2232 lines
68 KiB
C
2232 lines
68 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright (C) 2012-2014, 2018-2022 Intel Corporation
|
|
* Copyright (C) 2013-2015 Intel Mobile Communications GmbH
|
|
* Copyright (C) 2015-2017 Intel Deutschland GmbH
|
|
*/
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include "iwl-trans.h"
|
|
#include "mvm.h"
|
|
#include "fw-api.h"
|
|
|
|
static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
|
|
int queue, struct ieee80211_sta *sta)
|
|
{
|
|
struct iwl_mvm_sta *mvmsta;
|
|
struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
|
|
struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
|
|
struct iwl_mvm_key_pn *ptk_pn;
|
|
int res;
|
|
u8 tid, keyidx;
|
|
u8 pn[IEEE80211_CCMP_PN_LEN];
|
|
u8 *extiv;
|
|
|
|
/* do PN checking */
|
|
|
|
/* multicast and non-data only arrives on default queue */
|
|
if (!ieee80211_is_data(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1))
|
|
return 0;
|
|
|
|
/* do not check PN for open AP */
|
|
if (!(stats->flag & RX_FLAG_DECRYPTED))
|
|
return 0;
|
|
|
|
/*
|
|
* avoid checking for default queue - we don't want to replicate
|
|
* all the logic that's necessary for checking the PN on fragmented
|
|
* frames, leave that to mac80211
|
|
*/
|
|
if (queue == 0)
|
|
return 0;
|
|
|
|
/* if we are here - this for sure is either CCMP or GCMP */
|
|
if (IS_ERR_OR_NULL(sta)) {
|
|
IWL_DEBUG_DROP(mvm,
|
|
"expected hw-decrypted unicast frame for station\n");
|
|
return -1;
|
|
}
|
|
|
|
mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
|
|
keyidx = extiv[3] >> 6;
|
|
|
|
ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
|
|
if (!ptk_pn)
|
|
return -1;
|
|
|
|
if (ieee80211_is_data_qos(hdr->frame_control))
|
|
tid = ieee80211_get_tid(hdr);
|
|
else
|
|
tid = 0;
|
|
|
|
/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
|
|
if (tid >= IWL_MAX_TID_COUNT)
|
|
return -1;
|
|
|
|
/* load pn */
|
|
pn[0] = extiv[7];
|
|
pn[1] = extiv[6];
|
|
pn[2] = extiv[5];
|
|
pn[3] = extiv[4];
|
|
pn[4] = extiv[1];
|
|
pn[5] = extiv[0];
|
|
|
|
res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
|
|
if (res < 0)
|
|
return -1;
|
|
if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
|
|
return -1;
|
|
|
|
memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
|
|
stats->flag |= RX_FLAG_PN_VALIDATED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* iwl_mvm_create_skb Adds the rxb to a new skb */
|
|
static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
|
|
struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
|
|
struct iwl_rx_cmd_buffer *rxb)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
|
|
unsigned int headlen, fraglen, pad_len = 0;
|
|
unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
|
|
u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
|
|
IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
|
|
|
|
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
|
|
len -= 2;
|
|
pad_len = 2;
|
|
}
|
|
|
|
/*
|
|
* For non monitor interface strip the bytes the RADA might not have
|
|
* removed. As monitor interface cannot exist with other interfaces
|
|
* this removal is safe.
|
|
*/
|
|
if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
|
|
u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
|
|
|
|
/*
|
|
* If RADA was not enabled then decryption was not performed so
|
|
* the MIC cannot be removed.
|
|
*/
|
|
if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
|
|
if (WARN_ON(crypt_len > mic_crc_len))
|
|
return -EINVAL;
|
|
|
|
mic_crc_len -= crypt_len;
|
|
}
|
|
|
|
if (WARN_ON(mic_crc_len > len))
|
|
return -EINVAL;
|
|
|
|
len -= mic_crc_len;
|
|
}
|
|
|
|
/* If frame is small enough to fit in skb->head, pull it completely.
|
|
* If not, only pull ieee80211_hdr (including crypto if present, and
|
|
* an additional 8 bytes for SNAP/ethertype, see below) so that
|
|
* splice() or TCP coalesce are more efficient.
|
|
*
|
|
* Since, in addition, ieee80211_data_to_8023() always pull in at
|
|
* least 8 bytes (possibly more for mesh) we can do the same here
|
|
* to save the cost of doing it later. That still doesn't pull in
|
|
* the actual IP header since the typical case has a SNAP header.
|
|
* If the latter changes (there are efforts in the standards group
|
|
* to do so) we should revisit this and ieee80211_data_to_8023().
|
|
*/
|
|
headlen = (len <= skb_tailroom(skb)) ? len :
|
|
hdrlen + crypt_len + 8;
|
|
|
|
/* The firmware may align the packet to DWORD.
|
|
* The padding is inserted after the IV.
|
|
* After copying the header + IV skip the padding if
|
|
* present before copying packet data.
