607 lines
16 KiB
C
607 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright (C) 2012-2014, 2018-2019, 2021 Intel Corporation
|
|
* Copyright (C) 2013-2015 Intel Mobile Communications GmbH
|
|
* Copyright (C) 2016-2017 Intel Deutschland GmbH
|
|
*/
|
|
#include <linux/firmware.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include "iwl-trans.h"
|
|
#include "iwl-csr.h"
|
|
#include "mvm.h"
|
|
#include "iwl-eeprom-parse.h"
|
|
#include "iwl-eeprom-read.h"
|
|
#include "iwl-nvm-parse.h"
|
|
#include "iwl-prph.h"
|
|
#include "fw/acpi.h"
|
|
|
|
/* Default NVM size to read */
|
|
#define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
|
|
|
|
#define NVM_WRITE_OPCODE 1
|
|
#define NVM_READ_OPCODE 0
|
|
|
|
/* load nvm chunk response */
|
|
enum {
|
|
READ_NVM_CHUNK_SUCCEED = 0,
|
|
READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
|
|
};
|
|
|
|
/*
|
|
* prepare the NVM host command w/ the pointers to the nvm buffer
|
|
* and send it to fw
|
|
*/
|
|
static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
|
|
u16 offset, u16 length, const u8 *data)
|
|
{
|
|
struct iwl_nvm_access_cmd nvm_access_cmd = {
|
|
.offset = cpu_to_le16(offset),
|
|
.length = cpu_to_le16(length),
|
|
.type = cpu_to_le16(section),
|
|
.op_code = NVM_WRITE_OPCODE,
|
|
};
|
|
struct iwl_host_cmd cmd = {
|
|
.id = NVM_ACCESS_CMD,
|
|
.len = { sizeof(struct iwl_nvm_access_cmd), length },
|
|
.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
|
|
.data = { &nvm_access_cmd, data },
|
|
/* data may come from vmalloc, so use _DUP */
|
|
.dataflags = { 0, IWL_HCMD_DFL_DUP },
|
|
};
|
|
struct iwl_rx_packet *pkt;
|
|
struct iwl_nvm_access_resp *nvm_resp;
|
|
int ret;
|
|
|
|
ret = iwl_mvm_send_cmd(mvm, &cmd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pkt = cmd.resp_pkt;
|
|
/* Extract & check NVM write response */
|
|
nvm_resp = (void *)pkt->data;
|
|
if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
|
|
IWL_ERR(mvm,
|
|
"NVM access write command failed for section %u (status = 0x%x)\n",
|
|
section, le16_to_cpu(nvm_resp->status));
|
|
ret = -EIO;
|
|
}
|
|
|
|
iwl_free_resp(&cmd);
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
|
|
u16 offset, u16 length, u8 *data)
|
|
{
|
|
struct iwl_nvm_access_cmd nvm_access_cmd = {
|
|
.offset = cpu_to_le16(offset),
|
|
.length = cpu_to_le16(length),
|
|
.type = cpu_to_le16(section),
|
|
.op_code = NVM_READ_OPCODE,
|
|
};
|
|
struct iwl_nvm_access_resp *nvm_resp;
|
|
struct iwl_rx_packet *pkt;
|
|
struct iwl_host_cmd cmd = {
|
|
.id = NVM_ACCESS_CMD,
|
|
.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
|
|
.data = { &nvm_access_cmd, },
|
|
};
|
|
int ret, bytes_read, offset_read;
|
|
u8 *resp_data;
|
|
|
|
cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
|
|
|
|
ret = iwl_mvm_send_cmd(mvm, &cmd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pkt = cmd.resp_pkt;
|
|
|
|
/* Extract NVM response */
|
|
nvm_resp = (void *)pkt->data;
|
|
ret = le16_to_cpu(nvm_resp->status);
|
|
bytes_read = le16_to_cpu(nvm_resp->length);
|
|
offset_read = le16_to_cpu(nvm_resp->offset);
|
|
resp_data = nvm_resp->data;
|
|
if (ret) {
|
|
if ((offset != 0) &&
|
|
(ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
|
|
/*
|
|
* meaning of NOT_VALID_ADDRESS:
|
|
* driver try to read chunk from address that is
|
|
* multiple of 2K and got an error since addr is empty.
