, dev);
napi_gro_receive(napi, skb);
continue;
err_drop_frame:
dev->stats.rx_errors++;
mvpp2_rx_error(port, rx_desc);
/* Return the buffer to the pool */
if (rx_status & MVPP2_RXD_BUF_HDR)
mvpp2_buff_hdr_pool_put(port, rx_desc, pool, rx_status);
else
mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
}
if (xdp_ret & MVPP2_XDP_REDIR)
xdp_do_flush_map();
if (ps.rx_packets) {
struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
u64_stats_update_begin(&stats->syncp);
stats->rx_packets += ps.rx_packets;
stats->rx_bytes += ps.rx_bytes;
/* xdp */
stats->xdp_redirect += ps.xdp_redirect;
stats->xdp_pass += ps.xdp_pass;
stats->xdp_drop += ps.xdp_drop;
u64_stats_update_end(&stats->syncp);
}
/* Update Rx queue management counters */
wmb();
mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
return rx_todo;
}
static inline void
tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
struct mvpp2_tx_desc *desc)
{
unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id());
struct mvpp2_txq_pcpu *txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
dma_addr_t buf_dma_addr =
mvpp2_txdesc_dma_addr_get(port, desc);
size_t buf_sz =
mvpp2_txdesc_size_get(port, desc);
if (!IS_TSO_HEADER(txq_pcpu, buf_dma_addr))
dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
buf_sz, DMA_TO_DEVICE);
mvpp2_txq_desc_put(txq);
}
static void mvpp2_txdesc_clear_ptp(struct mvpp2_port *port,
struct mvpp2_tx_desc *desc)
{
/* We only need to clear the low bits */
if (port->priv->hw_version >= MVPP22)
desc->pp22.ptp_descriptor &=
cpu_to_le32(~MVPP22_PTP_DESC_MASK_LOW);
}
static bool mvpp2_tx_hw_tstamp(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
struct sk_buff *skb)
{
struct mvpp2_hwtstamp_queue *queue;
unsigned int mtype, type, i;
struct ptp_header *hdr;
u64 ptpdesc;
if (port->priv->hw_version == MVPP21 ||
port->tx_hwtstamp_type == HWTSTAMP_TX_OFF)
return false;
type = ptp_classify_raw(skb);
if (!type)
return false;
hdr = ptp_parse_header(skb, type);
if (!hdr)
return false;
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
ptpdesc = MVPP22_PTP_MACTIMESTAMPINGEN |
MVPP22_PTP_ACTION_CAPTURE;
queue = &port->tx_hwtstamp_queue[0];
switch (type & PTP_CLASS_VMASK) {
case PTP_CLASS_V1:
ptpdesc |= MVPP22_PTP_PACKETFORMAT(MVPP22_PTP_PKT_FMT_PTPV1);
break;
case PTP_CLASS_V2:
ptpdesc |= MVPP22_PTP_PACKETFORMAT(MVPP22_PTP_PKT_FMT_PTPV2);
mtype = hdr->tsmt & 15;
/* Direct PTP Sync messages to queue 1 */
if (mtype == 0) {
ptpdesc |= MVPP22_PTP_TIMESTAMPQUEUESELECT;
queue = &port->tx_hwtstamp_queue[1];
}
break;
}
/* Take a reference on the skb and insert into our queue */
i = queue->next;
queue->next = (i + 1) & 31;
if (queue->skb[i])
dev_kfree_skb_any(queue->skb[i]);
queue->skb[i] = skb_get(skb);
ptpdesc |= MVPP22_PTP_TIMESTAMPENTRYID(i);
/*
* 3:0 - PTPAction
* 6:4 - PTPPacketFormat
* 7 - PTP_CF_WraparoundCheckEn
* 9:8 - IngressTimestampSeconds[1:0]
* 10 - Reserved
* 11 - MACTimestampingEn
* 17:12 - PTP_TimestampQueueEntryID[5:0]
* 18 - PTPTimestampQueueSelect
* 19 - UDPChecksumUpdateEn
* 27:20 - TimestampOffset
* PTP, NTPTransmit, OWAMP/TWAMP - L3 to PTP header
* NTPTs, Y.1731 - L3 to timestamp entry
* 35:28 - UDP Checksum Offset
*
* stored in tx descriptor bits 75:64 (11:0) and 191:168 (35:12)
*/
tx_desc->pp22.ptp_descriptor &=
cpu_to_le32(~MVPP22_PTP_DESC_MASK_LOW);
tx_desc->pp22.ptp_descriptor |=
cpu_to_le32(ptpdesc & MVPP22_PTP_DESC_MASK_LOW);
tx_desc->pp22.buf_dma_addr_ptp &= cpu_to_le64(~0xffffff0000000000ULL);
tx_desc->pp22.buf_dma_addr_ptp |= cpu_to_le64((ptpdesc >> 12) << 40);
return true;
}
/* Handle tx fragmentation processing */
static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
struct mvpp2_tx_queue *aggr_txq,
struct mvpp2_tx_queue *txq)
{
unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id());
struct mvpp2_txq_pcpu *txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
struct mvpp2_tx_desc *tx_desc;
int i;
dma_addr_t buf_dma_addr;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
void *addr = skb_frag_address(frag);
tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
mvpp2_txdesc_clear_ptp(port, tx_desc);
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, skb_frag_size(frag));
buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
skb_frag_size(frag),
DMA_TO_DEVICE);
if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
mvpp2_txq_desc_put(txq);
goto cleanup;
}
mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
if (i == (skb_shinfo(skb)->nr_frags - 1)) {
/* Last descriptor */
mvpp2_txdesc_cmd_set(port, tx_desc,
MVPP2_TXD_L_DESC);
mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc, MVPP2_TYPE_SKB);
} else {
/* Descriptor in the middle: Not First, Not Last */
mvpp2_txdesc_cmd_set(port, tx_desc, 0);
mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc, MVPP2_TYPE_SKB);
}
}
return 0;
cleanup:
/* Release all descriptors that were used to map fragments of
* this packet, as well as the corresponding DMA mappings
*/
for (i = i - 1; i >= 0; i--) {
tx_desc = txq->descs + i;
tx_desc_unmap_put(port, txq, tx_desc);
}
return -ENOMEM;
}
static inline void mvpp2_tso_put_hdr(struct sk_buff *skb,
struct net_device *dev,
struct mvpp2_tx_queue *txq,
struct mvpp2_tx_queue *aggr_txq,
struct mvpp2_txq_pcpu *txq_pcpu,
int hdr_sz)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
dma_addr_t addr;
mvpp2_txdesc_clear_ptp(port, tx_desc);
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, hdr_sz);
addr = txq_pcpu->tso_headers_dma +
txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
mvpp2_txdesc_dma_addr_set(port, tx_desc, addr);
mvpp2_txdesc_cmd_set(port, tx_desc, mvpp2_skb_tx_csum(port, skb) |
MVPP2_TXD_F_DESC |
MVPP2_TXD_PADDING_DISABLE);
mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc, MVPP2_TYPE_SKB);
}
static inline int mvpp2_tso_put_data(struct sk_buff *skb,
struct net_device *dev, struct tso_t *tso,
struct mvpp2_tx_queue *txq,
struct mvpp2_tx_queue *aggr_txq,
struct mvpp2_txq_pcpu *txq_pcpu,
int sz, bool left, bool last)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
dma_addr_t buf_dma_addr;
mvpp2_txdesc_clear_ptp(port, tx_desc);
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, sz);
buf_dma_addr = dma_map_single(dev->dev.parent, tso->data, sz,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
mvpp2_txq_desc_put(txq);
return -ENOMEM;
}
mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
if (!left) {
mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC);
if (last) {
mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc, MVPP2_TYPE_SKB);
return 0;
}
} else {
mvpp2_txdesc_cmd_set(port, tx_desc, 0);
}
mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc, MVPP2_TYPE_SKB);
return 0;
}
static int mvpp2_tx_tso(struct sk_buff *skb, struct net_device *dev,
struct mvpp2_tx_queue *txq,
struct mvpp2_tx_queue *aggr_txq,
struct mvpp2_txq_pcpu *txq_pcpu)
{
struct mvpp2_port *port = netdev_priv(dev);
int hdr_sz, i, len, descs = 0;
struct tso_t tso;
/* Check number of available descriptors */
if (mvpp2_aggr_desc_num_check(port, aggr_txq, tso_count_descs(skb)) ||
mvpp2_txq_reserved_desc_num_proc(port, txq, txq_pcpu,
tso_count_descs(skb)))
return 0;
hdr_sz = tso_start(skb, &tso);
len = skb->len - hdr_sz;
while (len > 0) {
int left = min_t(int, skb_shinfo(skb)->gso_size, len);
char *hdr = txq_pcpu->tso_headers +
txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
len -= left;
descs++;
tso_build_hdr(skb, hdr, &tso, left, len == 0);
mvpp2_tso_put_hdr(skb, dev, txq, aggr_txq, txq_pcpu, hdr_sz);
while (left > 0) {
int sz = min_t(int, tso.size, left);
left -= sz;
descs++;
if (mvpp2_tso_put_data(skb, dev, &tso, txq, aggr_txq,
txq_pcpu, sz, left, len == 0))
goto release;
tso_build_data(skb, &tso, sz);
}
}
return descs;
release:
for (i = descs - 1; i >= 0; i--) {
struct mvpp2_tx_desc *tx_desc = txq->descs + i;
tx_desc_unmap_put(port, txq, tx_desc);
}
return 0;
}
/* Main tx processing */
static netdev_tx_t mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_tx_queue *txq, *aggr_txq;
struct mvpp2_txq_pcpu *txq_pcpu;
struct mvpp2_tx_desc *tx_desc;
dma_addr_t buf_dma_addr;
unsigned long flags = 0;
unsigned int thread;
int frags = 0;
u16 txq_id;
u32 tx_cmd;
thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id());
txq_id = skb_get_queue_mapping(skb);
txq = port->txqs[txq_id];
txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
aggr_txq = &port->priv->aggr_txqs[thread];
if (test_bit(thread, &port->priv->lock_map))
spin_lock_irqsave(&port->tx_lock[thread], flags);
if (skb_is_gso(skb)) {
frags = mvpp2_tx_tso(skb, dev, txq, aggr_txq, txq_pcpu);
goto out;
}
frags = skb_shinfo(skb)->nr_frags + 1;
/* Check number of available descriptors */
if (mvpp2_aggr_desc_num_check(port, aggr_txq, frags) ||
mvpp2_txq_reserved_desc_num_proc(port, txq, txq_pcpu, frags)) {
frags = 0;
goto out;
}
/* Get a descriptor for the first part of the packet */
tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ||
!mvpp2_tx_hw_tstamp(port, tx_desc, skb))
mvpp2_txdesc_clear_ptp(port, tx_desc);
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
mvpp2_txq_desc_put(txq);
frags = 0;
goto out;
}
mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
tx_cmd = mvpp2_skb_tx_csum(port, skb);
if (frags == 1) {
/* First and Last descriptor */
tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc, MVPP2_TYPE_SKB);
} else {
/* First but not Last */
tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc, MVPP2_TYPE_SKB);
/* Continue with other skb fragments */
if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
tx_desc_unmap_put(port, txq, tx_desc);
frags = 0;
}
}
out:
if (frags > 0) {
struct mvpp2_pcpu_stats *stats = per_cpu_ptr(port->stats, thread);
struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
txq_pcpu->reserved_num -= frags;
txq_pcpu->count += frags;
aggr_txq->count += frags;
/* Enable transmit */
wmb();
mvpp2_aggr_txq_pend_desc_add(port, frags);
if (txq_pcpu->count >= txq_pcpu->stop_threshold)
netif_tx_stop_queue(nq);
u64_stats_update_begin(&stats->syncp);
stats->tx_packets++;
stats->tx_bytes += skb->len;
u64_stats_update_end(&stats->syncp);
} else {
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
}
/* Finalize TX processing */
if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal)
mvpp2_txq_done(port, txq, txq_pcpu);
/* Set the timer in case not all frags were processed */
if (!port->has_tx_irqs && txq_pcpu->count <= frags &&
txq_pcpu->count > 0) {
struct mvpp2_port_pcpu *port_pcpu = per_cpu_ptr(port->pcpu, thread);
if (!port_pcpu->timer_scheduled) {
port_pcpu->timer_scheduled = true;
hrtimer_start(&port_pcpu->tx_done_timer,
MVPP2_TXDONE_HRTIMER_PERIOD_NS,
HRTIMER_MODE_REL_PINNED_SOFT);
}
}
if (test_bit(thread, &port->priv->lock_map))
spin_unlock_irqrestore(&port->tx_lock[thread], flags);
return NETDEV_TX_OK;
}
static inline void mvpp2_cause_error(struct net_device *dev, int cause)
{
if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
netdev_err(dev, "FCS error\n");
if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
netdev_err(dev, "rx fifo overrun error\n");
if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
netdev_err(dev, "tx fifo underrun error\n");
}
static int mvpp2_poll(struct napi_struct *napi, int budget)
{
u32 cause_rx_tx, cause_rx, cause_tx, cause_misc;
int rx_done = 0;
struct mvpp2_port *port = netdev_priv(napi->dev);
struct mvpp2_queue_vector *qv;
unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id());
qv = container_of(napi, struct mvpp2_queue_vector, napi);
/* Rx/Tx cause register
*
* Bits 0-15: each bit indicates received packets on the Rx queue
* (bit 0 is for Rx queue 0).
*
* Bits 16-23: each bit indicates transmitted packets on the Tx queue
* (bit 16 is for Tx queue 0).
