688 lines
18 KiB
C
688 lines
18 KiB
C
/*
|
|
* Copyright (c) 2008-2011 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
#include <linux/ath9k_platform.h>
|
|
|
|
void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
|
|
{
|
|
REG_WRITE(ah, reg, val);
|
|
|
|
if (ah->config.analog_shiftreg)
|
|
udelay(100);
|
|
}
|
|
|
|
void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
|
|
u32 shift, u32 val)
|
|
{
|
|
REG_RMW(ah, reg, ((val << shift) & mask), mask);
|
|
|
|
if (ah->config.analog_shiftreg)
|
|
udelay(100);
|
|
}
|
|
|
|
int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
|
|
int16_t targetLeft, int16_t targetRight)
|
|
{
|
|
int16_t rv;
|
|
|
|
if (srcRight == srcLeft) {
|
|
rv = targetLeft;
|
|
} else {
|
|
rv = (int16_t) (((target - srcLeft) * targetRight +
|
|
(srcRight - target) * targetLeft) /
|
|
(srcRight - srcLeft));
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
|
|
u16 *indexL, u16 *indexR)
|
|
{
|
|
u16 i;
|
|
|
|
if (target <= pList[0]) {
|
|
*indexL = *indexR = 0;
|
|
return true;
|
|
}
|
|
if (target >= pList[listSize - 1]) {
|
|
*indexL = *indexR = (u16) (listSize - 1);
|
|
return true;
|
|
}
|
|
|
|
for (i = 0; i < listSize - 1; i++) {
|
|
if (pList[i] == target) {
|
|
*indexL = *indexR = i;
|
|
return true;
|
|
}
|
|
if (target < pList[i + 1]) {
|
|
*indexL = i;
|
|
*indexR = (u16) (i + 1);
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
|
|
int eep_start_loc, int size)
|
|
{
|
|
int i = 0, j, addr;
|
|
u32 addrdata[8];
|
|
u32 data[8];
|
|
|
|
for (addr = 0; addr < size; addr++) {
|
|
addrdata[i] = AR5416_EEPROM_OFFSET +
|
|
((addr + eep_start_loc) << AR5416_EEPROM_S);
|
|
i++;
|
|
if (i == 8) {
|
|
REG_READ_MULTI(ah, addrdata, data, i);
|
|
|
|
for (j = 0; j < i; j++) {
|
|
*eep_data = data[j];
|
|
eep_data++;
|
|
}
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
if (i != 0) {
|
|
REG_READ_MULTI(ah, addrdata, data, i);
|
|
|
|
for (j = 0; j < i; j++) {
|
|
*eep_data = data[j];
|
|
eep_data++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
|
|
off_t offset, u16 *data)
|
|
{
|
|
if (offset >= blob_size)
|
|
return false;
|
|
|
|
*data = blob[offset];
|
|
return true;
|
|
}
|
|
|
|
static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
|
|
off_t offset, u16 *data)
|
|
{
|
|
return ath9k_hw_nvram_read_array(pdata->eeprom_data,
|
|
ARRAY_SIZE(pdata->eeprom_data),
|
|
offset, data);
|
|
}
|
|
|
|
static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
|
|
off_t offset, u16 *data)
|
|
{
|
|
return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
|
|
eeprom_blob->size / sizeof(u16),
|
|
offset, data);
|
|
}
|
|
|
|
static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
|
|
u16 *data)
|
|
{
|
|
return ath9k_hw_nvram_read_array(ah->nvmem_blob,
|
|
ah->nvmem_blob_len / sizeof(u16),
|
|
offset, data);
|
|
}
|
|
|
|
bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath9k_platform_data *pdata = ah->dev->platform_data;
|
|
bool ret;
|
|
|
|
if (ah->nvmem_blob)
|
|
ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
|
|
else if (ah->eeprom_blob)
|
|
ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
|
|
else if (pdata && !pdata->use_eeprom)
|
|
ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
|
|
else
|
|
ret = common->bus_ops->eeprom_read(common, off, data);
|
|