|
|
*/
|
|
hdrlen += crypt_len;
|
|
|
|
if (unlikely(headlen < hdrlen))
|
|
return -EINVAL;
|
|
|
|
/* Since data doesn't move data while putting data on skb and that is
|
|
* the only way we use, data + len is the next place that hdr would be put
|
|
*/
|
|
skb_set_mac_header(skb, skb->len);
|
|
skb_put_data(skb, hdr, hdrlen);
|
|
skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
|
|
|
|
/*
|
|
* If we did CHECKSUM_COMPLETE, the hardware only does it right for
|
|
* certain cases and starts the checksum after the SNAP. Check if
|
|
* this is the case - it's easier to just bail out to CHECKSUM_NONE
|
|
* in the cases the hardware didn't handle, since it's rare to see
|
|
* such packets, even though the hardware did calculate the checksum
|
|
* in this case, just starting after the MAC header instead.
|
|
*
|
|
* Starting from Bz hardware, it calculates starting directly after
|
|
* the MAC header, so that matches mac80211's expectation.
|
|
*/
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE) {
|
|
struct {
|
|
u8 hdr[6];
|
|
__be16 type;
|
|
} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
|
|
|
|
if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
|
|
!ether_addr_equal(shdr->hdr, rfc1042_header) ||
|
|
(shdr->type != htons(ETH_P_IP) &&
|
|
shdr->type != htons(ETH_P_ARP) &&
|
|
shdr->type != htons(ETH_P_IPV6) &&
|
|
shdr->type != htons(ETH_P_8021Q) &&
|
|
shdr->type != htons(ETH_P_PAE) &&
|
|
shdr->type != htons(ETH_P_TDLS))))
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
|
|
/* mac80211 assumes full CSUM including SNAP header */
|
|
skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
|
|
}
|
|
|
|
fraglen = len - headlen;
|
|
|
|
if (fraglen) {
|
|
int offset = (u8 *)hdr + headlen + pad_len -
|
|
(u8 *)rxb_addr(rxb) + rxb_offset(rxb);
|
|
|
|
skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
|
|
fraglen, rxb->truesize);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_vendor_radiotap *radiotap;
|
|
const int size = sizeof(*radiotap) + sizeof(__le16);
|
|
|
|
if (!mvm->cur_aid)
|
|
return;
|
|
|
|
/* ensure alignment */
|
|
BUILD_BUG_ON((size + 2) % 4);
|
|
|
|
radiotap = skb_put(skb, size + 2);
|
|
radiotap->align = 1;
|
|
/* Intel OUI */
|
|
radiotap->oui[0] = 0xf6;
|
|
radiotap->oui[1] = 0x54;
|
|
radiotap->oui[2] = 0x25;
|
|
/* radiotap sniffer config sub-namespace */
|
|
radiotap->subns = 1;
|
|
radiotap->present = 0x1;
|
|
radiotap->len = size - sizeof(*radiotap);
|
|
radiotap->pad = 2;
|
|
|
|
/* fill the data now */
|
|
memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
|
|
/* and clear the padding */
|
|
memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
|
|
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
|
|
}
|
|
|
|
/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
|
|
static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
|
|
struct napi_struct *napi,
|
|
struct sk_buff *skb, int queue,
|
|
struct ieee80211_sta *sta)
|
|
{
|
|
if (iwl_mvm_check_pn(mvm, skb, queue, sta))
|
|
kfree_skb(skb);
|
|
else
|
|
ieee80211_rx_napi(mvm->hw, sta, skb, napi);
|
|
}
|
|
|
|
static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
|
|
struct ieee80211_rx_status *rx_status,
|
|
u32 rate_n_flags, int energy_a,
|
|
int energy_b)
|
|
{
|
|
int max_energy;
|
|
u32 rate_flags = rate_n_flags;
|
|
|
|
energy_a = energy_a ? -energy_a : S8_MIN;
|
|
energy_b = energy_b ? -energy_b : S8_MIN;
|
|
max_energy = max(energy_a, energy_b);
|
|
|
|
IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
|
|
energy_a, energy_b, max_energy);
|
|
|
|
rx_status->signal = max_energy;
|
|
rx_status->chains =
|
|
(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
|
|
rx_status->chain_signal[0] = energy_a;
|
|
rx_status->chain_signal[1] = energy_b;
|
|
}
|
|
|
|
static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
|
|
struct ieee80211_hdr *hdr,
|
|
struct iwl_rx_mpdu_desc *desc,
|
|
u32 status)
|
|
{
|
|
struct iwl_mvm_sta *mvmsta;
|
|
struct iwl_mvm_vif *mvmvif;
|
|
u8 keyid;
|
|
struct ieee80211_key_conf *key;
|
|
u32 len = le16_to_cpu(desc->mpdu_len);
|
|
const u8 *frame = (void *)hdr;
|
|
|
|
if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
|
|
return 0;
|
|
|
|
/*
|
|
* For non-beacon, we don't really care. But beacons may
|
|
* be filtered out, and we thus need the firmware's replay
|
|
* detection, otherwise beacons the firmware previously
|
|
* filtered could be replayed, or something like that, and
|
|
* it can filter a lot - though usually only if nothing has
|
|
* changed.