*
* Each CPU has its own Rx/Tx cause register
*/
cause_rx_tx = mvpp2_thread_read_relaxed(port->priv, qv->sw_thread_id,
MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
if (cause_misc) {
mvpp2_cause_error(port->dev, cause_misc);
/* Clear the cause register */
mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
mvpp2_thread_write(port->priv, thread,
MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
}
if (port->has_tx_irqs) {
cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
if (cause_tx) {
cause_tx >>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET;
mvpp2_tx_done(port, cause_tx, qv->sw_thread_id);
}
}
/* Process RX packets */
cause_rx = cause_rx_tx &
MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK(port->priv->hw_version);
cause_rx <<= qv->first_rxq;
cause_rx |= qv->pending_cause_rx;
while (cause_rx && budget > 0) {
int count;
struct mvpp2_rx_queue *rxq;
rxq = mvpp2_get_rx_queue(port, cause_rx);
if (!rxq)
break;
count = mvpp2_rx(port, napi, budget, rxq);
rx_done += count;
budget -= count;
if (budget > 0) {
/* Clear the bit associated to this Rx queue
* so that next iteration will continue from
* the next Rx queue.
*/
cause_rx &= ~(1 << rxq->logic_rxq);
}
}
if (budget > 0) {
cause_rx = 0;
napi_complete_done(napi, rx_done);
mvpp2_qvec_interrupt_enable(qv);
}
qv->pending_cause_rx = cause_rx;
return rx_done;
}
static void mvpp22_mode_reconfigure(struct mvpp2_port *port,
phy_interface_t interface)
{
u32 ctrl3;
/* Set the GMAC & XLG MAC in reset */
mvpp2_mac_reset_assert(port);
/* Set the MPCS and XPCS in reset */
mvpp22_pcs_reset_assert(port);
/* comphy reconfiguration */
mvpp22_comphy_init(port, interface);
/* gop reconfiguration */
mvpp22_gop_init(port, interface);
mvpp22_pcs_reset_deassert(port, interface);
if (mvpp2_port_supports_xlg(port)) {
ctrl3 = readl(port->base + MVPP22_XLG_CTRL3_REG);
ctrl3 &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
if (mvpp2_is_xlg(interface))
ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_10G;
else
ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
writel(ctrl3, port->base + MVPP22_XLG_CTRL3_REG);
}
if (mvpp2_port_supports_xlg(port) && mvpp2_is_xlg(interface))
mvpp2_xlg_max_rx_size_set(port);
else
mvpp2_gmac_max_rx_size_set(port);
}
/* Set hw internals when starting port */
static void mvpp2_start_dev(struct mvpp2_port *port)
{
int i;
mvpp2_txp_max_tx_size_set(port);
for (i = 0; i < port->nqvecs; i++)
napi_enable(&port->qvecs[i].napi);
/* Enable interrupts on all threads */
mvpp2_interrupts_enable(port);
if (port->priv->hw_version >= MVPP22)
mvpp22_mode_reconfigure(port, port->phy_interface);
if (port->phylink) {
phylink_start(port->phylink);
} else {
mvpp2_acpi_start(port);
}
netif_tx_start_all_queues(port->dev);
clear_bit(0, &port->state);
}
/* Set hw internals when stopping port */
static void mvpp2_stop_dev(struct mvpp2_port *port)
{
int i;
set_bit(0, &port->state);
/* Disable interrupts on all threads */
mvpp2_interrupts_disable(port);
for (i = 0; i < port->nqvecs; i++)
napi_disable(&port->qvecs[i].napi);
if (port->phylink)
phylink_stop(port->phylink);
phy_power_off(port->comphy);
}
static int mvpp2_check_ringparam_valid(struct net_device *dev,
struct ethtool_ringparam *ring)
{
u16 new_rx_pending = ring->rx_pending;
u16 new_tx_pending = ring->tx_pending;
if (ring->rx_pending == 0 || ring->tx_pending == 0)
return -EINVAL;
if (ring->rx_pending > MVPP2_MAX_RXD_MAX)
new_rx_pending = MVPP2_MAX_RXD_MAX;
else if (ring->rx_pending < MSS_THRESHOLD_START)
new_rx_pending = MSS_THRESHOLD_START;
else if (!IS_ALIGNED(ring->rx_pending, 16))
new_rx_pending = ALIGN(ring->rx_pending, 16);
if (ring->tx_pending > MVPP2_MAX_TXD_MAX)
new_tx_pending = MVPP2_MAX_TXD_MAX;
else if (!IS_ALIGNED(ring->tx_pending, 32))
new_tx_pending = ALIGN(ring->tx_pending, 32);
/* The Tx ring size cannot be smaller than the minimum number of
* descriptors needed for TSO.
*/
if (new_tx_pending < MVPP2_MAX_SKB_DESCS)
new_tx_pending = ALIGN(MVPP2_MAX_SKB_DESCS, 32);
if (ring->rx_pending != new_rx_pending) {
netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
ring->rx_pending, new_rx_pending);
ring->rx_pending = new_rx_pending;
}
if (ring->tx_pending != new_tx_pending) {
netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
ring->tx_pending, new_tx_pending);
ring->tx_pending = new_tx_pending;
}
return 0;
}
static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
{
u32 mac_addr_l, mac_addr_m, mac_addr_h;
mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
addr[0] = (mac_addr_h >> 24) & 0xFF;
addr[1] = (mac_addr_h >> 16) & 0xFF;
addr[2] = (mac_addr_h >> 8) & 0xFF;
addr[3] = mac_addr_h & 0xFF;
addr[4] = mac_addr_m & 0xFF;
addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
}
static int mvpp2_irqs_init(struct mvpp2_port *port)
{
int err, i;
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *qv = port->qvecs + i;
if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE) {
qv->mask = kzalloc(cpumask_size(), GFP_KERNEL);
if (!qv->mask) {
err = -ENOMEM;
goto err;
}
irq_set_status_flags(qv->irq, IRQ_NO_BALANCING);
}
err = request_irq(qv->irq, mvpp2_isr, 0, port->dev->name, qv);
if (err)
goto err;
if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE) {
unsigned int cpu;
for_each_present_cpu(cpu) {
if (mvpp2_cpu_to_thread(port->priv, cpu) ==
qv->sw_thread_id)
cpumask_set_cpu(cpu, qv->mask);
}
irq_set_affinity_hint(qv->irq, qv->mask);
}
}
return 0;
err:
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *qv = port->qvecs + i;
irq_set_affinity_hint(qv->irq, NULL);
kfree(qv->mask);
qv->mask = NULL;
free_irq(qv->irq, qv);
}
return err;
}
static void mvpp2_irqs_deinit(struct mvpp2_port *port)
{
int i;
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *qv = port->qvecs + i;
irq_set_affinity_hint(qv->irq, NULL);
kfree(qv->mask);
qv->mask = NULL;
irq_clear_status_flags(qv->irq, IRQ_NO_BALANCING);
free_irq(qv->irq, qv);
}
}
static bool mvpp22_rss_is_supported(struct mvpp2_port *port)
{
return (queue_mode == MVPP2_QDIST_MULTI_MODE) &&
!(port->flags & MVPP2_F_LOOPBACK);
}
static int mvpp2_open(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2 *priv = port->priv;
unsigned char mac_bcast[ETH_ALEN] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
bool valid = false;
int err;
err = mvpp2_prs_mac_da_accept(port, mac_bcast, true);
if (err) {
netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
return err;
}
err = mvpp2_prs_mac_da_accept(port, dev->dev_addr, true);
if (err) {
netdev_err(dev, "mvpp2_prs_mac_da_accept own addr failed\n");
return err;
}
err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
if (err) {
netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
return err;
}
err = mvpp2_prs_def_flow(port);
if (err) {
netdev_err(dev, "mvpp2_prs_def_flow failed\n");
return err;
}
/* Allocate the Rx/Tx queues */
err = mvpp2_setup_rxqs(port);
if (err) {
netdev_err(port->dev, "cannot allocate Rx queues\n");
return err;
}
err = mvpp2_setup_txqs(port);
if (err) {
netdev_err(port->dev, "cannot allocate Tx queues\n");
goto err_cleanup_rxqs;
}
err = mvpp2_irqs_init(port);
if (err) {
netdev_err(port->dev, "cannot init IRQs\n");
goto err_cleanup_txqs;
}
if (port->phylink) {
err = phylink_fwnode_phy_connect(port->phylink, port->fwnode, 0);
if (err) {
netdev_err(port->dev, "could not attach PHY (%d)\n",
err);
goto err_free_irq;
}
valid = true;
}
if (priv->hw_version >= MVPP22 && port->port_irq) {
err = request_irq(port->port_irq, mvpp2_port_isr, 0,
dev->name, port);
if (err) {
netdev_err(port->dev,
"cannot request port link/ptp IRQ %d\n",
port->port_irq);
goto err_free_irq;
}
mvpp22_gop_setup_irq(port);
/* In default link is down */
netif_carrier_off(port->dev);
valid = true;
} else {
port->port_irq = 0;
}
if (!valid) {
netdev_err(port->dev,
"invalid configuration: no dt or link IRQ");
err = -ENOENT;
goto err_free_irq;
}
/* Unmask interrupts on all CPUs */
on_each_cpu(mvpp2_interrupts_unmask, port, 1);
mvpp2_shared_interrupt_mask_unmask(port, false);
mvpp2_start_dev(port);
/* Start hardware statistics gathering */
queue_delayed_work(priv->stats_queue, &port->stats_work,
MVPP2_MIB_COUNTERS_STATS_DELAY);
return 0;
err_free_irq:
mvpp2_irqs_deinit(port);
err_cleanup_txqs:
mvpp2_cleanup_txqs(port);
err_cleanup_rxqs:
mvpp2_cleanup_rxqs(port);
return err;
}
static int mvpp2_stop(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
struct mvpp2_port_pcpu *port_pcpu;
unsigned int thread;
mvpp2_stop_dev(port);
/* Mask interrupts on all threads */
on_each_cpu(mvpp2_interrupts_mask, port, 1);
mvpp2_shared_interrupt_mask_unmask(port, true);
if (port->phylink)
phylink_disconnect_phy(port->phylink);
if (port->port_irq)
free_irq(port->port_irq, port);
mvpp2_irqs_deinit(port);
if (!port->has_tx_irqs) {
for (thread = 0; thread < port->priv->nthreads; thread++) {
port_pcpu = per_cpu_ptr(port->pcpu, thread);
hrtimer_cancel(&port_pcpu->tx_done_timer);
port_pcpu->timer_scheduled = false;
}
}
mvpp2_cleanup_rxqs(port);
mvpp2_cleanup_txqs(port);
cancel_delayed_work_sync(&port->stats_work);
mvpp2_mac_reset_assert(port);
mvpp22_pcs_reset_assert(port);
return 0;
}
static int mvpp2_prs_mac_da_accept_list(struct mvpp2_port *port,
struct netdev_hw_addr_list *list)
{
struct netdev_hw_addr *ha;
int ret;
netdev_hw_addr_list_for_each(ha, list) {
ret = mvpp2_prs_mac_da_accept(port, ha->addr, true);
if (ret)
return ret;
}
return 0;
}
static void mvpp2_set_rx_promisc(struct mvpp2_port *port, bool enable)
{
if (!enable && (port->dev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
mvpp2_prs_vid_enable_filtering(port);
else
mvpp2_prs_vid_disable_filtering(port);
mvpp2_prs_mac_promisc_set(port->priv, port->id,
MVPP2_PRS_L2_UNI_CAST, enable);
mvpp2_prs_mac_promisc_set(port->priv, port->id,
MVPP2_PRS_L2_MULTI_CAST, enable);
}
static void mvpp2_set_rx_mode(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
/* Clear the whole UC and MC list */
mvpp2_prs_mac_del_all(port);
if (dev->flags & IFF_PROMISC) {
mvpp2_set_rx_promisc(port, true);
return;
}
mvpp2_set_rx_promisc(port, false);
if (netdev_uc_count(dev) > MVPP2_PRS_MAC_UC_FILT_MAX ||
mvpp2_prs_mac_da_accept_list(port, &dev->uc))
mvpp2_prs_mac_promisc_set(port->priv, port->id,
MVPP2_PRS_L2_UNI_CAST, true);
if (dev->flags & IFF_ALLMULTI) {
mvpp2_prs_mac_promisc_set(port->priv, port->id,
MVPP2_PRS_L2_MULTI_CAST, true);
return;
}
if (netdev_mc_count(dev) > MVPP2_PRS_MAC_MC_FILT_MAX ||
mvpp2_prs_mac_da_accept_list(port, &dev->mc))
mvpp2_prs_mac_promisc_set(port->priv, port->id,
MVPP2_PRS_L2_MULTI_CAST, true);
}
static int mvpp2_set_mac_address(struct net_device *dev, void *p)
{
const struct sockaddr *addr = p;
int err;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
if (err) {
/* Reconfigure parser accept the original MAC address */
mvpp2_prs_update_mac_da(dev, dev->dev_addr);
netdev_err(dev, "failed to change MAC address\n");
}
return err;
}
/* Shut down all the ports, reconfigure the pools as percpu or shared,
* then bring up again all ports.