|
|
* meaning of (offset != 0): driver already
|
|
* read valid data from another chunk so this case
|
|
* is not an error.
|
|
*/
|
|
IWL_DEBUG_EEPROM(mvm->trans->dev,
|
|
"NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
|
|
offset);
|
|
ret = 0;
|
|
} else {
|
|
IWL_DEBUG_EEPROM(mvm->trans->dev,
|
|
"NVM access command failed with status %d (device: %s)\n",
|
|
ret, mvm->trans->name);
|
|
ret = -ENODATA;
|
|
}
|
|
goto exit;
|
|
}
|
|
|
|
if (offset_read != offset) {
|
|
IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
|
|
offset_read);
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
/* Write data to NVM */
|
|
memcpy(data + offset, resp_data, bytes_read);
|
|
ret = bytes_read;
|
|
|
|
exit:
|
|
iwl_free_resp(&cmd);
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
|
|
const u8 *data, u16 length)
|
|
{
|
|
int offset = 0;
|
|
|
|
/* copy data in chunks of 2k (and remainder if any) */
|
|
|
|
while (offset < length) {
|
|
int chunk_size, ret;
|
|
|
|
chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
|
|
length - offset);
|
|
|
|
ret = iwl_nvm_write_chunk(mvm, section, offset,
|
|
chunk_size, data + offset);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
offset += chunk_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reads an NVM section completely.
|
|
* NICs prior to 7000 family doesn't have a real NVM, but just read
|
|
* section 0 which is the EEPROM. Because the EEPROM reading is unlimited
|
|
* by uCode, we need to manually check in this case that we don't
|
|
* overflow and try to read more than the EEPROM size.
|
|
* For 7000 family NICs, we supply the maximal size we can read, and
|
|
* the uCode fills the response with as much data as we can,
|
|
* without overflowing, so no check is needed.
|
|
*/
|
|
static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
|
|
u8 *data, u32 size_read)
|
|
{
|
|
u16 length, offset = 0;
|
|
int ret;
|
|
|
|
/* Set nvm section read length */
|
|
length = IWL_NVM_DEFAULT_CHUNK_SIZE;
|
|
|
|
ret = length;
|
|
|
|
/* Read the NVM until exhausted (reading less than requested) */
|
|
while (ret == length) {
|
|
/* Check no memory assumptions fail and cause an overflow */
|
|
if ((size_read + offset + length) >
|
|
mvm->trans->trans_cfg->base_params->eeprom_size) {
|
|
IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
|
|
if (ret < 0) {
|
|
IWL_DEBUG_EEPROM(mvm->trans->dev,
|
|
"Cannot read NVM from section %d offset %d, length %d\n",
|
|
section, offset, length);
|
|
return ret;
|
|
}
|
|
offset += ret;
|
|
}
|
|
|
|
iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
|
|
|
|
IWL_DEBUG_EEPROM(mvm->trans->dev,
|
|
"NVM section %d read completed\n", section);
|
|
return offset;
|
|
}
|
|
|
|
static struct iwl_nvm_data *
|
|
iwl_parse_nvm_sections(struct iwl_mvm *mvm)
|
|
{
|
|
struct iwl_nvm_section *sections = mvm->nvm_sections;
|
|
const __be16 *hw;
|
|
const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
|
|
int regulatory_type;
|
|
|
|
/* Checking for required sections */
|
|
if (mvm->trans->cfg->nvm_type == IWL_NVM) {
|
|
if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
|
|
!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
|
|
IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
|
|
return NULL;
|
|
}
|
|
} else {
|
|
if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
|
|
regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
|
|
else
|
|
regulatory_type = NVM_SECTION_TYPE_REGULATORY;
|
|
|
|