|
|
*/
|
|
if (!ieee80211_is_beacon(hdr->frame_control))
|
|
return 0;
|
|
|
|
/* key mismatch - will also report !MIC_OK but we shouldn't count it */
|
|
if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
|
|
return -1;
|
|
|
|
/* good cases */
|
|
if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
|
|
!(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
|
|
return 0;
|
|
|
|
if (!sta)
|
|
return -1;
|
|
|
|
mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
|
|
|
|
/*
|
|
* both keys will have the same cipher and MIC length, use
|
|
* whichever one is available
|
|
*/
|
|
key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
|
|
if (!key) {
|
|
key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
|
|
if (!key)
|
|
return -1;
|
|
}
|
|
|
|
if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
|
|
return -1;
|
|
|
|
/* get the real key ID */
|
|
keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
|
|
/* and if that's the other key, look it up */
|
|
if (keyid != key->keyidx) {
|
|
/*
|
|
* shouldn't happen since firmware checked, but be safe
|
|
* in case the MIC length is wrong too, for example
|
|
*/
|
|
if (keyid != 6 && keyid != 7)
|
|
return -1;
|
|
key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
|
|
if (!key)
|
|
return -1;
|
|
}
|
|
|
|
/* Report status to mac80211 */
|
|
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
|
|
ieee80211_key_mic_failure(key);
|
|
else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
|
|
ieee80211_key_replay(key);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
|
|
struct ieee80211_hdr *hdr,
|
|
struct ieee80211_rx_status *stats, u16 phy_info,
|
|
struct iwl_rx_mpdu_desc *desc,
|
|
u32 pkt_flags, int queue, u8 *crypt_len)
|
|
{
|
|
u32 status = le32_to_cpu(desc->status);
|
|
|
|
/*
|
|
* Drop UNKNOWN frames in aggregation, unless in monitor mode
|
|
* (where we don't have the keys).
|
|
* We limit this to aggregation because in TKIP this is a valid
|
|
* scenario, since we may not have the (correct) TTAK (phase 1
|
|
* key) in the firmware.
|
|
*/
|
|
if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
|
|
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
|
|
IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
|
|
return -1;
|
|
|
|
if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
|
|
!ieee80211_has_protected(hdr->frame_control)))
|
|
return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status);
|
|
|
|
if (!ieee80211_has_protected(hdr->frame_control) ||
|
|
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
|
|
IWL_RX_MPDU_STATUS_SEC_NONE)
|
|
return 0;
|
|
|
|
/* TODO: handle packets encrypted with unknown alg */
|
|
|
|
switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
|
|
case IWL_RX_MPDU_STATUS_SEC_CCM:
|
|
case IWL_RX_MPDU_STATUS_SEC_GCM:
|
|
BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
|
|
/* alg is CCM: check MIC only */
|
|
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
|
|
return -1;
|
|
|
|
stats->flag |= RX_FLAG_DECRYPTED;
|
|
if (pkt_flags & FH_RSCSR_RADA_EN)
|
|
stats->flag |= RX_FLAG_MIC_STRIPPED;
|
|
*crypt_len = IEEE80211_CCMP_HDR_LEN;
|
|
return 0;
|
|
case IWL_RX_MPDU_STATUS_SEC_TKIP:
|
|
/* Don't drop the frame and decrypt it in SW */
|
|
if (!fw_has_api(&mvm->fw->ucode_capa,
|
|
IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
|
|
!(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
|
|
return 0;
|
|
|
|
if (mvm->trans->trans_cfg->gen2 &&
|
|
!(status & RX_MPDU_RES_STATUS_MIC_OK))
|
|
stats->flag |= RX_FLAG_MMIC_ERROR;
|
|
|
|
*crypt_len = IEEE80211_TKIP_IV_LEN;
|
|
fallthrough;
|
|
case IWL_RX_MPDU_STATUS_SEC_WEP:
|
|
if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
|
|
return -1;
|
|
|
|
stats->flag |= RX_FLAG_DECRYPTED;
|
|
if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
|
|
IWL_RX_MPDU_STATUS_SEC_WEP)
|
|
*crypt_len = IEEE80211_WEP_IV_LEN;
|
|
|
|
if (pkt_flags & FH_RSCSR_RADA_EN) {
|
|
stats->flag |= RX_FLAG_ICV_STRIPPED;
|
|
if (mvm->trans->trans_cfg->gen2)
|
|
stats->flag |= RX_FLAG_MMIC_STRIPPED;
|
|
}
|
|
|
|
return 0;
|
|
case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
|
|
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
|
|
return -1;
|
|
stats->flag |= RX_FLAG_DECRYPTED;
|
|
return 0;
|
|
case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
|
|
break;
|
|
default:
|
|
/*
|
|
* Sometimes we can get frames that were not decrypted
|
|
* because the firmware didn't have the keys yet. This can
|
|
* happen after connection where we can get multicast frames
|
|
* before the GTK is installed.
