linux-zen-desktop/drivers/net/ethernet/marvell/octeontx2/af/ptp.c

532 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Marvell PTP driver
*
* Copyright (C) 2020 Marvell.
*
*/
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include "ptp.h"
#include "mbox.h"
#include "rvu.h"
#define DRV_NAME "Marvell PTP Driver"
#define PCI_DEVID_OCTEONTX2_PTP 0xA00C
#define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100
#define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200
#define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300
#define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400
#define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500
#define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600
#define PCI_DEVID_OCTEONTX2_RST 0xA085
#define PCI_DEVID_CN10K_PTP 0xA09E
#define PCI_SUBSYS_DEVID_CN10K_A_PTP 0xB900
#define PCI_SUBSYS_DEVID_CNF10K_A_PTP 0xBA00
#define PCI_SUBSYS_DEVID_CNF10K_B_PTP 0xBC00
#define PCI_PTP_BAR_NO 0
#define PTP_CLOCK_CFG 0xF00ULL
#define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0)
#define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1)
#define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2)
#define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9)
#define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8)
#define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10)
#define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30)
#define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31)
#define PTP_PPS_HI_INCR 0xF60ULL
#define PTP_PPS_LO_INCR 0xF68ULL
#define PTP_PPS_THRESH_HI 0xF58ULL
#define PTP_CLOCK_LO 0xF08ULL
#define PTP_CLOCK_HI 0xF10ULL
#define PTP_CLOCK_COMP 0xF18ULL
#define PTP_TIMESTAMP 0xF20ULL
#define PTP_CLOCK_SEC 0xFD0ULL
#define PTP_SEC_ROLLOVER 0xFD8ULL
#define CYCLE_MULT 1000
static struct ptp *first_ptp_block;
static const struct pci_device_id ptp_id_table[];
static bool is_ptp_dev_cnf10kb(struct ptp *ptp)
{
return (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_B_PTP) ? true : false;
}
static bool is_ptp_dev_cn10k(struct ptp *ptp)
{
return (ptp->pdev->device == PCI_DEVID_CN10K_PTP) ? true : false;
}
static bool cn10k_ptp_errata(struct ptp *ptp)
{
if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP ||
ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP)
return true;
return false;
}
static bool is_ptp_tsfmt_sec_nsec(struct ptp *ptp)
{
if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP ||
ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP)
return true;
return false;
}
static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer)
{
struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer);
ktime_t curr_ts = ktime_get();
ktime_t delta_ns, period_ns;
u64 ptp_clock_hi;
/* calculate the elapsed time since last restart */
delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts));
/* if the ptp clock value has crossed 0.5 seconds,
* its too late to update pps threshold value, so
* update threshold after 1 second.
*/
ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
if (ptp_clock_hi > 500000000) {
period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi));
} else {
writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI);
period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns));
}
hrtimer_forward_now(hrtimer, period_ns);
ptp->last_ts = curr_ts;
return HRTIMER_RESTART;
}
static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns)
{
ktime_t period_ns;
period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns));
hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL);
ptp->last_ts = ktime_get();
}
static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp)
{
u64 sec, sec1, nsec;
unsigned long flags;
spin_lock_irqsave(&ptp->ptp_lock, flags);
sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL;
nsec = readq(ptp->reg_base + PTP_CLOCK_HI);
sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL;
/* check nsec rollover */
if (sec1 > sec) {
nsec = readq(ptp->reg_base + PTP_CLOCK_HI);
sec = sec1;
}
spin_unlock_irqrestore(&ptp->ptp_lock, flags);
return sec * NSEC_PER_SEC + nsec;
}
static u64 read_ptp_tstmp_nsec(struct ptp *ptp)
{
return readq(ptp->reg_base + PTP_CLOCK_HI);
}
static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq)
{
u64 comp, adj = 0, cycles_per_sec, ns_drift = 0;
u32 ptp_clock_nsec, cycle_time;
int cycle;
/* Errata:
* Issue #1: At the time of 1 sec rollover of the nano-second counter,
* the nano-second counter is set to 0. However, it should be set to
* (existing counter_value - 10^9).
*
* Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF.
* It should roll over at 0x3B9A_CA00.