*/
static int mvpp2_bm_switch_buffers(struct mvpp2 *priv, bool percpu)
{
bool change_percpu = (percpu != priv->percpu_pools);
int numbufs = MVPP2_BM_POOLS_NUM, i;
struct mvpp2_port *port = NULL;
bool status[MVPP2_MAX_PORTS];
for (i = 0; i < priv->port_count; i++) {
port = priv->port_list[i];
status[i] = netif_running(port->dev);
if (status[i])
mvpp2_stop(port->dev);
}
/* nrxqs is the same for all ports */
if (priv->percpu_pools)
numbufs = port->nrxqs * 2;
if (change_percpu)
mvpp2_bm_pool_update_priv_fc(priv, false);
for (i = 0; i < numbufs; i++)
mvpp2_bm_pool_destroy(port->dev->dev.parent, priv, &priv->bm_pools[i]);
devm_kfree(port->dev->dev.parent, priv->bm_pools);
priv->percpu_pools = percpu;
mvpp2_bm_init(port->dev->dev.parent, priv);
for (i = 0; i < priv->port_count; i++) {
port = priv->port_list[i];
if (percpu && port->ntxqs >= num_possible_cpus() * 2)
xdp_set_features_flag(port->dev,
NETDEV_XDP_ACT_BASIC |
NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_NDO_XMIT);
else
xdp_clear_features_flag(port->dev);
mvpp2_swf_bm_pool_init(port);
if (status[i])
mvpp2_open(port->dev);
}
if (change_percpu)
mvpp2_bm_pool_update_priv_fc(priv, true);
return 0;
}
static int mvpp2_change_mtu(struct net_device *dev, int mtu)
{
struct mvpp2_port *port = netdev_priv(dev);
bool running = netif_running(dev);
struct mvpp2 *priv = port->priv;
int err;
if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
}
if (port->xdp_prog && mtu > MVPP2_MAX_RX_BUF_SIZE) {
netdev_err(dev, "Illegal MTU value %d (> %d) for XDP mode\n",
mtu, (int)MVPP2_MAX_RX_BUF_SIZE);
return -EINVAL;
}
if (MVPP2_RX_PKT_SIZE(mtu) > MVPP2_BM_LONG_PKT_SIZE) {
if (priv->percpu_pools) {
netdev_warn(dev, "mtu %d too high, switching to shared buffers", mtu);
mvpp2_bm_switch_buffers(priv, false);
}
} else {
bool jumbo = false;
int i;
for (i = 0; i < priv->port_count; i++)
if (priv->port_list[i] != port &&
MVPP2_RX_PKT_SIZE(priv->port_list[i]->dev->mtu) >
MVPP2_BM_LONG_PKT_SIZE) {
jumbo = true;
break;
}
/* No port is using jumbo frames */
if (!jumbo) {
dev_info(port->dev->dev.parent,
"all ports have a low MTU, switching to per-cpu buffers");
mvpp2_bm_switch_buffers(priv, true);
}
}
if (running)
mvpp2_stop_dev(port);
err = mvpp2_bm_update_mtu(dev, mtu);
if (err) {
netdev_err(dev, "failed to change MTU\n");
/* Reconfigure BM to the original MTU */
mvpp2_bm_update_mtu(dev, dev->mtu);
} else {
port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
}
if (running) {
mvpp2_start_dev(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
}
return err;
}
static int mvpp2_check_pagepool_dma(struct mvpp2_port *port)
{
enum dma_data_direction dma_dir = DMA_FROM_DEVICE;
struct mvpp2 *priv = port->priv;
int err = -1, i;
if (!priv->percpu_pools)
return err;
if (!priv->page_pool[0])
return -ENOMEM;
for (i = 0; i < priv->port_count; i++) {
port = priv->port_list[i];
if (port->xdp_prog) {
dma_dir = DMA_BIDIRECTIONAL;
break;
}
}
/* All pools are equal in terms of DMA direction */
if (priv->page_pool[0]->p.dma_dir != dma_dir)
err = mvpp2_bm_switch_buffers(priv, true);
return err;
}
static void
mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct mvpp2_port *port = netdev_priv(dev);
unsigned int start;
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct mvpp2_pcpu_stats *cpu_stats;
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
cpu_stats = per_cpu_ptr(port->stats, cpu);
do {
start = u64_stats_fetch_begin(&cpu_stats->syncp);
rx_packets = cpu_stats->rx_packets;
rx_bytes = cpu_stats->rx_bytes;
tx_packets = cpu_stats->tx_packets;
tx_bytes = cpu_stats->tx_bytes;
} while (u64_stats_fetch_retry(&cpu_stats->syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
}
stats->rx_errors = dev->stats.rx_errors;
stats->rx_dropped = dev->stats.rx_dropped;
stats->tx_dropped = dev->stats.tx_dropped;
}
static int mvpp2_set_ts_config(struct mvpp2_port *port, struct ifreq *ifr)
{
struct hwtstamp_config config;
void __iomem *ptp;
u32 gcr, int_mask;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
if (config.tx_type != HWTSTAMP_TX_OFF &&
config.tx_type != HWTSTAMP_TX_ON)
return -ERANGE;
ptp = port->priv->iface_base + MVPP22_PTP_BASE(port->gop_id);
int_mask = gcr = 0;
if (config.tx_type != HWTSTAMP_TX_OFF) {
gcr |= MVPP22_PTP_GCR_TSU_ENABLE | MVPP22_PTP_GCR_TX_RESET;
int_mask |= MVPP22_PTP_INT_MASK_QUEUE1 |
MVPP22_PTP_INT_MASK_QUEUE0;
}
/* It seems we must also release the TX reset when enabling the TSU */
if (config.rx_filter != HWTSTAMP_FILTER_NONE)
gcr |= MVPP22_PTP_GCR_TSU_ENABLE | MVPP22_PTP_GCR_RX_RESET |
MVPP22_PTP_GCR_TX_RESET;
if (gcr & MVPP22_PTP_GCR_TSU_ENABLE)
mvpp22_tai_start(port->priv->tai);
if (config.rx_filter != HWTSTAMP_FILTER_NONE) {
config.rx_filter = HWTSTAMP_FILTER_ALL;
mvpp2_modify(ptp + MVPP22_PTP_GCR,
MVPP22_PTP_GCR_RX_RESET |
MVPP22_PTP_GCR_TX_RESET |
MVPP22_PTP_GCR_TSU_ENABLE, gcr);
port->rx_hwtstamp = true;
} else {
port->rx_hwtstamp = false;
mvpp2_modify(ptp + MVPP22_PTP_GCR,
MVPP22_PTP_GCR_RX_RESET |
MVPP22_PTP_GCR_TX_RESET |
MVPP22_PTP_GCR_TSU_ENABLE, gcr);
}
mvpp2_modify(ptp + MVPP22_PTP_INT_MASK,
MVPP22_PTP_INT_MASK_QUEUE1 |
MVPP22_PTP_INT_MASK_QUEUE0, int_mask);
if (!(gcr & MVPP22_PTP_GCR_TSU_ENABLE))
mvpp22_tai_stop(port->priv->tai);
port->tx_hwtstamp_type = config.tx_type;
if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
return -EFAULT;
return 0;
}
static int mvpp2_get_ts_config(struct mvpp2_port *port, struct ifreq *ifr)
{
struct hwtstamp_config config;
memset(&config, 0, sizeof(config));
config.tx_type = port->tx_hwtstamp_type;
config.rx_filter = port->rx_hwtstamp ?
HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
return -EFAULT;
return 0;
}
static int mvpp2_ethtool_get_ts_info(struct net_device *dev,
struct ethtool_ts_info *info)
{
struct mvpp2_port *port = netdev_priv(dev);
if (!port->hwtstamp)
return -EOPNOTSUPP;
info->phc_index = mvpp22_tai_ptp_clock_index(port->priv->tai);
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->tx_types = BIT(HWTSTAMP_TX_OFF) |
BIT(HWTSTAMP_TX_ON);
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_ALL);
return 0;
}
static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mvpp2_port *port = netdev_priv(dev);
switch (cmd) {
case SIOCSHWTSTAMP:
if (port->hwtstamp)
return mvpp2_set_ts_config(port, ifr);
break;
case SIOCGHWTSTAMP:
if (port->hwtstamp)
return mvpp2_get_ts_config(port, ifr);
break;
}
if (!port->phylink)
return -ENOTSUPP;
return phylink_mii_ioctl(port->phylink, ifr, cmd);
}
static int mvpp2_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
{
struct mvpp2_port *port = netdev_priv(dev);
int ret;
ret = mvpp2_prs_vid_entry_add(port, vid);
if (ret)
netdev_err(dev, "rx-vlan-filter offloading cannot accept more than %d VIDs per port\n",
MVPP2_PRS_VLAN_FILT_MAX - 1);
return ret;
}
static int mvpp2_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
{
struct mvpp2_port *port = netdev_priv(dev);
mvpp2_prs_vid_entry_remove(port, vid);
return 0;
}
static int mvpp2_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t changed = dev->features ^ features;
struct mvpp2_port *port = netdev_priv(dev);
if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
mvpp2_prs_vid_enable_filtering(port);
} else {
/* Invalidate all registered VID filters for this
* port
*/
mvpp2_prs_vid_remove_all(port);
mvpp2_prs_vid_disable_filtering(port);
}
}
if (changed & NETIF_F_RXHASH) {
if (features & NETIF_F_RXHASH)
mvpp22_port_rss_enable(port);
else
mvpp22_port_rss_disable(port);
}
return 0;
}
static int mvpp2_xdp_setup(struct mvpp2_port *port, struct netdev_bpf *bpf)
{
struct bpf_prog *prog = bpf->prog, *old_prog;
bool running = netif_running(port->dev);
bool reset = !prog != !port->xdp_prog;
if (port->dev->mtu > MVPP2_MAX_RX_BUF_SIZE) {
NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
return -EOPNOTSUPP;
}
if (!port->priv->percpu_pools) {
NL_SET_ERR_MSG_MOD(bpf->extack, "Per CPU Pools required for XDP");
return -EOPNOTSUPP;
}
if (port->ntxqs < num_possible_cpus() * 2) {
NL_SET_ERR_MSG_MOD(bpf->extack, "XDP_TX needs two TX queues per CPU");
return -EOPNOTSUPP;
}
/* device is up and bpf is added/removed, must setup the RX queues */
if (running && reset)
mvpp2_stop(port->dev);
old_prog = xchg(&port->xdp_prog, prog);
if (old_prog)
bpf_prog_put(old_prog);
/* bpf is just replaced, RXQ and MTU are already setup */
if (!reset)
return 0;
/* device was up, restore the link */
if (running)
mvpp2_open(port->dev);
/* Check Page Pool DMA Direction */
mvpp2_check_pagepool_dma(port);
return 0;
}
static int mvpp2_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
struct mvpp2_port *port = netdev_priv(dev);
switch (xdp->command) {
case XDP_SETUP_PROG:
return mvpp2_xdp_setup(port, xdp);
default:
return -EINVAL;
}
}
/* Ethtool methods */
static int mvpp2_ethtool_nway_reset(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
if (!port->phylink)
return -ENOTSUPP;
return phylink_ethtool_nway_reset(port->phylink);
}
/* Set interrupt coalescing for ethtools */
static int
mvpp2_ethtool_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *c,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
struct mvpp2_port *port = netdev_priv(dev);
int queue;
for (queue = 0; queue < port->nrxqs; queue++) {
struct mvpp2_rx_queue *rxq = port->rxqs[queue];
rxq->time_coal = c->rx_coalesce_usecs;
rxq->pkts_coal = c->rx_max_coalesced_frames;
mvpp2_rx_pkts_coal_set(port, rxq);
mvpp2_rx_time_coal_set(port, rxq);
}
if (port->has_tx_irqs) {
port->tx_time_coal = c->tx_coalesce_usecs;
mvpp2_tx_time_coal_set(port);
}
for (queue = 0; queue < port->ntxqs; queue++) {
struct mvpp2_tx_queue *txq = port->txqs[queue];
txq->done_pkts_coal = c->tx_max_coalesced_frames;
if (port->has_tx_irqs)
mvpp2_tx_pkts_coal_set(port, txq);
}
return 0;
}
/* get coalescing for ethtools */
static int
mvpp2_ethtool_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *c,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
struct mvpp2_port *port = netdev_priv(dev);
c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
c->tx_coalesce_usecs = port->tx_time_coal;
return 0;
}
static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *drvinfo)
{
strscpy(drvinfo->driver, MVPP2_DRIVER_NAME,
sizeof(drvinfo->driver));
strscpy(drvinfo->version, MVPP2_DRIVER_VERSION,
sizeof(drvinfo->version));
strscpy(drvinfo->bus_info, dev_name(&dev->dev),
sizeof(drvinfo->bus_info));
}
static void
mvpp2_ethtool_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct mvpp2_port *port = netdev_priv(dev);
ring->rx_max_pending = MVPP2_MAX_RXD_MAX;
ring->tx_max_pending = MVPP2_MAX_TXD_MAX;
ring->rx_pending = port->rx_ring_size;
ring->tx_pending = port->tx_ring_size;
}
static int
mvpp2_ethtool_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct mvpp2_port *port = netdev_priv(dev);
u16 prev_rx_ring_size = port->rx_ring_size;
u16 prev_tx_ring_size = port->tx_ring_size;
int err;
err = mvpp2_check_ringparam_valid(dev, ring);
if (err)
return err;
if (!netif_running(dev)) {