|
|
* Silently drop those frames.
|
|
* Also drop un-decrypted frames in monitor mode.
|
|
*/
|
|
if (!is_multicast_ether_addr(hdr->addr1) &&
|
|
!mvm->monitor_on && net_ratelimit())
|
|
IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
|
|
struct ieee80211_sta *sta,
|
|
struct sk_buff *skb,
|
|
struct iwl_rx_packet *pkt)
|
|
{
|
|
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
|
|
|
|
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
|
if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
|
|
u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
|
|
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
skb->csum = csum_unfold(~(__force __sum16)hwsum);
|
|
}
|
|
} else {
|
|
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
struct iwl_mvm_vif *mvmvif;
|
|
u16 flags = le16_to_cpu(desc->l3l4_flags);
|
|
u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
|
|
IWL_RX_L3_PROTO_POS);
|
|
|
|
mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
|
|
|
|
if (mvmvif->features & NETIF_F_RXCSUM &&
|
|
flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
|
|
(flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
|
|
l3_prot == IWL_RX_L3_TYPE_IPV6 ||
|
|
l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* returns true if a packet is a duplicate and should be dropped.
|
|
* Updates AMSDU PN tracking info
|
|
*/
|
|
static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
|
|
struct ieee80211_rx_status *rx_status,
|
|
struct ieee80211_hdr *hdr,
|
|
struct iwl_rx_mpdu_desc *desc)
|
|
{
|
|
struct iwl_mvm_sta *mvm_sta;
|
|
struct iwl_mvm_rxq_dup_data *dup_data;
|
|
u8 tid, sub_frame_idx;
|
|
|
|
if (WARN_ON(IS_ERR_OR_NULL(sta)))
|
|
return false;
|
|
|
|
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
|
|
dup_data = &mvm_sta->dup_data[queue];
|
|
|
|
/*
|
|
* Drop duplicate 802.11 retransmissions
|
|
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
|
|
*/
|
|
if (ieee80211_is_ctl(hdr->frame_control) ||
|
|
ieee80211_is_qos_nullfunc(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1)) {
|
|
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
|
|
return false;
|
|
}
|
|
|
|
if (ieee80211_is_data_qos(hdr->frame_control))
|
|
/* frame has qos control */
|
|
tid = ieee80211_get_tid(hdr);
|
|
else
|
|
tid = IWL_MAX_TID_COUNT;
|
|
|
|
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
|
|
sub_frame_idx = desc->amsdu_info &
|
|
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
|
|
|
|
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
|
|
dup_data->last_seq[tid] == hdr->seq_ctrl &&
|
|
dup_data->last_sub_frame[tid] >= sub_frame_idx))
|
|
return true;
|
|
|
|
/* Allow same PN as the first subframe for following sub frames */
|
|
if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
|
|
sub_frame_idx > dup_data->last_sub_frame[tid] &&
|
|
desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
|
|
rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
|
|
|
|
dup_data->last_seq[tid] = hdr->seq_ctrl;
|
|
dup_data->last_sub_frame[tid] = sub_frame_idx;
|
|
|
|
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns true if sn2 - buffer_size < sn1 < sn2.
|
|
* To be used only in order to compare reorder buffer head with NSSN.
|
|
* We fully trust NSSN unless it is behind us due to reorder timeout.
|
|
* Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
|
|
*/
|
|
static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
|
|
{
|
|
return ieee80211_sn_less(sn1, sn2) &&
|
|
!ieee80211_sn_less(sn1, sn2 - buffer_size);
|
|
}
|
|
|
|
static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
|
|
{
|
|
if (IWL_MVM_USE_NSSN_SYNC) {
|
|
struct iwl_mvm_nssn_sync_data notif = {
|
|
.baid = baid,
|
|
.nssn = nssn,
|
|
};
|
|
|
|
iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
|
|
¬if, sizeof(notif));
|
|
}
|
|
}
|
|
|
|
#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
|
|
|
|
enum iwl_mvm_release_flags {
|
|
IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
|
|
IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
|
|
};
|
|
|
|
static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
|
|
struct ieee80211_sta *sta,
|
|
struct napi_struct *napi,
|
|
struct iwl_mvm_baid_data *baid_data,
|
|
struct iwl_mvm_reorder_buffer *reorder_buf,
|
|
u16 nssn, u32 flags)
|
|
{
|
|
struct iwl_mvm_reorder_buf_entry *entries =
|
|
&baid_data->entries[reorder_buf->queue *
|
|
baid_data->entries_per_queue];
|
|
u16 ssn = reorder_buf->head_sn;
|
|
|
|
lockdep_assert_held(&reorder_buf->lock);
|
|
|
|
/*
|
|
* We keep the NSSN not too far behind, if we are sync'ing it and it
|
|
* is more than 2048 ahead of us, it must be behind us. Discard it.