|
|
if (!ret)
|
|
ath_dbg(common, EEPROM,
|
|
"unable to read eeprom region at offset %u\n", off);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
|
|
{
|
|
u16 magic;
|
|
u16 *eepdata;
|
|
int i;
|
|
bool needs_byteswap = false;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
|
|
ath_err(common, "Reading Magic # failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (swab16(magic) == AR5416_EEPROM_MAGIC) {
|
|
needs_byteswap = true;
|
|
ath_dbg(common, EEPROM,
|
|
"EEPROM needs byte-swapping to correct endianness.\n");
|
|
} else if (magic != AR5416_EEPROM_MAGIC) {
|
|
if (ath9k_hw_use_flash(ah)) {
|
|
ath_dbg(common, EEPROM,
|
|
"Ignoring invalid EEPROM magic (0x%04x).\n",
|
|
magic);
|
|
} else {
|
|
ath_err(common,
|
|
"Invalid EEPROM magic (0x%04x).\n", magic);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (needs_byteswap) {
|
|
if (ah->ah_flags & AH_NO_EEP_SWAP) {
|
|
ath_info(common,
|
|
"Ignoring endianness difference in EEPROM magic bytes.\n");
|
|
} else {
|
|
eepdata = (u16 *)(&ah->eeprom);
|
|
|
|
for (i = 0; i < size; i++)
|
|
eepdata[i] = swab16(eepdata[i]);
|
|
}
|
|
}
|
|
|
|
if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
|
|
*swap_needed = true;
|
|
ath_dbg(common, EEPROM,
|
|
"Big Endian EEPROM detected according to EEPMISC register.\n");
|
|
} else {
|
|
*swap_needed = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
|
|
{
|
|
u32 i, sum = 0;
|
|
u16 *eepdata = (u16 *)(&ah->eeprom);
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
for (i = 0; i < size; i++)
|
|
sum ^= eepdata[i];
|
|
|
|
if (sum != 0xffff) {
|
|
ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (ah->eep_ops->get_eeprom_ver(ah) != version ||
|
|
ah->eep_ops->get_eeprom_rev(ah) < minrev) {
|
|
ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
|
|
ah->eep_ops->get_eeprom_ver(ah),
|
|
ah->eep_ops->get_eeprom_rev(ah));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
|
|
u8 *pVpdList, u16 numIntercepts,
|
|
u8 *pRetVpdList)
|
|
{
|
|
u16 i, k;
|
|
u8 currPwr = pwrMin;
|
|
u16 idxL = 0, idxR = 0;
|
|
|
|
for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
|
|
ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
|
|
numIntercepts, &(idxL),
|
|
&(idxR));
|
|
if (idxR < 1)
|
|
idxR = 1;
|
|
if (idxL == numIntercepts - 1)
|
|
idxL = (u16) (numIntercepts - 2);
|
|
if (pPwrList[idxL] == pPwrList[idxR])
|
|
k = pVpdList[idxL];
|
|
else
|
|
k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
|
|
(pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
|
|
(pPwrList[idxR] - pPwrList[idxL]));
|
|
pRetVpdList[i] = (u8) k;
|
|
currPwr += 2;
|
|
}
|
|
}
|
|
|
|
void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
struct cal_target_power_leg *powInfo,
|
|
u16 numChannels,
|
|
struct cal_target_power_leg *pNewPower,
|
|
u16 numRates, bool isExtTarget)
|
|
{
|
|
struct chan_centers centers;
|
|
u16 clo, chi;
|
|
int i;
|
|
int matchIndex = -1, lowIndex = -1;
|
|
u16 freq;
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
|
|
|
|
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
|
|
IS_CHAN_2GHZ(chan))) {
|
|
matchIndex = 0;
|
|
} else {
|
|
for (i = 0; (i < numChannels) &&
|
|
(powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
|
|
if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
|
|
IS_CHAN_2GHZ(chan))) {