port->rx_ring_size = ring->rx_pending;
port->tx_ring_size = ring->tx_pending;
return 0;
}
/* The interface is running, so we have to force a
* reallocation of the queues
*/
mvpp2_stop_dev(port);
mvpp2_cleanup_rxqs(port);
mvpp2_cleanup_txqs(port);
port->rx_ring_size = ring->rx_pending;
port->tx_ring_size = ring->tx_pending;
err = mvpp2_setup_rxqs(port);
if (err) {
/* Reallocate Rx queues with the original ring size */
port->rx_ring_size = prev_rx_ring_size;
ring->rx_pending = prev_rx_ring_size;
err = mvpp2_setup_rxqs(port);
if (err)
goto err_out;
}
err = mvpp2_setup_txqs(port);
if (err) {
/* Reallocate Tx queues with the original ring size */
port->tx_ring_size = prev_tx_ring_size;
ring->tx_pending = prev_tx_ring_size;
err = mvpp2_setup_txqs(port);
if (err)
goto err_clean_rxqs;
}
mvpp2_start_dev(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
return 0;
err_clean_rxqs:
mvpp2_cleanup_rxqs(port);
err_out:
netdev_err(dev, "failed to change ring parameters");
return err;
}
static void mvpp2_ethtool_get_pause_param(struct net_device *dev,
struct ethtool_pauseparam *pause)
{
struct mvpp2_port *port = netdev_priv(dev);
if (!port->phylink)
return;
phylink_ethtool_get_pauseparam(port->phylink, pause);
}
static int mvpp2_ethtool_set_pause_param(struct net_device *dev,
struct ethtool_pauseparam *pause)
{
struct mvpp2_port *port = netdev_priv(dev);
if (!port->phylink)
return -ENOTSUPP;
return phylink_ethtool_set_pauseparam(port->phylink, pause);
}
static int mvpp2_ethtool_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct mvpp2_port *port = netdev_priv(dev);
if (!port->phylink)
return -ENOTSUPP;
return phylink_ethtool_ksettings_get(port->phylink, cmd);
}
static int mvpp2_ethtool_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct mvpp2_port *port = netdev_priv(dev);
if (!port->phylink)
return -ENOTSUPP;
return phylink_ethtool_ksettings_set(port->phylink, cmd);
}
static int mvpp2_ethtool_get_rxnfc(struct net_device *dev,
struct ethtool_rxnfc *info, u32 *rules)
{
struct mvpp2_port *port = netdev_priv(dev);
int ret = 0, i, loc = 0;
if (!mvpp22_rss_is_supported(port))
return -EOPNOTSUPP;
switch (info->cmd) {
case ETHTOOL_GRXFH:
ret = mvpp2_ethtool_rxfh_get(port, info);
break;
case ETHTOOL_GRXRINGS:
info->data = port->nrxqs;
break;
case ETHTOOL_GRXCLSRLCNT:
info->rule_cnt = port->n_rfs_rules;
break;
case ETHTOOL_GRXCLSRULE:
ret = mvpp2_ethtool_cls_rule_get(port, info);
break;
case ETHTOOL_GRXCLSRLALL:
for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
if (port->rfs_rules[i])
rules[loc++] = i;
}
break;
default:
return -ENOTSUPP;
}
return ret;
}
static int mvpp2_ethtool_set_rxnfc(struct net_device *dev,
struct ethtool_rxnfc *info)
{
struct mvpp2_port *port = netdev_priv(dev);
int ret = 0;
if (!mvpp22_rss_is_supported(port))
return -EOPNOTSUPP;
switch (info->cmd) {
case ETHTOOL_SRXFH:
ret = mvpp2_ethtool_rxfh_set(port, info);
break;
case ETHTOOL_SRXCLSRLINS:
ret = mvpp2_ethtool_cls_rule_ins(port, info);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = mvpp2_ethtool_cls_rule_del(port, info);
break;
default:
return -EOPNOTSUPP;
}
return ret;
}
static u32 mvpp2_ethtool_get_rxfh_indir_size(struct net_device *dev)
{
struct mvpp2_port *port = netdev_priv(dev);
return mvpp22_rss_is_supported(port) ? MVPP22_RSS_TABLE_ENTRIES : 0;
}
static int mvpp2_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
u8 *hfunc)
{
struct mvpp2_port *port = netdev_priv(dev);
int ret = 0;
if (!mvpp22_rss_is_supported(port))
return -EOPNOTSUPP;
if (indir)
ret = mvpp22_port_rss_ctx_indir_get(port, 0, indir);
if (hfunc)
*hfunc = ETH_RSS_HASH_CRC32;
return ret;
}
static int mvpp2_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
const u8 *key, const u8 hfunc)
{
struct mvpp2_port *port = netdev_priv(dev);
int ret = 0;
if (!mvpp22_rss_is_supported(port))
return -EOPNOTSUPP;
if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_CRC32)
return -EOPNOTSUPP;
if (key)
return -EOPNOTSUPP;
if (indir)
ret = mvpp22_port_rss_ctx_indir_set(port, 0, indir);
return ret;
}
static int mvpp2_ethtool_get_rxfh_context(struct net_device *dev, u32 *indir,
u8 *key, u8 *hfunc, u32 rss_context)
{
struct mvpp2_port *port = netdev_priv(dev);
int ret = 0;
if (!mvpp22_rss_is_supported(port))
return -EOPNOTSUPP;
if (rss_context >= MVPP22_N_RSS_TABLES)
return -EINVAL;
if (hfunc)
*hfunc = ETH_RSS_HASH_CRC32;
if (indir)
ret = mvpp22_port_rss_ctx_indir_get(port, rss_context, indir);
return ret;
}
static int mvpp2_ethtool_set_rxfh_context(struct net_device *dev,
const u32 *indir, const u8 *key,
const u8 hfunc, u32 *rss_context,
bool delete)
{
struct mvpp2_port *port = netdev_priv(dev);
int ret;
if (!mvpp22_rss_is_supported(port))
return -EOPNOTSUPP;
if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_CRC32)
return -EOPNOTSUPP;
if (key)
return -EOPNOTSUPP;
if (delete)
return mvpp22_port_rss_ctx_delete(port, *rss_context);
if (*rss_context == ETH_RXFH_CONTEXT_ALLOC) {
ret = mvpp22_port_rss_ctx_create(port, rss_context);
if (ret)
return ret;
}
return mvpp22_port_rss_ctx_indir_set(port, *rss_context, indir);
}
/* Device ops */
static const struct net_device_ops mvpp2_netdev_ops = {
.ndo_open = mvpp2_open,
.ndo_stop = mvpp2_stop,
.ndo_start_xmit = mvpp2_tx,
.ndo_set_rx_mode = mvpp2_set_rx_mode,
.ndo_set_mac_address = mvpp2_set_mac_address,
.ndo_change_mtu = mvpp2_change_mtu,
.ndo_get_stats64 = mvpp2_get_stats64,
.ndo_eth_ioctl = mvpp2_ioctl,
.ndo_vlan_rx_add_vid = mvpp2_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = mvpp2_vlan_rx_kill_vid,
.ndo_set_features = mvpp2_set_features,
.ndo_bpf = mvpp2_xdp,
.ndo_xdp_xmit = mvpp2_xdp_xmit,
};
static const struct ethtool_ops mvpp2_eth_tool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
ETHTOOL_COALESCE_MAX_FRAMES,
.nway_reset = mvpp2_ethtool_nway_reset,
.get_link = ethtool_op_get_link,
.get_ts_info = mvpp2_ethtool_get_ts_info,
.set_coalesce = mvpp2_ethtool_set_coalesce,
.get_coalesce = mvpp2_ethtool_get_coalesce,
.get_drvinfo = mvpp2_ethtool_get_drvinfo,
.get_ringparam = mvpp2_ethtool_get_ringparam,
.set_ringparam = mvpp2_ethtool_set_ringparam,
.get_strings = mvpp2_ethtool_get_strings,
.get_ethtool_stats = mvpp2_ethtool_get_stats,
.get_sset_count = mvpp2_ethtool_get_sset_count,
.get_pauseparam = mvpp2_ethtool_get_pause_param,
.set_pauseparam = mvpp2_ethtool_set_pause_param,
.get_link_ksettings = mvpp2_ethtool_get_link_ksettings,
.set_link_ksettings = mvpp2_ethtool_set_link_ksettings,
.get_rxnfc = mvpp2_ethtool_get_rxnfc,
.set_rxnfc = mvpp2_ethtool_set_rxnfc,
.get_rxfh_indir_size = mvpp2_ethtool_get_rxfh_indir_size,
.get_rxfh = mvpp2_ethtool_get_rxfh,
.set_rxfh = mvpp2_ethtool_set_rxfh,
.get_rxfh_context = mvpp2_ethtool_get_rxfh_context,
.set_rxfh_context = mvpp2_ethtool_set_rxfh_context,
};
/* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that
* had a single IRQ defined per-port.
*/
static int mvpp2_simple_queue_vectors_init(struct mvpp2_port *port,
struct device_node *port_node)
{
struct mvpp2_queue_vector *v = &port->qvecs[0];
v->first_rxq = 0;
v->nrxqs = port->nrxqs;
v->type = MVPP2_QUEUE_VECTOR_SHARED;
v->sw_thread_id = 0;
v->sw_thread_mask = *cpumask_bits(cpu_online_mask);
v->port = port;
v->irq = irq_of_parse_and_map(port_node, 0);
if (v->irq <= 0)
return -EINVAL;
netif_napi_add(port->dev, &v->napi, mvpp2_poll);
port->nqvecs = 1;
return 0;
}
static int mvpp2_multi_queue_vectors_init(struct mvpp2_port *port,
struct device_node *port_node)
{
struct mvpp2 *priv = port->priv;
struct mvpp2_queue_vector *v;
int i, ret;
switch (queue_mode) {
case MVPP2_QDIST_SINGLE_MODE:
port->nqvecs = priv->nthreads + 1;
break;
case MVPP2_QDIST_MULTI_MODE:
port->nqvecs = priv->nthreads;
break;
}
for (i = 0; i < port->nqvecs; i++) {
char irqname[16];
v = port->qvecs + i;
v->port = port;
v->type = MVPP2_QUEUE_VECTOR_PRIVATE;
v->sw_thread_id = i;
v->sw_thread_mask = BIT(i);
if (port->flags & MVPP2_F_DT_COMPAT)
snprintf(irqname, sizeof(irqname), "tx-cpu%d", i);
else
snprintf(irqname, sizeof(irqname), "hif%d", i);
if (queue_mode == MVPP2_QDIST_MULTI_MODE) {
v->first_rxq = i;
v->nrxqs = 1;
} else if (queue_mode == MVPP2_QDIST_SINGLE_MODE &&
i == (port->nqvecs - 1)) {
v->first_rxq = 0;
v->nrxqs = port->nrxqs;
v->type = MVPP2_QUEUE_VECTOR_SHARED;
if (port->flags & MVPP2_F_DT_COMPAT)
strncpy(irqname, "rx-shared", sizeof(irqname));
}
if (port_node)
v->irq = of_irq_get_byname(port_node, irqname);
else
v->irq = fwnode_irq_get(port->fwnode, i);
if (v->irq <= 0) {
ret = -EINVAL;
goto err;
}
netif_napi_add(port->dev, &v->napi, mvpp2_poll);
}
return 0;
err:
for (i = 0; i < port->nqvecs; i++)
irq_dispose_mapping(port->qvecs[i].irq);
return ret;
}
static int mvpp2_queue_vectors_init(struct mvpp2_port *port,
struct device_node *port_node)
{
if (port->has_tx_irqs)
return mvpp2_multi_queue_vectors_init(port, port_node);
else
return mvpp2_simple_queue_vectors_init(port, port_node);
}
static void mvpp2_queue_vectors_deinit(struct mvpp2_port *port)
{
int i;
for (i = 0; i < port->nqvecs; i++)
irq_dispose_mapping(port->qvecs[i].irq);
}
/* Configure Rx queue group interrupt for this port */
static void mvpp2_rx_irqs_setup(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
u32 val;
int i;
if (priv->hw_version == MVPP21) {
mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
port->nrxqs);
return;
}
/* Handle the more complicated PPv2.2 and PPv2.3 case */
for (i = 0; i < port->nqvecs; i++) {
struct mvpp2_queue_vector *qv = port->qvecs + i;
if (!qv->nrxqs)
continue;
val = qv->sw_thread_id;
val |= port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET;
mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
val = qv->first_rxq;
val |= qv->nrxqs << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET;
mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
}
}
/* Initialize port HW */
static int mvpp2_port_init(struct mvpp2_port *port)
{
struct device *dev = port->dev->dev.parent;
struct mvpp2 *priv = port->priv;
struct mvpp2_txq_pcpu *txq_pcpu;
unsigned int thread;
int queue, err, val;
/* Checks for hardware constraints */
if (port->first_rxq + port->nrxqs >
MVPP2_MAX_PORTS * priv->max_port_rxqs)
return -EINVAL;
if (port->nrxqs > priv->max_port_rxqs || port->ntxqs > MVPP2_MAX_TXQ)
return -EINVAL;
/* Disable port */
mvpp2_egress_disable(port);
mvpp2_port_disable(port);
if (mvpp2_is_xlg(port->phy_interface)) {
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val &= ~MVPP22_XLG_CTRL0_FORCE_LINK_PASS;
val |= MVPP22_XLG_CTRL0_FORCE_LINK_DOWN;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
} else {
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val &= ~MVPP2_GMAC_FORCE_LINK_PASS;
val |= MVPP2_GMAC_FORCE_LINK_DOWN;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
port->tx_time_coal = MVPP2_TXDONE_COAL_USEC;
port->txqs = devm_kcalloc(dev, port->ntxqs, sizeof(*port->txqs),
GFP_KERNEL);
if (!port->txqs)
return -ENOMEM;
/* Associate physical Tx queues to this port and initialize.
* The mapping is predefined.