|
|
* This can happen if the queue that hit the 0 / 2048 seqno was lagging
|
|
* behind and this queue already processed packets. The next if
|
|
* would have caught cases where this queue would have processed less
|
|
* than 64 packets, but it may have processed more than 64 packets.
|
|
*/
|
|
if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
|
|
ieee80211_sn_less(nssn, ssn))
|
|
goto set_timer;
|
|
|
|
/* ignore nssn smaller than head sn - this can happen due to timeout */
|
|
if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
|
|
goto set_timer;
|
|
|
|
while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
|
|
int index = ssn % reorder_buf->buf_size;
|
|
struct sk_buff_head *skb_list = &entries[index].e.frames;
|
|
struct sk_buff *skb;
|
|
|
|
ssn = ieee80211_sn_inc(ssn);
|
|
if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
|
|
(ssn == 2048 || ssn == 0))
|
|
iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
|
|
|
|
/*
|
|
* Empty the list. Will have more than one frame for A-MSDU.
|
|
* Empty list is valid as well since nssn indicates frames were
|
|
* received.
|
|
*/
|
|
while ((skb = __skb_dequeue(skb_list))) {
|
|
iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
|
|
reorder_buf->queue,
|
|
sta);
|
|
reorder_buf->num_stored--;
|
|
}
|
|
}
|
|
reorder_buf->head_sn = nssn;
|
|
|
|
set_timer:
|
|
if (reorder_buf->num_stored && !reorder_buf->removed) {
|
|
u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
|
|
|
|
while (skb_queue_empty(&entries[index].e.frames))
|
|
index = (index + 1) % reorder_buf->buf_size;
|
|
/* modify timer to match next frame's expiration time */
|
|
mod_timer(&reorder_buf->reorder_timer,
|
|
entries[index].e.reorder_time + 1 +
|
|
RX_REORDER_BUF_TIMEOUT_MQ);
|
|
} else {
|
|
del_timer(&reorder_buf->reorder_timer);
|
|
}
|
|
}
|
|
|
|
void iwl_mvm_reorder_timer_expired(struct timer_list *t)
|
|
{
|
|
struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
|
|
struct iwl_mvm_baid_data *baid_data =
|
|
iwl_mvm_baid_data_from_reorder_buf(buf);
|
|
struct iwl_mvm_reorder_buf_entry *entries =
|
|
&baid_data->entries[buf->queue * baid_data->entries_per_queue];
|
|
int i;
|
|
u16 sn = 0, index = 0;
|
|
bool expired = false;
|
|
bool cont = false;
|
|
|
|
spin_lock(&buf->lock);
|
|
|
|
if (!buf->num_stored || buf->removed) {
|
|
spin_unlock(&buf->lock);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < buf->buf_size ; i++) {
|
|
index = (buf->head_sn + i) % buf->buf_size;
|
|
|
|
if (skb_queue_empty(&entries[index].e.frames)) {
|
|
/*
|
|
* If there is a hole and the next frame didn't expire
|
|
* we want to break and not advance SN
|
|
*/
|
|
cont = false;
|
|
continue;
|
|
}
|
|
if (!cont &&
|
|
!time_after(jiffies, entries[index].e.reorder_time +
|
|
RX_REORDER_BUF_TIMEOUT_MQ))
|
|
break;
|
|
|
|
expired = true;
|
|
/* continue until next hole after this expired frames */
|
|
cont = true;
|
|
sn = ieee80211_sn_add(buf->head_sn, i + 1);
|
|
}
|
|
|
|
if (expired) {
|
|
struct ieee80211_sta *sta;
|
|
struct iwl_mvm_sta *mvmsta;
|
|
u8 sta_id = baid_data->sta_id;
|
|
|
|
rcu_read_lock();
|
|
sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
|
|
mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
/* SN is set to the last expired frame + 1 */
|
|
IWL_DEBUG_HT(buf->mvm,
|
|
"Releasing expired frames for sta %u, sn %d\n",
|
|
sta_id, sn);
|
|
iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
|
|
sta, baid_data->tid);
|
|
iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
|
|
buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
|
|
rcu_read_unlock();
|
|
} else {
|
|
/*
|
|
* If no frame expired and there are stored frames, index is now
|
|
* pointing to the first unexpired frame - modify timer
|
|
* accordingly to this frame.