/* SW and REGULATORY sections are mandatory */
|
|
if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
|
|
!mvm->nvm_sections[regulatory_type].data) {
|
|
IWL_ERR(mvm,
|
|
"Can't parse empty family 8000 OTP/NVM sections\n");
|
|
return NULL;
|
|
}
|
|
/* MAC_OVERRIDE or at least HW section must exist */
|
|
if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
|
|
!mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
|
|
IWL_ERR(mvm,
|
|
"Can't parse mac_address, empty sections\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* PHY_SKU section is mandatory in B0 */
|
|
if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
|
|
!mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
|
|
IWL_ERR(mvm,
|
|
"Can't parse phy_sku in B0, empty sections\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
|
|
sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
|
|
calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
|
|
mac_override =
|
|
(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
|
|
phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
|
|
|
|
regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
|
|
(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
|
|
(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
|
|
|
|
return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
|
|
regulatory, mac_override, phy_sku,
|
|
mvm->fw->valid_tx_ant, mvm->fw->valid_rx_ant);
|
|
}
|
|
|
|
/* Loads the NVM data stored in mvm->nvm_sections into the NIC */
|
|
int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
|
|
{
|
|
int i, ret = 0;
|
|
struct iwl_nvm_section *sections = mvm->nvm_sections;
|
|
|
|
IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
|
|
if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
|
|
continue;
|
|
ret = iwl_nvm_write_section(mvm, i, sections[i].data,
|
|
sections[i].length);
|
|
if (ret < 0) {
|
|
IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int iwl_nvm_init(struct iwl_mvm *mvm)
|
|
{
|
|
int ret, section;
|
|
u32 size_read = 0;
|
|
u8 *nvm_buffer, *temp;
|
|
const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
|
|
|
|
if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
|
|
return -EINVAL;
|
|
|
|
/* load NVM values from nic */
|
|
/* Read From FW NVM */
|
|
IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
|
|
|
|
nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
|
|
GFP_KERNEL);
|
|
if (!nvm_buffer)
|
|
return -ENOMEM;
|
|
for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
|
|
/* we override the constness for initial read */
|
|
ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
|
|
size_read);
|
|
if (ret == -ENODATA) {
|
|
ret = 0;
|
|
continue;
|
|
}
|
|
if (ret < 0)
|
|
break;
|
|
size_read += ret;
|
|
temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
|
|
if (!temp) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
|
|
|
|
mvm->nvm_sections[section].data = temp;
|
|
mvm->nvm_sections[section].length = ret;
|
|
|
|
#ifdef CONFIG_IWLWIFI_DEBUGFS
|
|
switch (section) {
|
|
case NVM_SECTION_TYPE_SW:
|
|
mvm->nvm_sw_blob.data = temp;
|
|
mvm->nvm_sw_blob.size = ret;
|
|
break;
|
|
case NVM_SECTION_TYPE_CALIBRATION:
|
|
mvm->nvm_calib_blob.data = temp;
|
|
mvm->nvm_calib_blob.size = ret;
|
|
break;
|
|
case NVM_SECTION_TYPE_PRODUCTION:
|
|
mvm->nvm_prod_blob.data = temp;
|
|
mvm->nvm_prod_blob.size = ret;
|
|
break;
|
|
case NVM_SECTION_TYPE_PHY_SKU:
|
|
mvm->nvm_phy_sku_blob.data = temp;
|
|
mvm->nvm_phy_sku_blob.size = ret;