*/
for (queue = 0; queue < port->ntxqs; queue++) {
int queue_phy_id = mvpp2_txq_phys(port->id, queue);
struct mvpp2_tx_queue *txq;
txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
if (!txq) {
err = -ENOMEM;
goto err_free_percpu;
}
txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
if (!txq->pcpu) {
err = -ENOMEM;
goto err_free_percpu;
}
txq->id = queue_phy_id;
txq->log_id = queue;
txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
for (thread = 0; thread < priv->nthreads; thread++) {
txq_pcpu = per_cpu_ptr(txq->pcpu, thread);
txq_pcpu->thread = thread;
}
port->txqs[queue] = txq;
}
port->rxqs = devm_kcalloc(dev, port->nrxqs, sizeof(*port->rxqs),
GFP_KERNEL);
if (!port->rxqs) {
err = -ENOMEM;
goto err_free_percpu;
}
/* Allocate and initialize Rx queue for this port */
for (queue = 0; queue < port->nrxqs; queue++) {
struct mvpp2_rx_queue *rxq;
/* Map physical Rx queue to port's logical Rx queue */
rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
if (!rxq) {
err = -ENOMEM;
goto err_free_percpu;
}
/* Map this Rx queue to a physical queue */
rxq->id = port->first_rxq + queue;
rxq->port = port->id;
rxq->logic_rxq = queue;
port->rxqs[queue] = rxq;
}
mvpp2_rx_irqs_setup(port);
/* Create Rx descriptor rings */
for (queue = 0; queue < port->nrxqs; queue++) {
struct mvpp2_rx_queue *rxq = port->rxqs[queue];
rxq->size = port->rx_ring_size;
rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
rxq->time_coal = MVPP2_RX_COAL_USEC;
}
mvpp2_ingress_disable(port);
/* Port default configuration */
mvpp2_defaults_set(port);
/* Port's classifier configuration */
mvpp2_cls_oversize_rxq_set(port);
mvpp2_cls_port_config(port);
if (mvpp22_rss_is_supported(port))
mvpp22_port_rss_init(port);
/* Provide an initial Rx packet size */
port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
/* Initialize pools for swf */
err = mvpp2_swf_bm_pool_init(port);
if (err)
goto err_free_percpu;
/* Clear all port stats */
mvpp2_read_stats(port);
memset(port->ethtool_stats, 0,
MVPP2_N_ETHTOOL_STATS(port->ntxqs, port->nrxqs) * sizeof(u64));
return 0;
err_free_percpu:
for (queue = 0; queue < port->ntxqs; queue++) {
if (!port->txqs[queue])
continue;
free_percpu(port->txqs[queue]->pcpu);
}
return err;
}
static bool mvpp22_port_has_legacy_tx_irqs(struct device_node *port_node,
unsigned long *flags)
{
char *irqs[5] = { "rx-shared", "tx-cpu0", "tx-cpu1", "tx-cpu2",
"tx-cpu3" };
int i;
for (i = 0; i < 5; i++)
if (of_property_match_string(port_node, "interrupt-names",
irqs[i]) < 0)
return false;
*flags |= MVPP2_F_DT_COMPAT;
return true;
}
/* Checks if the port dt description has the required Tx interrupts:
* - PPv2.1: there are no such interrupts.
* - PPv2.2 and PPv2.3:
* - The old DTs have: "rx-shared", "tx-cpuX" with X in [0...3]
* - The new ones have: "hifX" with X in [0..8]
*
* All those variants are supported to keep the backward compatibility.
*/
static bool mvpp2_port_has_irqs(struct mvpp2 *priv,
struct device_node *port_node,
unsigned long *flags)
{
char name[5];
int i;
/* ACPI */
if (!port_node)
return true;
if (priv->hw_version == MVPP21)
return false;
if (mvpp22_port_has_legacy_tx_irqs(port_node, flags))
return true;
for (i = 0; i < MVPP2_MAX_THREADS; i++) {
snprintf(name, 5, "hif%d", i);
if (of_property_match_string(port_node, "interrupt-names",
name) < 0)
return false;
}
return true;
}
static void mvpp2_port_copy_mac_addr(struct net_device *dev, struct mvpp2 *priv,
struct fwnode_handle *fwnode,
char **mac_from)
{
struct mvpp2_port *port = netdev_priv(dev);
char hw_mac_addr[ETH_ALEN] = {0};
char fw_mac_addr[ETH_ALEN];
if (!fwnode_get_mac_address(fwnode, fw_mac_addr)) {
*mac_from = "firmware node";
eth_hw_addr_set(dev, fw_mac_addr);
return;
}
if (priv->hw_version == MVPP21) {
mvpp21_get_mac_address(port, hw_mac_addr);
if (is_valid_ether_addr(hw_mac_addr)) {
*mac_from = "hardware";
eth_hw_addr_set(dev, hw_mac_addr);
return;
}
}
/* Only valid on OF enabled platforms */
if (!of_get_mac_address_nvmem(to_of_node(fwnode), fw_mac_addr)) {
*mac_from = "nvmem cell";
eth_hw_addr_set(dev, fw_mac_addr);
return;
}
*mac_from = "random";
eth_hw_addr_random(dev);
}
static struct mvpp2_port *mvpp2_phylink_to_port(struct phylink_config *config)
{
return container_of(config, struct mvpp2_port, phylink_config);
}
static struct mvpp2_port *mvpp2_pcs_xlg_to_port(struct phylink_pcs *pcs)
{
return container_of(pcs, struct mvpp2_port, pcs_xlg);
}
static struct mvpp2_port *mvpp2_pcs_gmac_to_port(struct phylink_pcs *pcs)
{
return container_of(pcs, struct mvpp2_port, pcs_gmac);
}
static void mvpp2_xlg_pcs_get_state(struct phylink_pcs *pcs,
struct phylink_link_state *state)
{
struct mvpp2_port *port = mvpp2_pcs_xlg_to_port(pcs);
u32 val;
if (port->phy_interface == PHY_INTERFACE_MODE_5GBASER)
state->speed = SPEED_5000;
else
state->speed = SPEED_10000;
state->duplex = 1;
state->an_complete = 1;
val = readl(port->base + MVPP22_XLG_STATUS);
state->link = !!(val & MVPP22_XLG_STATUS_LINK_UP);
state->pause = 0;
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
if (val & MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN)
state->pause |= MLO_PAUSE_TX;
if (val & MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN)
state->pause |= MLO_PAUSE_RX;
}
static int mvpp2_xlg_pcs_config(struct phylink_pcs *pcs,
unsigned int mode,
phy_interface_t interface,
const unsigned long *advertising,
bool permit_pause_to_mac)
{
return 0;
}
static const struct phylink_pcs_ops mvpp2_phylink_xlg_pcs_ops = {
.pcs_get_state = mvpp2_xlg_pcs_get_state,
.pcs_config = mvpp2_xlg_pcs_config,
};
static int mvpp2_gmac_pcs_validate(struct phylink_pcs *pcs,
unsigned long *supported,
const struct phylink_link_state *state)
{
/* When in 802.3z mode, we must have AN enabled:
* Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ...
* When <PortType> = 1 (1000BASE-X) this field must be set to 1.
*/
if (phy_interface_mode_is_8023z(state->interface) &&
!phylink_test(state->advertising, Autoneg))
return -EINVAL;
return 0;
}
static void mvpp2_gmac_pcs_get_state(struct phylink_pcs *pcs,
struct phylink_link_state *state)
{
struct mvpp2_port *port = mvpp2_pcs_gmac_to_port(pcs);
u32 val;
val = readl(port->base + MVPP2_GMAC_STATUS0);
state->an_complete = !!(val & MVPP2_GMAC_STATUS0_AN_COMPLETE);
state->link = !!(val & MVPP2_GMAC_STATUS0_LINK_UP);
state->duplex = !!(val & MVPP2_GMAC_STATUS0_FULL_DUPLEX);
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_1000BASEX:
state->speed = SPEED_1000;
break;
case PHY_INTERFACE_MODE_2500BASEX:
state->speed = SPEED_2500;
break;
default:
if (val & MVPP2_GMAC_STATUS0_GMII_SPEED)
state->speed = SPEED_1000;
else if (val & MVPP2_GMAC_STATUS0_MII_SPEED)
state->speed = SPEED_100;
else
state->speed = SPEED_10;
}
state->pause = 0;
if (val & MVPP2_GMAC_STATUS0_RX_PAUSE)
state->pause |= MLO_PAUSE_RX;
if (val & MVPP2_GMAC_STATUS0_TX_PAUSE)
state->pause |= MLO_PAUSE_TX;
}
static int mvpp2_gmac_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
phy_interface_t interface,
const unsigned long *advertising,
bool permit_pause_to_mac)
{
struct mvpp2_port *port = mvpp2_pcs_gmac_to_port(pcs);
u32 mask, val, an, old_an, changed;
mask = MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS |
MVPP2_GMAC_IN_BAND_AUTONEG |
MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_FLOW_CTRL_AUTONEG |
MVPP2_GMAC_AN_DUPLEX_EN;
if (phylink_autoneg_inband(mode)) {
mask |= MVPP2_GMAC_CONFIG_MII_SPEED |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX;
val = MVPP2_GMAC_IN_BAND_AUTONEG;
if (interface == PHY_INTERFACE_MODE_SGMII) {
/* SGMII mode receives the speed and duplex from PHY */
val |= MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_AN_DUPLEX_EN;
} else {
/* 802.3z mode has fixed speed and duplex */
val |= MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX;
/* The FLOW_CTRL_AUTONEG bit selects either the hardware
* automatically or the bits in MVPP22_GMAC_CTRL_4_REG
* manually controls the GMAC pause modes.
*/
if (permit_pause_to_mac)
val |= MVPP2_GMAC_FLOW_CTRL_AUTONEG;
/* Configure advertisement bits */
mask |= MVPP2_GMAC_FC_ADV_EN | MVPP2_GMAC_FC_ADV_ASM_EN;
if (phylink_test(advertising, Pause))
val |= MVPP2_GMAC_FC_ADV_EN;
if (phylink_test(advertising, Asym_Pause))
val |= MVPP2_GMAC_FC_ADV_ASM_EN;
}
} else {
val = 0;
}
old_an = an = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
an = (an & ~mask) | val;
changed = an ^ old_an;
if (changed)
writel(an, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
/* We are only interested in the advertisement bits changing */
return changed & (MVPP2_GMAC_FC_ADV_EN | MVPP2_GMAC_FC_ADV_ASM_EN);
}
static void mvpp2_gmac_pcs_an_restart(struct phylink_pcs *pcs)
{
struct mvpp2_port *port = mvpp2_pcs_gmac_to_port(pcs);
u32 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
writel(val | MVPP2_GMAC_IN_BAND_RESTART_AN,
port->base + MVPP2_GMAC_AUTONEG_CONFIG);
writel(val & ~MVPP2_GMAC_IN_BAND_RESTART_AN,
port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static const struct phylink_pcs_ops mvpp2_phylink_gmac_pcs_ops = {
.pcs_validate = mvpp2_gmac_pcs_validate,
.pcs_get_state = mvpp2_gmac_pcs_get_state,
.pcs_config = mvpp2_gmac_pcs_config,
.pcs_an_restart = mvpp2_gmac_pcs_an_restart,
};
static void mvpp2_xlg_config(struct mvpp2_port *port, unsigned int mode,
const struct phylink_link_state *state)
{
u32 val;
mvpp2_modify(port->base + MVPP22_XLG_CTRL0_REG,
MVPP22_XLG_CTRL0_MAC_RESET_DIS,
MVPP22_XLG_CTRL0_MAC_RESET_DIS);
mvpp2_modify(port->base + MVPP22_XLG_CTRL4_REG,
MVPP22_XLG_CTRL4_MACMODSELECT_GMAC |
MVPP22_XLG_CTRL4_EN_IDLE_CHECK |
MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC,
MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC);
/* Wait for reset to deassert */
do {
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
} while (!(val & MVPP22_XLG_CTRL0_MAC_RESET_DIS));
}
static void mvpp2_gmac_config(struct mvpp2_port *port, unsigned int mode,
const struct phylink_link_state *state)
{
u32 old_ctrl0, ctrl0;
u32 old_ctrl2, ctrl2;
u32 old_ctrl4, ctrl4;
old_ctrl0 = ctrl0 = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
old_ctrl2 = ctrl2 = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
old_ctrl4 = ctrl4 = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
ctrl0 &= ~MVPP2_GMAC_PORT_TYPE_MASK;
ctrl2 &= ~(MVPP2_GMAC_INBAND_AN_MASK | MVPP2_GMAC_PCS_ENABLE_MASK | MVPP2_GMAC_FLOW_CTRL_MASK);
/* Configure port type */
if (phy_interface_mode_is_8023z(state->interface)) {
ctrl2 |= MVPP2_GMAC_PCS_ENABLE_MASK;
ctrl4 &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL;
ctrl4 |= MVPP22_CTRL4_SYNC_BYPASS_DIS |
MVPP22_CTRL4_DP_CLK_SEL |
MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
ctrl2 |= MVPP2_GMAC_PCS_ENABLE_MASK | MVPP2_GMAC_INBAND_AN_MASK;
ctrl4 &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL;
ctrl4 |= MVPP22_CTRL4_SYNC_BYPASS_DIS |
MVPP22_CTRL4_DP_CLK_SEL |
MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
} else if (phy_interface_mode_is_rgmii(state->interface)) {
ctrl4 &= ~MVPP22_CTRL4_DP_CLK_SEL;
ctrl4 |= MVPP22_CTRL4_EXT_PIN_GMII_SEL |
MVPP22_CTRL4_SYNC_BYPASS_DIS |
MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
}
/* Configure negotiation style */
if (!phylink_autoneg_inband(mode)) {
/* Phy or fixed speed - no in-band AN, nothing to do, leave the
* configured speed, duplex and flow control as-is.
*/
} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
/* SGMII in-band mode receives the speed and duplex from
* the PHY. Flow control information is not received. */
} else if (phy_interface_mode_is_8023z(state->interface)) {
/* 1000BaseX and 2500BaseX ports cannot negotiate speed nor can
* they negotiate duplex: they are always operating with a fixed
* speed of 1000/2500Mbps in full duplex, so force 1000/2500
* speed and full duplex here.
*/
ctrl0 |= MVPP2_GMAC_PORT_TYPE_MASK;
}
if (old_ctrl0 != ctrl0)
writel(ctrl0, port->base + MVPP2_GMAC_CTRL_0_REG);
if (old_ctrl2 != ctrl2)
writel(ctrl2, port->base + MVPP2_GMAC_CTRL_2_REG);
if (old_ctrl4 != ctrl4)
writel(ctrl4, port->base + MVPP22_GMAC_CTRL_4_REG);
}
static struct phylink_pcs *mvpp2_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct mvpp2_port *port = mvpp2_phylink_to_port(config);
/* Select the appropriate PCS operations depending on the
* configured interface mode. We will only switch to a mode
* that the validate() checks have already passed.