|
|
*/
|
|
mod_timer(&buf->reorder_timer,
|
|
entries[index].e.reorder_time +
|
|
1 + RX_REORDER_BUF_TIMEOUT_MQ);
|
|
}
|
|
spin_unlock(&buf->lock);
|
|
}
|
|
|
|
static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
|
|
struct iwl_mvm_delba_data *data)
|
|
{
|
|
struct iwl_mvm_baid_data *ba_data;
|
|
struct ieee80211_sta *sta;
|
|
struct iwl_mvm_reorder_buffer *reorder_buf;
|
|
u8 baid = data->baid;
|
|
|
|
if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
ba_data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (WARN_ON_ONCE(!ba_data))
|
|
goto out;
|
|
|
|
sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
|
|
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
|
|
goto out;
|
|
|
|
reorder_buf = &ba_data->reorder_buf[queue];
|
|
|
|
/* release all frames that are in the reorder buffer to the stack */
|
|
spin_lock_bh(&reorder_buf->lock);
|
|
iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
|
|
ieee80211_sn_add(reorder_buf->head_sn,
|
|
reorder_buf->buf_size),
|
|
0);
|
|
spin_unlock_bh(&reorder_buf->lock);
|
|
del_timer_sync(&reorder_buf->reorder_timer);
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
|
|
struct napi_struct *napi,
|
|
u8 baid, u16 nssn, int queue,
|
|
u32 flags)
|
|
{
|
|
struct ieee80211_sta *sta;
|
|
struct iwl_mvm_reorder_buffer *reorder_buf;
|
|
struct iwl_mvm_baid_data *ba_data;
|
|
|
|
IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
|
|
baid, nssn);
|
|
|
|
if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
|
|
baid >= ARRAY_SIZE(mvm->baid_map)))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
ba_data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (!ba_data) {
|
|
WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
|
|
"BAID %d not found in map\n", baid);
|
|
goto out;
|
|
}
|
|
|
|
sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
|
|
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
|
|
goto out;
|
|
|
|
reorder_buf = &ba_data->reorder_buf[queue];
|
|
|
|
spin_lock_bh(&reorder_buf->lock);
|
|
iwl_mvm_release_frames(mvm, sta, napi, ba_data,
|
|
reorder_buf, nssn, flags);
|
|
spin_unlock_bh(&reorder_buf->lock);
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
|
|
struct napi_struct *napi, int queue,
|
|
const struct iwl_mvm_nssn_sync_data *data)
|
|
{
|
|
iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
|
|
data->nssn, queue,
|
|
IWL_MVM_RELEASE_FROM_RSS_SYNC);
|
|
}
|
|
|
|
void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rxq_sync_notification *notif;
|
|
struct iwl_mvm_internal_rxq_notif *internal_notif;
|
|
u32 len = iwl_rx_packet_payload_len(pkt);
|
|
|
|
notif = (void *)pkt->data;
|
|
internal_notif = (void *)notif->payload;
|
|
|
|
if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
|
|
"invalid notification size %d (%d)",
|
|
len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
|
|
return;
|
|
len -= sizeof(*notif) + sizeof(*internal_notif);
|
|
|
|
if (internal_notif->sync &&
|
|
mvm->queue_sync_cookie != internal_notif->cookie) {
|
|
WARN_ONCE(1, "Received expired RX queue sync message\n");
|
|
return;
|
|
}
|
|
|
|
switch (internal_notif->type) {
|
|
case IWL_MVM_RXQ_EMPTY:
|
|
WARN_ONCE(len, "invalid empty notification size %d", len);
|
|
break;
|
|
case IWL_MVM_RXQ_NOTIF_DEL_BA:
|
|
if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
|
|
"invalid delba notification size %d (%d)",
|
|
len, (int)sizeof(struct iwl_mvm_delba_data)))
|
|
break;
|
|
iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
|
|
break;
|
|
case IWL_MVM_RXQ_NSSN_SYNC:
|
|
if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
|
|
"invalid nssn sync notification size %d (%d)",
|
|
len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
|
|
break;
|
|
iwl_mvm_nssn_sync(mvm, napi, queue,
|
|
(void *)internal_notif->data);
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
|
|
}
|
|
|
|
if (internal_notif->sync) {
|
|
WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
|
|
"queue sync: queue %d responded a second time!\n",
|
|
queue);
|
|
if (READ_ONCE(mvm->queue_sync_state) == 0)
|
|
wake_up(&mvm->rx_sync_waitq);
|
|
}
|
|
}
|
|
|
|
static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
|
|
struct ieee80211_sta *sta, int tid,
|
|
struct iwl_mvm_reorder_buffer *buffer,
|
|
u32 reorder, u32 gp2, int queue)
|
|
{
|
|
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
|
|
/* we have a new (A-)MPDU ... */
|
|
|
|
/*
|
|
* reset counter to 0 if we didn't have any oldsn in
|
|
* the last A-MPDU (as detected by GP2 being identical)
|
|
*/
|
|
if (!buffer->consec_oldsn_prev_drop)
|
|
buffer->consec_oldsn_drops = 0;
|
|
|
|
/* either way, update our tracking state */
|
|
buffer->consec_oldsn_ampdu_gp2 = gp2;
|
|
} else if (buffer->consec_oldsn_prev_drop) {
|
|
/*
|
|
* tracking state didn't change, and we had an old SN
|
|
* indication before - do nothing in this case, we
|
|
* already noted this one down and are waiting for the
|
|
* next A-MPDU (by GP2)
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* return unless this MPDU has old SN */
|
|
if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
|
|
return;
|
|
|
|
/* update state */
|
|
buffer->consec_oldsn_prev_drop = 1;
|
|
buffer->consec_oldsn_drops++;
|
|
|
|
/* if limit is reached, send del BA and reset state */
|
|
if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
|
|
IWL_WARN(mvm,
|
|
"reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
|
|
IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
|
|
sta->addr, queue, tid);
|
|
ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
|
|
buffer->consec_oldsn_prev_drop = 0;
|
|
buffer->consec_oldsn_drops = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns true if the MPDU was buffered\dropped, false if it should be passed
|
|
* to upper layer.