|
|
matchIndex = i;
|
|
break;
|
|
} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
|
|
IS_CHAN_2GHZ(chan)) && i > 0 &&
|
|
freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
|
|
IS_CHAN_2GHZ(chan))) {
|
|
lowIndex = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((matchIndex == -1) && (lowIndex == -1))
|
|
matchIndex = i - 1;
|
|
}
|
|
|
|
if (matchIndex != -1) {
|
|
*pNewPower = powInfo[matchIndex];
|
|
} else {
|
|
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
|
|
IS_CHAN_2GHZ(chan));
|
|
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
|
|
IS_CHAN_2GHZ(chan));
|
|
|
|
for (i = 0; i < numRates; i++) {
|
|
pNewPower->tPow2x[i] =
|
|
(u8)ath9k_hw_interpolate(freq, clo, chi,
|
|
powInfo[lowIndex].tPow2x[i],
|
|
powInfo[lowIndex + 1].tPow2x[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ath9k_hw_get_target_powers(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
struct cal_target_power_ht *powInfo,
|
|
u16 numChannels,
|
|
struct cal_target_power_ht *pNewPower,
|
|
u16 numRates, bool isHt40Target)
|
|
{
|
|
struct chan_centers centers;
|
|
u16 clo, chi;
|
|
int i;
|
|
int matchIndex = -1, lowIndex = -1;
|
|
u16 freq;
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
|
|
|
|
if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
|
|
matchIndex = 0;
|
|
} else {
|
|
for (i = 0; (i < numChannels) &&
|
|
(powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
|
|
if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
|
|
IS_CHAN_2GHZ(chan))) {
|
|
matchIndex = i;
|
|
break;
|
|
} else
|
|
if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
|
|
IS_CHAN_2GHZ(chan)) && i > 0 &&
|
|
freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
|
|
IS_CHAN_2GHZ(chan))) {
|
|
lowIndex = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
if ((matchIndex == -1) && (lowIndex == -1))
|
|
matchIndex = i - 1;
|
|
}
|
|
|
|
if (matchIndex != -1) {
|
|
*pNewPower = powInfo[matchIndex];
|
|
} else {
|
|
clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
|
|
IS_CHAN_2GHZ(chan));
|
|
chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
|
|
IS_CHAN_2GHZ(chan));
|
|
|
|
for (i = 0; i < numRates; i++) {
|
|
pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
|
|
clo, chi,
|
|
powInfo[lowIndex].tPow2x[i],
|
|
powInfo[lowIndex + 1].tPow2x[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
|
|
bool is2GHz, int num_band_edges)
|
|
{
|
|
u16 twiceMaxEdgePower = MAX_RATE_POWER;
|
|
int i;
|
|
|
|
for (i = 0; (i < num_band_edges) &&
|
|
(pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
|
|
if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
|
|
twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
|
|
break;
|
|
} else if ((i > 0) &&
|
|
(freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
|
|
is2GHz))) {
|
|
if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
|
|
is2GHz) < freq &&
|
|
CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
|
|
twiceMaxEdgePower =
|
|
CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return twiceMaxEdgePower;
|
|
}
|
|
|
|
u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
|
|
u8 antenna_reduction)
|
|
{
|
|
u16 reduction = antenna_reduction;
|
|
|
|
/*
|
|
* Reduce scaled Power by number of chains active
|
|
* to get the per chain tx power level.