*/
if (mvpp2_is_xlg(interface))
return &port->pcs_xlg;
else
return &port->pcs_gmac;
}
static int mvpp2_mac_prepare(struct phylink_config *config, unsigned int mode,
phy_interface_t interface)
{
struct mvpp2_port *port = mvpp2_phylink_to_port(config);
/* Check for invalid configuration */
if (mvpp2_is_xlg(interface) && port->gop_id != 0) {
netdev_err(port->dev, "Invalid mode on %s\n", port->dev->name);
return -EINVAL;
}
if (port->phy_interface != interface ||
phylink_autoneg_inband(mode)) {
/* Force the link down when changing the interface or if in
* in-band mode to ensure we do not change the configuration
* while the hardware is indicating link is up. We force both
* XLG and GMAC down to ensure that they're both in a known
* state.
*/
mvpp2_modify(port->base + MVPP2_GMAC_AUTONEG_CONFIG,
MVPP2_GMAC_FORCE_LINK_PASS |
MVPP2_GMAC_FORCE_LINK_DOWN,
MVPP2_GMAC_FORCE_LINK_DOWN);
if (mvpp2_port_supports_xlg(port))
mvpp2_modify(port->base + MVPP22_XLG_CTRL0_REG,
MVPP22_XLG_CTRL0_FORCE_LINK_PASS |
MVPP22_XLG_CTRL0_FORCE_LINK_DOWN,
MVPP22_XLG_CTRL0_FORCE_LINK_DOWN);
}
/* Make sure the port is disabled when reconfiguring the mode */
mvpp2_port_disable(port);
if (port->phy_interface != interface) {
/* Place GMAC into reset */
mvpp2_modify(port->base + MVPP2_GMAC_CTRL_2_REG,
MVPP2_GMAC_PORT_RESET_MASK,
MVPP2_GMAC_PORT_RESET_MASK);
if (port->priv->hw_version >= MVPP22) {
mvpp22_gop_mask_irq(port);
phy_power_off(port->comphy);
/* Reconfigure the serdes lanes */
mvpp22_mode_reconfigure(port, interface);
}
}
return 0;
}
static void mvpp2_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct mvpp2_port *port = mvpp2_phylink_to_port(config);
/* mac (re)configuration */
if (mvpp2_is_xlg(state->interface))
mvpp2_xlg_config(port, mode, state);
else if (phy_interface_mode_is_rgmii(state->interface) ||
phy_interface_mode_is_8023z(state->interface) ||
state->interface == PHY_INTERFACE_MODE_SGMII)
mvpp2_gmac_config(port, mode, state);
if (port->priv->hw_version == MVPP21 && port->flags & MVPP2_F_LOOPBACK)
mvpp2_port_loopback_set(port, state);
}
static int mvpp2_mac_finish(struct phylink_config *config, unsigned int mode,
phy_interface_t interface)
{
struct mvpp2_port *port = mvpp2_phylink_to_port(config);
if (port->priv->hw_version >= MVPP22 &&
port->phy_interface != interface) {
port->phy_interface = interface;
/* Unmask interrupts */
mvpp22_gop_unmask_irq(port);
}
if (!mvpp2_is_xlg(interface)) {
/* Release GMAC reset and wait */
mvpp2_modify(port->base + MVPP2_GMAC_CTRL_2_REG,
MVPP2_GMAC_PORT_RESET_MASK, 0);
while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
MVPP2_GMAC_PORT_RESET_MASK)
continue;
}
mvpp2_port_enable(port);
/* Allow the link to come up if in in-band mode, otherwise the
* link is forced via mac_link_down()/mac_link_up()
*/
if (phylink_autoneg_inband(mode)) {
if (mvpp2_is_xlg(interface))
mvpp2_modify(port->base + MVPP22_XLG_CTRL0_REG,
MVPP22_XLG_CTRL0_FORCE_LINK_PASS |
MVPP22_XLG_CTRL0_FORCE_LINK_DOWN, 0);
else
mvpp2_modify(port->base + MVPP2_GMAC_AUTONEG_CONFIG,
MVPP2_GMAC_FORCE_LINK_PASS |
MVPP2_GMAC_FORCE_LINK_DOWN, 0);
}
return 0;
}
static void mvpp2_mac_link_up(struct phylink_config *config,
struct phy_device *phy,
unsigned int mode, phy_interface_t interface,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct mvpp2_port *port = mvpp2_phylink_to_port(config);
u32 val;
int i;
if (mvpp2_is_xlg(interface)) {
if (!phylink_autoneg_inband(mode)) {
val = MVPP22_XLG_CTRL0_FORCE_LINK_PASS;
if (tx_pause)
val |= MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN;
if (rx_pause)
val |= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN;
mvpp2_modify(port->base + MVPP22_XLG_CTRL0_REG,
MVPP22_XLG_CTRL0_FORCE_LINK_DOWN |
MVPP22_XLG_CTRL0_FORCE_LINK_PASS |
MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN |
MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN, val);
}
} else {
if (!phylink_autoneg_inband(mode)) {
val = MVPP2_GMAC_FORCE_LINK_PASS;
if (speed == SPEED_1000 || speed == SPEED_2500)
val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
else if (speed == SPEED_100)
val |= MVPP2_GMAC_CONFIG_MII_SPEED;
if (duplex == DUPLEX_FULL)
val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
mvpp2_modify(port->base + MVPP2_GMAC_AUTONEG_CONFIG,
MVPP2_GMAC_FORCE_LINK_DOWN |
MVPP2_GMAC_FORCE_LINK_PASS |
MVPP2_GMAC_CONFIG_MII_SPEED |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX, val);
}
/* We can always update the flow control enable bits;
* these will only be effective if flow control AN
* (MVPP2_GMAC_FLOW_CTRL_AUTONEG) is disabled.
*/
val = 0;
if (tx_pause)
val |= MVPP22_CTRL4_TX_FC_EN;
if (rx_pause)
val |= MVPP22_CTRL4_RX_FC_EN;
mvpp2_modify(port->base + MVPP22_GMAC_CTRL_4_REG,
MVPP22_CTRL4_RX_FC_EN | MVPP22_CTRL4_TX_FC_EN,
val);
}
if (port->priv->global_tx_fc) {
port->tx_fc = tx_pause;
if (tx_pause)
mvpp2_rxq_enable_fc(port);
else
mvpp2_rxq_disable_fc(port);
if (port->priv->percpu_pools) {
for (i = 0; i < port->nrxqs; i++)
mvpp2_bm_pool_update_fc(port, &port->priv->bm_pools[i], tx_pause);
} else {
mvpp2_bm_pool_update_fc(port, port->pool_long, tx_pause);
mvpp2_bm_pool_update_fc(port, port->pool_short, tx_pause);
}
if (port->priv->hw_version == MVPP23)
mvpp23_rx_fifo_fc_en(port->priv, port->id, tx_pause);
}
mvpp2_port_enable(port);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
netif_tx_wake_all_queues(port->dev);
}
static void mvpp2_mac_link_down(struct phylink_config *config,
unsigned int mode, phy_interface_t interface)
{
struct mvpp2_port *port = mvpp2_phylink_to_port(config);
u32 val;
if (!phylink_autoneg_inband(mode)) {
if (mvpp2_is_xlg(interface)) {
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val &= ~MVPP22_XLG_CTRL0_FORCE_LINK_PASS;
val |= MVPP22_XLG_CTRL0_FORCE_LINK_DOWN;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
} else {
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val &= ~MVPP2_GMAC_FORCE_LINK_PASS;
val |= MVPP2_GMAC_FORCE_LINK_DOWN;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
}
netif_tx_stop_all_queues(port->dev);
mvpp2_egress_disable(port);
mvpp2_ingress_disable(port);
mvpp2_port_disable(port);
}
static const struct phylink_mac_ops mvpp2_phylink_ops = {
.mac_select_pcs = mvpp2_select_pcs,
.mac_prepare = mvpp2_mac_prepare,
.mac_config = mvpp2_mac_config,
.mac_finish = mvpp2_mac_finish,
.mac_link_up = mvpp2_mac_link_up,
.mac_link_down = mvpp2_mac_link_down,
};
/* Work-around for ACPI */
static void mvpp2_acpi_start(struct mvpp2_port *port)
{
/* Phylink isn't used as of now for ACPI, so the MAC has to be
* configured manually when the interface is started. This will
* be removed as soon as the phylink ACPI support lands in.
*/
struct phylink_link_state state = {
.interface = port->phy_interface,
};
struct phylink_pcs *pcs;
pcs = mvpp2_select_pcs(&port->phylink_config, port->phy_interface);
mvpp2_mac_prepare(&port->phylink_config, MLO_AN_INBAND,
port->phy_interface);
mvpp2_mac_config(&port->phylink_config, MLO_AN_INBAND, &state);
pcs->ops->pcs_config(pcs, MLO_AN_INBAND, port->phy_interface,
state.advertising, false);
mvpp2_mac_finish(&port->phylink_config, MLO_AN_INBAND,
port->phy_interface);
mvpp2_mac_link_up(&port->phylink_config, NULL,
MLO_AN_INBAND, port->phy_interface,
SPEED_UNKNOWN, DUPLEX_UNKNOWN, false, false);
}
/* In order to ensure backward compatibility for ACPI, check if the port
* firmware node comprises the necessary description allowing to use phylink.
*/
static bool mvpp2_use_acpi_compat_mode(struct fwnode_handle *port_fwnode)
{
if (!is_acpi_node(port_fwnode))
return false;
return (!fwnode_property_present(port_fwnode, "phy-handle") &&
!fwnode_property_present(port_fwnode, "managed") &&
!fwnode_get_named_child_node(port_fwnode, "fixed-link"));
}
/* Ports initialization */
static int mvpp2_port_probe(struct platform_device *pdev,
struct fwnode_handle *port_fwnode,
struct mvpp2 *priv)
{
struct phy *comphy = NULL;
struct mvpp2_port *port;
struct mvpp2_port_pcpu *port_pcpu;
struct device_node *port_node = to_of_node(port_fwnode);
netdev_features_t features;
struct net_device *dev;
struct phylink *phylink;
char *mac_from = "";
unsigned int ntxqs, nrxqs, thread;
unsigned long flags = 0;
bool has_tx_irqs;
u32 id;
int phy_mode;
int err, i;
has_tx_irqs = mvpp2_port_has_irqs(priv, port_node, &flags);
if (!has_tx_irqs && queue_mode == MVPP2_QDIST_MULTI_MODE) {
dev_err(&pdev->dev,
"not enough IRQs to support multi queue mode\n");
return -EINVAL;
}
ntxqs = MVPP2_MAX_TXQ;
nrxqs = mvpp2_get_nrxqs(priv);
dev = alloc_etherdev_mqs(sizeof(*port), ntxqs, nrxqs);
if (!dev)
return -ENOMEM;
phy_mode = fwnode_get_phy_mode(port_fwnode);
if (phy_mode < 0) {
dev_err(&pdev->dev, "incorrect phy mode\n");
err = phy_mode;
goto err_free_netdev;
}
/*
* Rewrite 10GBASE-KR to 10GBASE-R for compatibility with existing DT.
* Existing usage of 10GBASE-KR is not correct; no backplane
* negotiation is done, and this driver does not actually support
* 10GBASE-KR.
*/
if (phy_mode == PHY_INTERFACE_MODE_10GKR)
phy_mode = PHY_INTERFACE_MODE_10GBASER;
if (port_node) {
comphy = devm_of_phy_get(&pdev->dev, port_node, NULL);
if (IS_ERR(comphy)) {
if (PTR_ERR(comphy) == -EPROBE_DEFER) {
err = -EPROBE_DEFER;
goto err_free_netdev;
}
comphy = NULL;
}
}
if (fwnode_property_read_u32(port_fwnode, "port-id", &id)) {
err = -EINVAL;
dev_err(&pdev->dev, "missing port-id value\n");
goto err_free_netdev;
}
dev->tx_queue_len = MVPP2_MAX_TXD_MAX;
dev->watchdog_timeo = 5 * HZ;
dev->netdev_ops = &mvpp2_netdev_ops;
dev->ethtool_ops = &mvpp2_eth_tool_ops;
port = netdev_priv(dev);
port->dev = dev;
port->fwnode = port_fwnode;
port->ntxqs = ntxqs;
port->nrxqs = nrxqs;
port->priv = priv;
port->has_tx_irqs = has_tx_irqs;
port->flags = flags;
err = mvpp2_queue_vectors_init(port, port_node);
if (err)
goto err_free_netdev;
if (port_node)
port->port_irq = of_irq_get_byname(port_node, "link");
else
port->port_irq = fwnode_irq_get(port_fwnode, port->nqvecs + 1);
if (port->port_irq == -EPROBE_DEFER) {
err = -EPROBE_DEFER;
goto err_deinit_qvecs;
}
if (port->port_irq <= 0)
/* the link irq is optional */
port->port_irq = 0;
if (fwnode_property_read_bool(port_fwnode, "marvell,loopback"))
port->flags |= MVPP2_F_LOOPBACK;
port->id = id;
if (priv->hw_version == MVPP21)
port->first_rxq = port->id * port->nrxqs;
else
port->first_rxq = port->id * priv->max_port_rxqs;
port->of_node = port_node;
port->phy_interface = phy_mode;
port->comphy = comphy;
if (priv->hw_version == MVPP21) {
port->base = devm_platform_ioremap_resource(pdev, 2 + id);
if (IS_ERR(port->base)) {
err = PTR_ERR(port->base);
goto err_free_irq;
}
port->stats_base = port->priv->lms_base +
MVPP21_MIB_COUNTERS_OFFSET +
port->gop_id * MVPP21_MIB_COUNTERS_PORT_SZ;
} else {
if (fwnode_property_read_u32(port_fwnode, "gop-port-id",
&port->gop_id)) {
err = -EINVAL;
dev_err(&pdev->dev, "missing gop-port-id value\n");
goto err_deinit_qvecs;
}
port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
port->stats_base = port->priv->iface_base +
MVPP22_MIB_COUNTERS_OFFSET +
port->gop_id * MVPP22_MIB_COUNTERS_PORT_SZ;
/* We may want a property to describe whether we should use
* MAC hardware timestamping.