|
|
*/
|
|
static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
|
|
struct napi_struct *napi,
|
|
int queue,
|
|
struct ieee80211_sta *sta,
|
|
struct sk_buff *skb,
|
|
struct iwl_rx_mpdu_desc *desc)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
|
|
struct iwl_mvm_sta *mvm_sta;
|
|
struct iwl_mvm_baid_data *baid_data;
|
|
struct iwl_mvm_reorder_buffer *buffer;
|
|
struct sk_buff *tail;
|
|
u32 reorder = le32_to_cpu(desc->reorder_data);
|
|
bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
|
|
bool last_subframe =
|
|
desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
|
|
u8 tid = ieee80211_get_tid(hdr);
|
|
u8 sub_frame_idx = desc->amsdu_info &
|
|
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
|
|
struct iwl_mvm_reorder_buf_entry *entries;
|
|
int index;
|
|
u16 nssn, sn;
|
|
u8 baid;
|
|
|
|
baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
|
|
IWL_RX_MPDU_REORDER_BAID_SHIFT;
|
|
|
|
/*
|
|
* This also covers the case of receiving a Block Ack Request
|
|
* outside a BA session; we'll pass it to mac80211 and that
|
|
* then sends a delBA action frame.
|
|
* This also covers pure monitor mode, in which case we won't
|
|
* have any BA sessions.
|
|
*/
|
|
if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
|
|
return false;
|
|
|
|
/* no sta yet */
|
|
if (WARN_ONCE(IS_ERR_OR_NULL(sta),
|
|
"Got valid BAID without a valid station assigned\n"))
|
|
return false;
|
|
|
|
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
|
|
|
|
/* not a data packet or a bar */
|
|
if (!ieee80211_is_back_req(hdr->frame_control) &&
|
|
(!ieee80211_is_data_qos(hdr->frame_control) ||
|
|
is_multicast_ether_addr(hdr->addr1)))
|
|
return false;
|
|
|
|
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
|
|
return false;
|
|
|
|
baid_data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (!baid_data) {
|
|
IWL_DEBUG_RX(mvm,
|
|
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
|
|
baid, reorder);
|
|
return false;
|
|
}
|
|
|
|
if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
|
|
"baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
|
|
baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
|
|
tid))
|
|
return false;
|
|
|
|
nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
|
|
sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
|
|
IWL_RX_MPDU_REORDER_SN_SHIFT;
|
|
|
|
buffer = &baid_data->reorder_buf[queue];
|
|
entries = &baid_data->entries[queue * baid_data->entries_per_queue];
|
|
|
|
spin_lock_bh(&buffer->lock);
|
|
|
|
if (!buffer->valid) {
|
|
if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
|
|
spin_unlock_bh(&buffer->lock);
|
|
return false;
|
|
}
|
|
buffer->valid = true;
|
|
}
|
|
|
|
if (ieee80211_is_back_req(hdr->frame_control)) {
|
|
iwl_mvm_release_frames(mvm, sta, napi, baid_data,
|
|
buffer, nssn, 0);
|
|
goto drop;
|
|
}
|
|
|
|
/*
|
|
* If there was a significant jump in the nssn - adjust.
|
|
* If the SN is smaller than the NSSN it might need to first go into
|
|
* the reorder buffer, in which case we just release up to it and the
|
|
* rest of the function will take care of storing it and releasing up to
|
|
* the nssn.
|
|
* This should not happen. This queue has been lagging and it should
|
|
* have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
|
|
* and update the other queues.