|
|
*/
|
|
switch (ar5416_get_ntxchains(ah->txchainmask)) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
|
|
break;
|
|
case 3:
|
|
reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
|
|
break;
|
|
}
|
|
|
|
if (power_limit > reduction)
|
|
power_limit -= reduction;
|
|
else
|
|
power_limit = 0;
|
|
|
|
return min_t(u16, power_limit, MAX_RATE_POWER);
|
|
}
|
|
|
|
void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
|
|
switch (ar5416_get_ntxchains(ah->txchainmask)) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
|
|
break;
|
|
case 3:
|
|
regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
|
|
break;
|
|
default:
|
|
ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
void *pRawDataSet,
|
|
u8 *bChans, u16 availPiers,
|
|
u16 tPdGainOverlap,
|
|
u16 *pPdGainBoundaries, u8 *pPDADCValues,
|
|
u16 numXpdGains)
|
|
{
|
|
int i, j, k;
|
|
int16_t ss;
|
|
u16 idxL = 0, idxR = 0, numPiers;
|
|
static u8 vpdTableL[AR5416_NUM_PD_GAINS]
|
|
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
static u8 vpdTableR[AR5416_NUM_PD_GAINS]
|
|
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
static u8 vpdTableI[AR5416_NUM_PD_GAINS]
|
|
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
|
|
u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
|
|
u8 minPwrT4[AR5416_NUM_PD_GAINS];
|
|
u8 maxPwrT4[AR5416_NUM_PD_GAINS];
|
|
int16_t vpdStep;
|
|
int16_t tmpVal;
|
|
u16 sizeCurrVpdTable, maxIndex, tgtIndex;
|
|
bool match;
|
|
int16_t minDelta = 0;
|
|
struct chan_centers centers;
|
|
int pdgain_boundary_default;
|
|
struct cal_data_per_freq *data_def = pRawDataSet;
|
|
struct cal_data_per_freq_4k *data_4k = pRawDataSet;
|
|
struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
|
|
bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
|
|
int intercepts;
|
|
|
|
if (AR_SREV_9287(ah))
|
|
intercepts = AR9287_PD_GAIN_ICEPTS;
|
|
else
|
|
intercepts = AR5416_PD_GAIN_ICEPTS;
|
|
|
|
memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
|
|
for (numPiers = 0; numPiers < availPiers; numPiers++) {
|
|
if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
|
|
break;
|
|
}
|
|
|
|
match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
|
|
IS_CHAN_2GHZ(chan)),
|
|
bChans, numPiers, &idxL, &idxR);
|
|
|
|
if (match) {
|
|
if (AR_SREV_9287(ah)) {
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
|
|
maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
|
|
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
|
|
data_9287[idxL].pwrPdg[i],
|
|
data_9287[idxL].vpdPdg[i],
|
|
intercepts,
|
|
vpdTableI[i]);
|
|
}
|
|
} else if (eeprom_4k) {
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
|
|
maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
|
|
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
|
|
data_4k[idxL].pwrPdg[i],
|
|
data_4k[idxL].vpdPdg[i],
|
|
intercepts,
|
|
vpdTableI[i]);
|
|
}
|
|
} else {
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
|
|
maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
|
|
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
|
|
data_def[idxL].pwrPdg[i],
|
|
data_def[idxL].vpdPdg[i],
|
|
intercepts,
|
|
vpdTableI[i]);
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
if (AR_SREV_9287(ah)) {
|
|
pVpdL = data_9287[idxL].vpdPdg[i];
|
|
pPwrL = data_9287[idxL].pwrPdg[i];
|
|
pVpdR = data_9287[idxR].vpdPdg[i];
|
|
pPwrR = data_9287[idxR].pwrPdg[i];
|
|
} else if (eeprom_4k) {
|
|
pVpdL = data_4k[idxL].vpdPdg[i];
|
|
pPwrL = data_4k[idxL].pwrPdg[i];
|
|
pVpdR = data_4k[idxR].vpdPdg[i];
|
|
pPwrR = data_4k[idxR].pwrPdg[i];
|
|
} else {
|
|
pVpdL = data_def[idxL].vpdPdg[i];
|
|
pPwrL = data_def[idxL].pwrPdg[i];
|
|
pVpdR = data_def[idxR].vpdPdg[i];
|
|
pPwrR = data_def[idxR].pwrPdg[i];
|
|
}
|
|
|
|
minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
|
|
|
|
maxPwrT4[i] =
|
|
min(pPwrL[intercepts - 1],
|
|
pPwrR[intercepts - 1]);
|
|
|
|
|
|
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
|
|
pPwrL, pVpdL,
|
|
intercepts,
|
|
vpdTableL[i]);
|
|
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
|
|
pPwrR, pVpdR,
|
|
intercepts,
|
|
vpdTableR[i]);
|
|
|
|
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
|
|
vpdTableI[i][j] =
|
|
(u8)(ath9k_hw_interpolate((u16)
|
|
FREQ2FBIN(centers.