*/
/* calculate ptp_clock_comp value */
comp = ((u64)1000000000ULL << 32) / ptp_clock_freq;
/* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */
cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq;
/* cycles per sec */
cycles_per_sec = ptp_clock_freq;
/* check whether ptp nanosecond counter rolls over early */
cycle = cycles_per_sec - 1;
ptp_clock_nsec = (cycle * comp) >> 32;
while (ptp_clock_nsec < NSEC_PER_SEC) {
if (ptp_clock_nsec == 0x3B9AC9FF)
goto calc_adj_comp;
cycle++;
ptp_clock_nsec = (cycle * comp) >> 32;
}
/* compute nanoseconds lost per second when nsec counter rolls over */
ns_drift = ptp_clock_nsec - NSEC_PER_SEC;
/* calculate ptp_clock_comp adjustment */
if (ns_drift > 0) {
adj = comp * ns_drift;
adj = adj / 1000000000ULL;
}
/* speed up the ptp clock to account for nanoseconds lost */
comp += adj;
return comp;
calc_adj_comp:
/* slow down the ptp clock to not rollover early */
adj = comp * cycle_time;
adj = adj / 1000000000ULL;
adj = adj / CYCLE_MULT;
comp -= adj;
return comp;
}
struct ptp *ptp_get(void)
{
struct ptp *ptp = first_ptp_block;
/* Check PTP block is present in hardware */
if (!pci_dev_present(ptp_id_table))
return ERR_PTR(-ENODEV);
/* Check driver is bound to PTP block */
if (!ptp)
ptp = ERR_PTR(-EPROBE_DEFER);
else
pci_dev_get(ptp->pdev);
return ptp;
}
void ptp_put(struct ptp *ptp)
{
if (!ptp)
return;
pci_dev_put(ptp->pdev);
}
static int ptp_adjfine(struct ptp *ptp, long scaled_ppm)
{
bool neg_adj = false;
u32 freq, freq_adj;
u64 comp, adj;
s64 ppb;
if (scaled_ppm < 0) {
neg_adj = true;
scaled_ppm = -scaled_ppm;
}
/* The hardware adds the clock compensation value to the PTP clock
* on every coprocessor clock cycle. Typical convention is that it
* represent number of nanosecond betwen each cycle. In this
* convention compensation value is in 64 bit fixed-point
* representation where upper 32 bits are number of nanoseconds
* and lower is fractions of nanosecond.
* The scaled_ppm represent the ratio in "parts per million" by which
* the compensation value should be corrected.
* To calculate new compenstation value we use 64bit fixed point
* arithmetic on following formula
* comp = tbase + tbase * scaled_ppm / (1M * 2^16)
* where tbase is the basic compensation value calculated
* initialy in the probe function.
*/
/* convert scaled_ppm to ppb */
ppb = 1 + scaled_ppm;
ppb *= 125;
ppb >>= 13;
if (cn10k_ptp_errata(ptp)) {
/* calculate the new frequency based on ppb */
freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL;
freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj;
comp = ptp_calc_adjusted_comp(freq);
} else {
comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
adj = comp * ppb;
adj = div_u64(adj, 1000000000ull);
comp = neg_adj ? comp - adj : comp + adj;
}
writeq(comp, ptp->reg_base + PTP_CLOCK_COMP);
return 0;
}
static int ptp_get_clock(struct ptp *ptp, u64 *clk)
{
/* Return the current PTP clock */
*clk = ptp->read_ptp_tstmp(ptp);
return 0;
}
void ptp_start(struct ptp *ptp, u64 sclk, u32 ext_clk_freq, u32 extts)
{
struct pci_dev *pdev;
u64 clock_comp;
u64 clock_cfg;
if (!ptp)
return;
pdev = ptp->pdev;
if (!sclk) {
dev_err(&pdev->dev, "PTP input clock cannot be zero\n");
return;
}
/* sclk is in MHz */
ptp->clock_rate = sclk * 1000000;
/* Program the seconds rollover value to 1 second */
if (is_ptp_dev_cnf10kb(ptp))
writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER);
/* Enable PTP clock */
clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
if (ext_clk_freq) {
ptp->clock_rate = ext_clk_freq;
/* Set GPIO as PTP clock source */
clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK;
clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN;
}
if (extts) {
clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE;
/* Set GPIO as timestamping source */
clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK;
clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN;
}
clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV;
writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
/* Set 50% duty cycle for 1Hz output */
writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_HI_INCR);
writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_LO_INCR);
if (cn10k_ptp_errata(ptp)) {
/* The ptp_clock_hi rollsover to zero once clock cycle before it
* reaches one second boundary. so, program the pps_lo_incr in
* such a way that the pps threshold value comparison at one
* second boundary will succeed and pps edge changes. After each
* one second boundary, the hrtimer handler will be invoked and
* reprograms the pps threshold value.