|
|
break;
|
|
case NVM_SECTION_TYPE_REGULATORY_SDP:
|
|
case NVM_SECTION_TYPE_REGULATORY:
|
|
mvm->nvm_reg_blob.data = temp;
|
|
mvm->nvm_reg_blob.size = ret;
|
|
break;
|
|
default:
|
|
if (section == mvm->cfg->nvm_hw_section_num) {
|
|
mvm->nvm_hw_blob.data = temp;
|
|
mvm->nvm_hw_blob.size = ret;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
if (!size_read)
|
|
IWL_ERR(mvm, "OTP is blank\n");
|
|
kfree(nvm_buffer);
|
|
|
|
/* Only if PNVM selected in the mod param - load external NVM */
|
|
if (mvm->nvm_file_name) {
|
|
/* read External NVM file from the mod param */
|
|
ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
|
|
mvm->nvm_sections);
|
|
if (ret) {
|
|
mvm->nvm_file_name = nvm_file_C;
|
|
|
|
if ((ret == -EFAULT || ret == -ENOENT) &&
|
|
mvm->nvm_file_name) {
|
|
/* in case nvm file was failed try again */
|
|
ret = iwl_read_external_nvm(mvm->trans,
|
|
mvm->nvm_file_name,
|
|
mvm->nvm_sections);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* parse the relevant nvm sections */
|
|
mvm->nvm_data = iwl_parse_nvm_sections(mvm);
|
|
if (!mvm->nvm_data)
|
|
return -ENODATA;
|
|
IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
|
|
mvm->nvm_data->nvm_version);
|
|
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
struct iwl_mcc_update_resp *
|
|
iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
|
|
enum iwl_mcc_source src_id)
|
|
{
|
|
struct iwl_mcc_update_cmd mcc_update_cmd = {
|
|
.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
|
|
.source_id = (u8)src_id,
|
|
};
|
|
struct iwl_mcc_update_resp *resp_cp;
|
|
struct iwl_rx_packet *pkt;
|
|
struct iwl_host_cmd cmd = {
|
|
.id = MCC_UPDATE_CMD,
|
|
.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
|
|
.data = { &mcc_update_cmd },
|
|
};
|
|
|
|
int ret;
|
|
u32 status;
|
|
int resp_len, n_channels;
|
|
u16 mcc;
|
|
|
|
if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
|
|
|
|
IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
|
|
alpha2[0], alpha2[1], src_id);
|
|
|
|
ret = iwl_mvm_send_cmd(mvm, &cmd);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
pkt = cmd.resp_pkt;
|
|
|
|
/* Extract MCC response */
|
|
if (fw_has_capa(&mvm->fw->ucode_capa,
|
|
IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
|
|
struct iwl_mcc_update_resp *mcc_resp = (void *)pkt->data;
|
|
|
|
n_channels = __le32_to_cpu(mcc_resp->n_channels);
|
|
if (iwl_rx_packet_payload_len(pkt) !=
|
|
struct_size(mcc_resp, channels, n_channels)) {
|
|
resp_cp = ERR_PTR(-EINVAL);
|
|
goto exit;
|
|
}
|
|
resp_len = sizeof(struct iwl_mcc_update_resp) +
|
|
n_channels * sizeof(__le32);
|
|
resp_cp = kmemdup(mcc_resp, resp_len, GFP_KERNEL);
|
|
if (!resp_cp) {
|
|
resp_cp = ERR_PTR(-ENOMEM);
|
|
goto exit;
|
|
}
|
|
} else {
|
|
struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
|
|
|
|
n_channels = __le32_to_cpu(mcc_resp_v3->n_channels);
|
|
if (iwl_rx_packet_payload_len(pkt) !=
|
|
struct_size(mcc_resp_v3, channels, n_channels)) {
|
|
resp_cp = ERR_PTR(-EINVAL);
|
|
goto exit;
|
|
}
|
|
resp_len = sizeof(struct iwl_mcc_update_resp) +
|
|
n_channels * sizeof(__le32);
|
|
resp_cp = kzalloc(resp_len, GFP_KERNEL);
|
|
if (!resp_cp) {
|
|
resp_cp = ERR_PTR(-ENOMEM);
|
|
goto exit;
|
|
}
|
|
|
|
resp_cp->status = mcc_resp_v3->status;
|
|
resp_cp->mcc = mcc_resp_v3->mcc;
|
|
resp_cp->cap = cpu_to_le16(mcc_resp_v3->cap);
|
|
resp_cp->source_id = mcc_resp_v3->source_id;
|
|
resp_cp->time = mcc_resp_v3->time;
|
|