*/
if (priv->tai)
port->hwtstamp = true;
}
/* Alloc per-cpu and ethtool stats */
port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
if (!port->stats) {
err = -ENOMEM;
goto err_free_irq;
}
port->ethtool_stats = devm_kcalloc(&pdev->dev,
MVPP2_N_ETHTOOL_STATS(ntxqs, nrxqs),
sizeof(u64), GFP_KERNEL);
if (!port->ethtool_stats) {
err = -ENOMEM;
goto err_free_stats;
}
mutex_init(&port->gather_stats_lock);
INIT_DELAYED_WORK(&port->stats_work, mvpp2_gather_hw_statistics);
mvpp2_port_copy_mac_addr(dev, priv, port_fwnode, &mac_from);
port->tx_ring_size = MVPP2_MAX_TXD_DFLT;
port->rx_ring_size = MVPP2_MAX_RXD_DFLT;
SET_NETDEV_DEV(dev, &pdev->dev);
err = mvpp2_port_init(port);
if (err < 0) {
dev_err(&pdev->dev, "failed to init port %d\n", id);
goto err_free_stats;
}
mvpp2_port_periodic_xon_disable(port);
mvpp2_mac_reset_assert(port);
mvpp22_pcs_reset_assert(port);
port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
if (!port->pcpu) {
err = -ENOMEM;
goto err_free_txq_pcpu;
}
if (!port->has_tx_irqs) {
for (thread = 0; thread < priv->nthreads; thread++) {
port_pcpu = per_cpu_ptr(port->pcpu, thread);
hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED_SOFT);
port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
port_pcpu->timer_scheduled = false;
port_pcpu->dev = dev;
}
}
features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO;
dev->features = features | NETIF_F_RXCSUM;
dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO |
NETIF_F_HW_VLAN_CTAG_FILTER;
if (mvpp22_rss_is_supported(port)) {
dev->hw_features |= NETIF_F_RXHASH;
dev->features |= NETIF_F_NTUPLE;
}
if (!port->priv->percpu_pools)
mvpp2_set_hw_csum(port, port->pool_long->id);
else if (port->ntxqs >= num_possible_cpus() * 2)
dev->xdp_features = NETDEV_XDP_ACT_BASIC |
NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_NDO_XMIT;
dev->vlan_features |= features;
netif_set_tso_max_segs(dev, MVPP2_MAX_TSO_SEGS);
dev->priv_flags |= IFF_UNICAST_FLT;
/* MTU range: 68 - 9704 */
dev->min_mtu = ETH_MIN_MTU;
/* 9704 == 9728 - 20 and rounding to 8 */
dev->max_mtu = MVPP2_BM_JUMBO_PKT_SIZE;
dev->dev.of_node = port_node;
port->pcs_gmac.ops = &mvpp2_phylink_gmac_pcs_ops;
port->pcs_xlg.ops = &mvpp2_phylink_xlg_pcs_ops;
if (!mvpp2_use_acpi_compat_mode(port_fwnode)) {
port->phylink_config.dev = &dev->dev;
port->phylink_config.type = PHYLINK_NETDEV;
port->phylink_config.mac_capabilities =
MAC_2500FD | MAC_1000FD | MAC_100 | MAC_10;
if (port->priv->global_tx_fc)
port->phylink_config.mac_capabilities |=
MAC_SYM_PAUSE | MAC_ASYM_PAUSE;
if (mvpp2_port_supports_xlg(port)) {
/* If a COMPHY is present, we can support any of
* the serdes modes and switch between them.
*/
if (comphy) {
__set_bit(PHY_INTERFACE_MODE_5GBASER,
port->phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_10GBASER,
port->phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_XAUI,
port->phylink_config.supported_interfaces);
} else if (phy_mode == PHY_INTERFACE_MODE_5GBASER) {
__set_bit(PHY_INTERFACE_MODE_5GBASER,
port->phylink_config.supported_interfaces);
} else if (phy_mode == PHY_INTERFACE_MODE_10GBASER) {
__set_bit(PHY_INTERFACE_MODE_10GBASER,
port->phylink_config.supported_interfaces);
} else if (phy_mode == PHY_INTERFACE_MODE_XAUI) {
__set_bit(PHY_INTERFACE_MODE_XAUI,
port->phylink_config.supported_interfaces);
}
if (comphy)
port->phylink_config.mac_capabilities |=
MAC_10000FD | MAC_5000FD;
else if (phy_mode == PHY_INTERFACE_MODE_5GBASER)
port->phylink_config.mac_capabilities |=
MAC_5000FD;
else
port->phylink_config.mac_capabilities |=
MAC_10000FD;
}
if (mvpp2_port_supports_rgmii(port))
phy_interface_set_rgmii(port->phylink_config.supported_interfaces);
if (comphy) {
/* If a COMPHY is present, we can support any of the
* serdes modes and switch between them.
*/
__set_bit(PHY_INTERFACE_MODE_SGMII,
port->phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_1000BASEX,
port->phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_2500BASEX,
port->phylink_config.supported_interfaces);
} else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) {
/* No COMPHY, with only 2500BASE-X mode supported */
__set_bit(PHY_INTERFACE_MODE_2500BASEX,
port->phylink_config.supported_interfaces);
} else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX ||
phy_mode == PHY_INTERFACE_MODE_SGMII) {
/* No COMPHY, we can switch between 1000BASE-X and SGMII
*/
__set_bit(PHY_INTERFACE_MODE_1000BASEX,
port->phylink_config.supported_interfaces);
__set_bit(PHY_INTERFACE_MODE_SGMII,
port->phylink_config.supported_interfaces);
}
phylink = phylink_create(&port->phylink_config, port_fwnode,
phy_mode, &mvpp2_phylink_ops);
if (IS_ERR(phylink)) {
err = PTR_ERR(phylink);
goto err_free_port_pcpu;
}
port->phylink = phylink;
} else {
dev_warn(&pdev->dev, "Use link irqs for port#%d. FW update required\n", port->id);
port->phylink = NULL;
}
/* Cycle the comphy to power it down, saving 270mW per port -
* don't worry about an error powering it up. When the comphy
* driver does this, we can remove this code.
*/
if (port->comphy) {
err = mvpp22_comphy_init(port, port->phy_interface);
if (err == 0)
phy_power_off(port->comphy);
}
err = register_netdev(dev);
if (err < 0) {
dev_err(&pdev->dev, "failed to register netdev\n");
goto err_phylink;
}
netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
priv->port_list[priv->port_count++] = port;
return 0;
err_phylink:
if (port->phylink)
phylink_destroy(port->phylink);
err_free_port_pcpu:
free_percpu(port->pcpu);
err_free_txq_pcpu:
for (i = 0; i < port->ntxqs; i++)
free_percpu(port->txqs[i]->pcpu);
err_free_stats:
free_percpu(port->stats);
err_free_irq:
if (port->port_irq)
irq_dispose_mapping(port->port_irq);
err_deinit_qvecs:
mvpp2_queue_vectors_deinit(port);
err_free_netdev:
free_netdev(dev);
return err;
}
/* Ports removal routine */
static void mvpp2_port_remove(struct mvpp2_port *port)
{
int i;
unregister_netdev(port->dev);
if (port->phylink)
phylink_destroy(port->phylink);
free_percpu(port->pcpu);
free_percpu(port->stats);
for (i = 0; i < port->ntxqs; i++)
free_percpu(port->txqs[i]->pcpu);
mvpp2_queue_vectors_deinit(port);
if (port->port_irq)
irq_dispose_mapping(port->port_irq);
free_netdev(port->dev);
}
/* Initialize decoding windows */
static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
struct mvpp2 *priv)
{
u32 win_enable;
int i;
for (i = 0; i < 6; i++) {
mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
if (i < 4)
mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
}
win_enable = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
mvpp2_write(priv, MVPP2_WIN_BASE(i),
(cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
dram->mbus_dram_target_id);
mvpp2_write(priv, MVPP2_WIN_SIZE(i),
(cs->size - 1) & 0xffff0000);
win_enable |= (1 << i);
}
mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
}
/* Initialize Rx FIFO's */
static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
{
int port;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
}
mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
MVPP2_RX_FIFO_PORT_MIN_PKT);
mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
}
static void mvpp22_rx_fifo_set_hw(struct mvpp2 *priv, int port, int data_size)
{
int attr_size = MVPP2_RX_FIFO_PORT_ATTR_SIZE(data_size);
mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), data_size);
mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), attr_size);
}
/* Initialize TX FIFO's: the total FIFO size is 48kB on PPv2.2 and PPv2.3.
* 4kB fixed space must be assigned for the loopback port.
* Redistribute remaining avialable 44kB space among all active ports.
* Guarantee minimum 32kB for 10G port and 8kB for port 1, capable of 2.5G
* SGMII link.
*/
static void mvpp22_rx_fifo_init(struct mvpp2 *priv)
{
int remaining_ports_count;
unsigned long port_map;
int size_remainder;
int port, size;
/* The loopback requires fixed 4kB of the FIFO space assignment. */
mvpp22_rx_fifo_set_hw(priv, MVPP2_LOOPBACK_PORT_INDEX,
MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
port_map = priv->port_map & ~BIT(MVPP2_LOOPBACK_PORT_INDEX);
/* Set RX FIFO size to 0 for inactive ports. */
for_each_clear_bit(port, &port_map, MVPP2_LOOPBACK_PORT_INDEX)
mvpp22_rx_fifo_set_hw(priv, port, 0);
/* Assign remaining RX FIFO space among all active ports. */
size_remainder = MVPP2_RX_FIFO_PORT_DATA_SIZE_44KB;
remaining_ports_count = hweight_long(port_map);
for_each_set_bit(port, &port_map, MVPP2_LOOPBACK_PORT_INDEX) {
if (remaining_ports_count == 1)
size = size_remainder;
else if (port == 0)
size = max(size_remainder / remaining_ports_count,
MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB);
else if (port == 1)
size = max(size_remainder / remaining_ports_count,
MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB);
else
size = size_remainder / remaining_ports_count;
size_remainder -= size;
remaining_ports_count--;
mvpp22_rx_fifo_set_hw(priv, port, size);
}
mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
MVPP2_RX_FIFO_PORT_MIN_PKT);
mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
}
/* Configure Rx FIFO Flow control thresholds */
static void mvpp23_rx_fifo_fc_set_tresh(struct mvpp2 *priv)
{
int port, val;
/* Port 0: maximum speed -10Gb/s port
* required by spec RX FIFO threshold 9KB
* Port 1: maximum speed -5Gb/s port
* required by spec RX FIFO threshold 4KB
* Port 2: maximum speed -1Gb/s port
* required by spec RX FIFO threshold 2KB
*/
/* Without loopback port */
for (port = 0; port < (MVPP2_MAX_PORTS - 1); port++) {
if (port == 0) {
val = (MVPP23_PORT0_FIFO_TRSH / MVPP2_RX_FC_TRSH_UNIT)
<< MVPP2_RX_FC_TRSH_OFFS;
val &= MVPP2_RX_FC_TRSH_MASK;
mvpp2_write(priv, MVPP2_RX_FC_REG(port), val);
} else if (port == 1) {
val = (MVPP23_PORT1_FIFO_TRSH / MVPP2_RX_FC_TRSH_UNIT)
<< MVPP2_RX_FC_TRSH_OFFS;
val &= MVPP2_RX_FC_TRSH_MASK;
mvpp2_write(priv, MVPP2_RX_FC_REG(port), val);
} else {
val = (MVPP23_PORT2_FIFO_TRSH / MVPP2_RX_FC_TRSH_UNIT)
<< MVPP2_RX_FC_TRSH_OFFS;
val &= MVPP2_RX_FC_TRSH_MASK;
mvpp2_write(priv, MVPP2_RX_FC_REG(port), val);
}
}
}
/* Configure Rx FIFO Flow control thresholds */
void mvpp23_rx_fifo_fc_en(struct mvpp2 *priv, int port, bool en)
{
int val;
val = mvpp2_read(priv, MVPP2_RX_FC_REG(port));
if (en)
val |= MVPP2_RX_FC_EN;
else
val &= ~MVPP2_RX_FC_EN;
mvpp2_write(priv, MVPP2_RX_FC_REG(port), val);
}
static void mvpp22_tx_fifo_set_hw(struct mvpp2 *priv, int port, int size)
{
int threshold = MVPP2_TX_FIFO_THRESHOLD(size);
mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), size);
mvpp2_write(priv, MVPP22_TX_FIFO_THRESH_REG(port), threshold);
}
/* Initialize TX FIFO's: the total FIFO size is 19kB on PPv2.2 and PPv2.3.
* 1kB fixed space must be assigned for the loopback port.
* Redistribute remaining avialable 18kB space among all active ports.
* The 10G interface should use 10kB (which is maximum possible size
* per single port).