*/
ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate;
writeq((0x1dcd6500ULL - ptp->clock_period) << 32,
ptp->reg_base + PTP_PPS_LO_INCR);
}
if (cn10k_ptp_errata(ptp))
clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate);
else
clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
/* Initial compensation value to start the nanosecs counter */
writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP);
}
static int ptp_get_tstmp(struct ptp *ptp, u64 *clk)
{
u64 timestamp;
if (is_ptp_dev_cn10k(ptp)) {
timestamp = readq(ptp->reg_base + PTP_TIMESTAMP);
*clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF);
} else {
*clk = readq(ptp->reg_base + PTP_TIMESTAMP);
}
return 0;
}
static int ptp_set_thresh(struct ptp *ptp, u64 thresh)
{
if (!cn10k_ptp_errata(ptp))
writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI);
return 0;
}
static int ptp_extts_on(struct ptp *ptp, int on)
{
u64 ptp_clock_hi;
if (cn10k_ptp_errata(ptp)) {
if (on) {
ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi);
} else {
if (hrtimer_active(&ptp->hrtimer))
hrtimer_cancel(&ptp->hrtimer);
}
}
return 0;
}
static int ptp_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct ptp *ptp;
int err;
ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL);
if (!ptp) {
err = -ENOMEM;
goto error;
}
ptp->pdev = pdev;
err = pcim_enable_device(pdev);
if (err)
goto error_free;
err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev));
if (err)
goto error_free;
ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];
pci_set_drvdata(pdev, ptp);
if (!first_ptp_block)
first_ptp_block = ptp;
spin_lock_init(&ptp->ptp_lock);
if (is_ptp_tsfmt_sec_nsec(ptp))
ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec;
else
ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec;
if (cn10k_ptp_errata(ptp)) {
hrtimer_init(&ptp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
ptp->hrtimer.function = ptp_reset_thresh;
}
return 0;
error_free:
devm_kfree(dev, ptp);
error:
/* For `ptp_get()` we need to differentiate between the case
* when the core has not tried to probe this device and the case when
* the probe failed. In the later case we pretend that the
* initialization was successful and keep the error in
* `dev->driver_data`.
*/
pci_set_drvdata(pdev, ERR_PTR(err));
if (!first_ptp_block)
first_ptp_block = ERR_PTR(err);
return 0;
}
static void ptp_remove(struct pci_dev *pdev)
{
struct ptp *ptp = pci_get_drvdata(pdev);
u64 clock_cfg;
if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer))
hrtimer_cancel(&ptp->hrtimer);
if (IS_ERR_OR_NULL(ptp))
return;
/* Disable PTP clock */
clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
}
static const struct pci_device_id ptp_id_table[] = {
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) },
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) },
{ 0, }
};
struct pci_driver ptp_driver = {
.name = DRV_NAME,
.id_table = ptp_id_table,
.probe = ptp_probe,
.remove = ptp_remove,
};
int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req,
struct ptp_rsp *rsp)
{
int err = 0;
/* This function is the PTP mailbox handler invoked when
* called by AF consumers/netdev drivers via mailbox mechanism.
* It is used by netdev driver to get the PTP clock and to set
* frequency adjustments. Since mailbox can be called without
* notion of whether the driver is bound to ptp device below
* validation is needed as first step.
*/
if (!rvu->ptp)
return -ENODEV;
switch (req->op) {
case PTP_OP_ADJFINE:
err = ptp_adjfine(rvu->ptp, req->scaled_ppm);
break;
case PTP_OP_GET_CLOCK:
err = ptp_get_clock(rvu->ptp, &rsp->clk);
break;
case PTP_OP_GET_TSTMP:
err = ptp_get_tstmp(rvu->ptp, &rsp->clk);
break;
case PTP_OP_SET_THRESH:
err = ptp_set_thresh(rvu->ptp, req->thresh);
break;
case PTP_OP_EXTTS_ON:
err = ptp_extts_on(rvu->ptp, req->extts_on);
break;
default:
err = -EINVAL;
break;
}
return err;
}