resp_cp->geo_info = mcc_resp_v3->geo_info;
|
|
resp_cp->n_channels = mcc_resp_v3->n_channels;
|
|
memcpy(resp_cp->channels, mcc_resp_v3->channels,
|
|
n_channels * sizeof(__le32));
|
|
}
|
|
|
|
status = le32_to_cpu(resp_cp->status);
|
|
|
|
mcc = le16_to_cpu(resp_cp->mcc);
|
|
|
|
/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
|
|
if (mcc == 0) {
|
|
mcc = 0x3030; /* "00" - world */
|
|
resp_cp->mcc = cpu_to_le16(mcc);
|
|
}
|
|
|
|
IWL_DEBUG_LAR(mvm,
|
|
"MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
|
|
status, mcc, mcc >> 8, mcc & 0xff, n_channels);
|
|
|
|
exit:
|
|
iwl_free_resp(&cmd);
|
|
return resp_cp;
|
|
}
|
|
|
|
int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
|
|
{
|
|
bool tlv_lar;
|
|
bool nvm_lar;
|
|
int retval;
|
|
struct ieee80211_regdomain *regd;
|
|
char mcc[3];
|
|
|
|
if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
|
|
tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
|
|
IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
|
|
nvm_lar = mvm->nvm_data->lar_enabled;
|
|
if (tlv_lar != nvm_lar)
|
|
IWL_INFO(mvm,
|
|
"Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
|
|
tlv_lar ? "enabled" : "disabled",
|
|
nvm_lar ? "enabled" : "disabled");
|
|
}
|
|
|
|
if (!iwl_mvm_is_lar_supported(mvm))
|
|
return 0;
|
|
|
|
/*
|
|
* try to replay the last set MCC to FW. If it doesn't exist,
|
|
* queue an update to cfg80211 to retrieve the default alpha2 from FW.
|
|
*/
|
|
retval = iwl_mvm_init_fw_regd(mvm);
|
|
if (retval != -ENOENT)
|
|
return retval;
|
|
|
|
/*
|
|
* Driver regulatory hint for initial update, this also informs the
|
|
* firmware we support wifi location updates.
|
|
* Disallow scans that might crash the FW while the LAR regdomain
|
|
* is not set.
|
|
*/
|
|
mvm->lar_regdom_set = false;
|
|
|
|
regd = iwl_mvm_get_current_regdomain(mvm, NULL);
|
|
if (IS_ERR_OR_NULL(regd))
|
|
return -EIO;
|
|
|
|
if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
|
|
!iwl_acpi_get_mcc(mvm->dev, mcc)) {
|
|
kfree(regd);
|
|
regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
|
|
MCC_SOURCE_BIOS, NULL);
|
|
if (IS_ERR_OR_NULL(regd))
|
|
return -EIO;
|
|
}
|
|
|
|
retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
|
|
kfree(regd);
|
|
return retval;
|
|
}
|
|
|
|
void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
|
|
struct iwl_rx_cmd_buffer *rxb)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
|
|
enum iwl_mcc_source src;
|
|
char mcc[3];
|
|
struct ieee80211_regdomain *regd;
|
|
int wgds_tbl_idx;
|
|
|
|
lockdep_assert_held(&mvm->mutex);
|
|
|
|
if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
|
|
IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
|
|
return;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
|
|
return;
|
|
|
|
mcc[0] = le16_to_cpu(notif->mcc) >> 8;
|
|
mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
|
|
mcc[2] = '\0';
|
|
src = notif->source_id;
|
|
|
|
IWL_DEBUG_LAR(mvm,
|
|
"RX: received chub update mcc cmd (mcc '%s' src %d)\n",
|
|
mcc, src);
|
|
regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
|
|
if (IS_ERR_OR_NULL(regd))
|
|
return;
|
|
|
|
wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
|
|
if (wgds_tbl_idx < 1)
|
|
IWL_DEBUG_INFO(mvm,
|
|
"SAR WGDS is disabled or error received (%d)\n",
|
|
wgds_tbl_idx);
|
|
else
|
|
IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
|
|
wgds_tbl_idx);
|
|
|
|
regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
|
|
kfree(regd);
|
|
}
|