*/
static void mvpp22_tx_fifo_init(struct mvpp2 *priv)
{
int remaining_ports_count;
unsigned long port_map;
int size_remainder;
int port, size;
/* The loopback requires fixed 1kB of the FIFO space assignment. */
mvpp22_tx_fifo_set_hw(priv, MVPP2_LOOPBACK_PORT_INDEX,
MVPP22_TX_FIFO_DATA_SIZE_1KB);
port_map = priv->port_map & ~BIT(MVPP2_LOOPBACK_PORT_INDEX);
/* Set TX FIFO size to 0 for inactive ports. */
for_each_clear_bit(port, &port_map, MVPP2_LOOPBACK_PORT_INDEX)
mvpp22_tx_fifo_set_hw(priv, port, 0);
/* Assign remaining TX FIFO space among all active ports. */
size_remainder = MVPP22_TX_FIFO_DATA_SIZE_18KB;
remaining_ports_count = hweight_long(port_map);
for_each_set_bit(port, &port_map, MVPP2_LOOPBACK_PORT_INDEX) {
if (remaining_ports_count == 1)
size = min(size_remainder,
MVPP22_TX_FIFO_DATA_SIZE_10KB);
else if (port == 0)
size = MVPP22_TX_FIFO_DATA_SIZE_10KB;
else
size = size_remainder / remaining_ports_count;
size_remainder -= size;
remaining_ports_count--;
mvpp22_tx_fifo_set_hw(priv, port, size);
}
}
static void mvpp2_axi_init(struct mvpp2 *priv)
{
u32 val, rdval, wrval;
mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
/* AXI Bridge Configuration */
rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
<< MVPP22_AXI_ATTR_CACHE_OFFS;
rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
<< MVPP22_AXI_ATTR_CACHE_OFFS;
wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
/* BM */
mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
/* Descriptors */
mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
/* Buffer Data */
mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
val = MVPP22_AXI_CODE_CACHE_NON_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
val = MVPP22_AXI_CODE_CACHE_RD_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
val = MVPP22_AXI_CODE_CACHE_WR_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
}
/* Initialize network controller common part HW */
static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
{
const struct mbus_dram_target_info *dram_target_info;
int err, i;
u32 val;
/* MBUS windows configuration */
dram_target_info = mv_mbus_dram_info();
if (dram_target_info)
mvpp2_conf_mbus_windows(dram_target_info, priv);
if (priv->hw_version >= MVPP22)
mvpp2_axi_init(priv);
/* Disable HW PHY polling */
if (priv->hw_version == MVPP21) {
val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
} else {
val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
val &= ~MVPP22_SMI_POLLING_EN;
writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
}
/* Allocate and initialize aggregated TXQs */
priv->aggr_txqs = devm_kcalloc(&pdev->dev, MVPP2_MAX_THREADS,
sizeof(*priv->aggr_txqs),
GFP_KERNEL);
if (!priv->aggr_txqs)
return -ENOMEM;
for (i = 0; i < MVPP2_MAX_THREADS; i++) {
priv->aggr_txqs[i].id = i;
priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], i, priv);
if (err < 0)
return err;
}
/* Fifo Init */
if (priv->hw_version == MVPP21) {
mvpp2_rx_fifo_init(priv);
} else {
mvpp22_rx_fifo_init(priv);
mvpp22_tx_fifo_init(priv);
if (priv->hw_version == MVPP23)
mvpp23_rx_fifo_fc_set_tresh(priv);
}
if (priv->hw_version == MVPP21)
writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
/* Allow cache snoop when transmiting packets */
mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
/* Buffer Manager initialization */
err = mvpp2_bm_init(&pdev->dev, priv);
if (err < 0)
return err;
/* Parser default initialization */
err = mvpp2_prs_default_init(pdev, priv);
if (err < 0)
return err;
/* Classifier default initialization */
mvpp2_cls_init(priv);
return 0;
}
static int mvpp2_get_sram(struct platform_device *pdev,
struct mvpp2 *priv)
{
struct resource *res;
void __iomem *base;
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (!res) {
if (has_acpi_companion(&pdev->dev))
dev_warn(&pdev->dev, "ACPI is too old, Flow control not supported\n");
else
dev_warn(&pdev->dev, "DT is too old, Flow control not supported\n");
return 0;
}
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
priv->cm3_base = base;
return 0;
}
static int mvpp2_probe(struct platform_device *pdev)
{
struct fwnode_handle *fwnode = pdev->dev.fwnode;
struct fwnode_handle *port_fwnode;
struct mvpp2 *priv;
struct resource *res;
void __iomem *base;
int i, shared;
int err;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->hw_version = (unsigned long)device_get_match_data(&pdev->dev);
/* multi queue mode isn't supported on PPV2.1, fallback to single
* mode
*/
if (priv->hw_version == MVPP21)
queue_mode = MVPP2_QDIST_SINGLE_MODE;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
if (priv->hw_version == MVPP21) {
priv->lms_base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(priv->lms_base))
return PTR_ERR(priv->lms_base);
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res) {
dev_err(&pdev->dev, "Invalid resource\n");
return -EINVAL;
}
if (has_acpi_companion(&pdev->dev)) {
/* In case the MDIO memory region is declared in
* the ACPI, it can already appear as 'in-use'
* in the OS. Because it is overlapped by second
* region of the network controller, make
* sure it is released, before requesting it again.
* The care is taken by mvpp2 driver to avoid
* concurrent access to this memory region.
*/
release_resource(res);
}
priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->iface_base))
return PTR_ERR(priv->iface_base);
/* Map CM3 SRAM */
err = mvpp2_get_sram(pdev, priv);
if (err)
dev_warn(&pdev->dev, "Fail to alloc CM3 SRAM\n");
/* Enable global Flow Control only if handler to SRAM not NULL */
if (priv->cm3_base)
priv->global_tx_fc = true;
}
if (priv->hw_version >= MVPP22 && dev_of_node(&pdev->dev)) {
priv->sysctrl_base =
syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"marvell,system-controller");
if (IS_ERR(priv->sysctrl_base))
/* The system controller regmap is optional for dt
* compatibility reasons. When not provided, the
* configuration of the GoP relies on the
* firmware/bootloader.
*/
priv->sysctrl_base = NULL;
}
if (priv->hw_version >= MVPP22 &&
mvpp2_get_nrxqs(priv) * 2 <= MVPP2_BM_MAX_POOLS)
priv->percpu_pools = 1;
mvpp2_setup_bm_pool();
priv->nthreads = min_t(unsigned int, num_present_cpus(),
MVPP2_MAX_THREADS);
shared = num_present_cpus() - priv->nthreads;
if (shared > 0)
bitmap_set(&priv->lock_map, 0,
min_t(int, shared, MVPP2_MAX_THREADS));
for (i = 0; i < MVPP2_MAX_THREADS; i++) {
u32 addr_space_sz;
addr_space_sz = (priv->hw_version == MVPP21 ?
MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
priv->swth_base[i] = base + i * addr_space_sz;
}
if (priv->hw_version == MVPP21)
priv->max_port_rxqs = 8;
else
priv->max_port_rxqs = 32;
if (dev_of_node(&pdev->dev)) {
priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
if (IS_ERR(priv->pp_clk))
return PTR_ERR(priv->pp_clk);
err = clk_prepare_enable(priv->pp_clk);
if (err < 0)
return err;
priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
if (IS_ERR(priv->gop_clk)) {
err = PTR_ERR(priv->gop_clk);
goto err_pp_clk;
}
err = clk_prepare_enable(priv->gop_clk);
if (err < 0)
goto err_pp_clk;
if (priv->hw_version >= MVPP22) {
priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
if (IS_ERR(priv->mg_clk)) {
err = PTR_ERR(priv->mg_clk);
goto err_gop_clk;
}
err = clk_prepare_enable(priv->mg_clk);
if (err < 0)
goto err_gop_clk;
priv->mg_core_clk = devm_clk_get_optional(&pdev->dev, "mg_core_clk");
if (IS_ERR(priv->mg_core_clk)) {
err = PTR_ERR(priv->mg_core_clk);
goto err_mg_clk;
}
err = clk_prepare_enable(priv->mg_core_clk);
if (err < 0)
goto err_mg_clk;
}
priv->axi_clk = devm_clk_get_optional(&pdev->dev, "axi_clk");
if (IS_ERR(priv->axi_clk)) {
err = PTR_ERR(priv->axi_clk);
goto err_mg_core_clk;
}
err = clk_prepare_enable(priv->axi_clk);
if (err < 0)
goto err_mg_core_clk;
/* Get system's tclk rate */
priv->tclk = clk_get_rate(priv->pp_clk);
} else {
err = device_property_read_u32(&pdev->dev, "clock-frequency", &priv->tclk);
if (err) {
dev_err(&pdev->dev, "missing clock-frequency value\n");
return err;
}
}
if (priv->hw_version >= MVPP22) {
err = dma_set_mask(&pdev->dev, MVPP2_DESC_DMA_MASK);
if (err)
goto err_axi_clk;
/* Sadly, the BM pools all share the same register to
* store the high 32 bits of their address. So they
* must all have the same high 32 bits, which forces
* us to restrict coherent memory to DMA_BIT_MASK(32).
*/
err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (err)
goto err_axi_clk;
}
/* Map DTS-active ports. Should be done before FIFO mvpp2_init */
fwnode_for_each_available_child_node(fwnode, port_fwnode) {
if (!fwnode_property_read_u32(port_fwnode, "port-id", &i))
priv->port_map |= BIT(i);
}
if (mvpp2_read(priv, MVPP2_VER_ID_REG) == MVPP2_VER_PP23)
priv->hw_version = MVPP23;
/* Init mss lock */
spin_lock_init(&priv->mss_spinlock);
/* Initialize network controller */
err = mvpp2_init(pdev, priv);
if (err < 0) {
dev_err(&pdev->dev, "failed to initialize controller\n");
goto err_axi_clk;
}
err = mvpp22_tai_probe(&pdev->dev, priv);
if (err < 0)
goto err_axi_clk;
/* Initialize ports */
fwnode_for_each_available_child_node(fwnode, port_fwnode) {
err = mvpp2_port_probe(pdev, port_fwnode, priv);
if (err < 0)
goto err_port_probe;
}
if (priv->port_count == 0) {
dev_err(&pdev->dev, "no ports enabled\n");
err = -ENODEV;
goto err_axi_clk;
}
/* Statistics must be gathered regularly because some of them (like
* packets counters) are 32-bit registers and could overflow quite
* quickly. For instance, a 10Gb link used at full bandwidth with the
* smallest packets (64B) will overflow a 32-bit counter in less than
* 30 seconds. Then, use a workqueue to fill 64-bit counters.
*/
snprintf(priv->queue_name, sizeof(priv->queue_name),
"stats-wq-%s%s", netdev_name(priv->port_list[0]->dev),
priv->port_count > 1 ? "+" : "");
priv->stats_queue = create_singlethread_workqueue(priv->queue_name);
if (!priv->stats_queue) {
err = -ENOMEM;
goto err_port_probe;
}
if (priv->global_tx_fc && priv->hw_version >= MVPP22) {
err = mvpp2_enable_global_fc(priv);
if (err)
dev_warn(&pdev->dev, "Minimum of CM3 firmware 18.09 and chip revision B0 required for flow control\n");
}
mvpp2_dbgfs_init(priv, pdev->name);
platform_set_drvdata(pdev, priv);
return 0;
err_port_probe:
fwnode_handle_put(port_fwnode);
i = 0;
fwnode_for_each_available_child_node(fwnode, port_fwnode) {
if (priv->port_list[i])
mvpp2_port_remove(priv->port_list[i]);
i++;
}
err_axi_clk:
clk_disable_unprepare(priv->axi_clk);
err_mg_core_clk:
clk_disable_unprepare(priv->mg_core_clk);
err_mg_clk:
clk_disable_unprepare(priv->mg_clk);
err_gop_clk:
clk_disable_unprepare(priv->gop_clk);
err_pp_clk:
clk_disable_unprepare(priv->pp_clk);
return err;
}
static int mvpp2_remove(struct platform_device *pdev)
{
struct mvpp2 *priv = platform_get_drvdata(pdev);
struct fwnode_handle *fwnode = pdev->dev.fwnode;
int i = 0, poolnum = MVPP2_BM_POOLS_NUM;
struct fwnode_handle *port_fwnode;
mvpp2_dbgfs_cleanup(priv);
fwnode_for_each_available_child_node(fwnode, port_fwnode) {
if (priv->port_list[i]) {
mutex_destroy(&priv->port_list[i]->gather_stats_lock);
mvpp2_port_remove(priv->port_list[i]);
}
i++;
}
destroy_workqueue(priv->stats_queue);
if (priv->percpu_pools)
poolnum = mvpp2_get_nrxqs(priv) * 2;
for (i = 0; i < poolnum; i++) {
struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
mvpp2_bm_pool_destroy(&pdev->dev, priv, bm_pool);
}
for (i = 0; i < MVPP2_MAX_THREADS; i++) {
struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
dma_free_coherent(&pdev->dev,
MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
aggr_txq->descs,
aggr_txq->descs_dma);
}
if (is_acpi_node(port_fwnode))
return 0;
clk_disable_unprepare(priv->axi_clk);
clk_disable_unprepare(priv->mg_core_clk);
clk_disable_unprepare(priv->mg_clk);
clk_disable_unprepare(priv->pp_clk);
clk_disable_unprepare(priv->gop_clk);
return 0;
}
static const struct of_device_id mvpp2_match[] = {
{
.compatible = "marvell,armada-375-pp2",
.data = (void *)MVPP21,
},
{
.compatible = "marvell,armada-7k-pp22",
.data = (void *)MVPP22,
},
{ }
};
MODULE_DEVICE_TABLE(of, mvpp2_match);
#ifdef CONFIG_ACPI
static const struct acpi_device_id mvpp2_acpi_match[] = {
{ "MRVL0110", MVPP22 },
{ },
};
MODULE_DEVICE_TABLE(acpi, mvpp2_acpi_match);
#endif
static struct platform_driver mvpp2_driver = {
.probe = mvpp2_probe,
.remove = mvpp2_remove,
.driver = {
.name = MVPP2_DRIVER_NAME,
.of_match_table = mvpp2_match,
.acpi_match_table = ACPI_PTR(mvpp2_acpi_match),
},
};
static int __init mvpp2_driver_init(void)
{
return platform_driver_register(&mvpp2_driver);
}
module_init(mvpp2_driver_init);
static void __exit mvpp2_driver_exit(void)
{
platform_driver_unregister(&mvpp2_driver);
mvpp2_dbgfs_exit();
}
module_exit(mvpp2_driver_exit);
MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
MODULE_LICENSE("GPL v2");