|
|
synth_center,
|
|
IS_CHAN_2GHZ
|
|
(chan)),
|
|
bChans[idxL], bChans[idxR],
|
|
vpdTableL[i][j], vpdTableR[i][j]));
|
|
}
|
|
}
|
|
}
|
|
|
|
k = 0;
|
|
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
if (i == (numXpdGains - 1))
|
|
pPdGainBoundaries[i] =
|
|
(u16)(maxPwrT4[i] / 2);
|
|
else
|
|
pPdGainBoundaries[i] =
|
|
(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
|
|
|
|
pPdGainBoundaries[i] =
|
|
min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
|
|
|
|
minDelta = 0;
|
|
|
|
if (i == 0) {
|
|
if (AR_SREV_9280_20_OR_LATER(ah))
|
|
ss = (int16_t)(0 - (minPwrT4[i] / 2));
|
|
else
|
|
ss = 0;
|
|
} else {
|
|
ss = (int16_t)((pPdGainBoundaries[i - 1] -
|
|
(minPwrT4[i] / 2)) -
|
|
tPdGainOverlap + 1 + minDelta);
|
|
}
|
|
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
|
|
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
|
|
|
|
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
|
|
pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
|
|
ss++;
|
|
}
|
|
|
|
sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
|
|
tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
|
|
(minPwrT4[i] / 2));
|
|
maxIndex = (tgtIndex < sizeCurrVpdTable) ?
|
|
tgtIndex : sizeCurrVpdTable;
|
|
|
|
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
pPDADCValues[k++] = vpdTableI[i][ss++];
|
|
}
|
|
|
|
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
|
|
vpdTableI[i][sizeCurrVpdTable - 2]);
|
|
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
|
|
|
|
if (tgtIndex >= maxIndex) {
|
|
while ((ss <= tgtIndex) &&
|
|
(k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
|
|
(ss - maxIndex + 1) * vpdStep));
|
|
pPDADCValues[k++] = (u8)((tmpVal > 255) ?
|
|
255 : tmpVal);
|
|
ss++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (eeprom_4k)
|
|
pdgain_boundary_default = 58;
|
|
else
|
|
pdgain_boundary_default = pPdGainBoundaries[i - 1];
|
|
|
|
while (i < AR5416_PD_GAINS_IN_MASK) {
|
|
pPdGainBoundaries[i] = pdgain_boundary_default;
|
|
i++;
|
|
}
|
|
|
|
while (k < AR5416_NUM_PDADC_VALUES) {
|
|
pPDADCValues[k] = pPDADCValues[k - 1];
|
|
k++;
|
|
}
|
|
}
|
|
|
|
int ath9k_hw_eeprom_init(struct ath_hw *ah)
|
|
{
|
|
if (AR_SREV_9300_20_OR_LATER(ah))
|
|
ah->eep_ops = &eep_ar9300_ops;
|
|
else if (AR_SREV_9287(ah)) {
|
|
ah->eep_ops = &eep_ar9287_ops;
|
|
} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
|
|
ah->eep_ops = &eep_4k_ops;
|
|
} else {
|
|
ah->eep_ops = &eep_def_ops;
|
|
}
|
|
|
|
if (!ah->eep_ops->fill_eeprom(ah))
|
|
return -EIO;
|
|
|
|
return ah->eep_ops->check_eeprom(ah);
|
|
}
|