|
|
*/
|
|
if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
|
|
buffer->buf_size) ||
|
|
!ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
|
|
u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
|
|
|
|
iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
|
|
min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
|
|
}
|
|
|
|
iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
|
|
rx_status->device_timestamp, queue);
|
|
|
|
/* drop any oudated packets */
|
|
if (ieee80211_sn_less(sn, buffer->head_sn))
|
|
goto drop;
|
|
|
|
/* release immediately if allowed by nssn and no stored frames */
|
|
if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
|
|
if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
|
|
buffer->buf_size) &&
|
|
(!amsdu || last_subframe)) {
|
|
/*
|
|
* If we crossed the 2048 or 0 SN, notify all the
|
|
* queues. This is done in order to avoid having a
|
|
* head_sn that lags behind for too long. When that
|
|
* happens, we can get to a situation where the head_sn
|
|
* is within the interval [nssn - buf_size : nssn]
|
|
* which will make us think that the nssn is a packet
|
|
* that we already freed because of the reordering
|
|
* buffer and we will ignore it. So maintain the
|
|
* head_sn somewhat updated across all the queues:
|
|
* when it crosses 0 and 2048.
|
|
*/
|
|
if (sn == 2048 || sn == 0)
|
|
iwl_mvm_sync_nssn(mvm, baid, sn);
|
|
buffer->head_sn = nssn;
|
|
}
|
|
/* No need to update AMSDU last SN - we are moving the head */
|
|
spin_unlock_bh(&buffer->lock);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* release immediately if there are no stored frames, and the sn is
|
|
* equal to the head.
|
|
* This can happen due to reorder timer, where NSSN is behind head_sn.
|
|
* When we released everything, and we got the next frame in the
|
|
* sequence, according to the NSSN we can't release immediately,
|
|
* while technically there is no hole and we can move forward.
|
|
*/
|
|
if (!buffer->num_stored && sn == buffer->head_sn) {
|
|
if (!amsdu || last_subframe) {
|
|
if (sn == 2048 || sn == 0)
|
|
iwl_mvm_sync_nssn(mvm, baid, sn);
|
|
buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
|
|
}
|
|
/* No need to update AMSDU last SN - we are moving the head */
|
|
spin_unlock_bh(&buffer->lock);
|
|
return false;
|
|
}
|
|
|
|
index = sn % buffer->buf_size;
|
|
|
|
/*
|
|
* Check if we already stored this frame
|
|
* As AMSDU is either received or not as whole, logic is simple:
|
|
* If we have frames in that position in the buffer and the last frame
|
|
* originated from AMSDU had a different SN then it is a retransmission.
|
|
* If it is the same SN then if the subframe index is incrementing it
|
|
* is the same AMSDU - otherwise it is a retransmission.
|
|
*/
|
|
tail = skb_peek_tail(&entries[index].e.frames);
|
|
if (tail && !amsdu)
|
|
goto drop;
|
|
else if (tail && (sn != buffer->last_amsdu ||
|
|
buffer->last_sub_index >= sub_frame_idx))
|
|
goto drop;
|
|
|
|
/* put in reorder buffer */
|
|
__skb_queue_tail(&entries[index].e.frames, skb);
|
|
buffer->num_stored++;
|
|
entries[index].e.reorder_time = jiffies;
|
|
|
|
if (amsdu) {
|
|
buffer->last_amsdu = sn;
|
|
buffer->last_sub_index = sub_frame_idx;
|
|
}
|
|
|
|
/*
|
|
* We cannot trust NSSN for AMSDU sub-frames that are not the last.
|
|
* The reason is that NSSN advances on the first sub-frame, and may
|
|
* cause the reorder buffer to advance before all the sub-frames arrive.
|
|
* Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
|
|
* SN 1. NSSN for first sub frame will be 3 with the result of driver
|
|
* releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
|
|
* already ahead and it will be dropped.
|
|
* If the last sub-frame is not on this queue - we will get frame
|
|
* release notification with up to date NSSN.
|
|
*/
|
|
if (!amsdu || last_subframe)
|
|
iwl_mvm_release_frames(mvm, sta, napi, baid_data,
|
|
buffer, nssn,
|
|
IWL_MVM_RELEASE_SEND_RSS_SYNC);
|
|
|
|
spin_unlock_bh(&buffer->lock);
|
|
return true;
|
|
|
|
drop:
|
|
kfree_skb(skb);
|
|
spin_unlock_bh(&buffer->lock);
|
|
return true;
|
|
}
|
|
|
|
static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
|
|
u32 reorder_data, u8 baid)
|
|
{
|
|
unsigned long now = jiffies;
|
|
unsigned long timeout;
|
|
struct iwl_mvm_baid_data *data;
|
|
|
|
rcu_read_lock();
|
|
|
|
data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (!data) {
|
|
IWL_DEBUG_RX(mvm,
|
|
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
|
|
baid, reorder_data);
|
|
goto out;
|
|
}
|
|
|
|
if (!data->timeout)
|
|
goto out;
|
|
|
|
timeout = data->timeout;
|
|
/*
|
|
* Do not update last rx all the time to avoid cache bouncing
|
|
* between the rx queues.
|
|
* Update it every timeout. Worst case is the session will
|
|
* expire after ~ 2 * timeout, which doesn't matter that much.
|
|
*/
|
|
if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
|
|
/* Update is atomic */
|
|
data->last_rx = now;
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void iwl_mvm_flip_address(u8 *addr)
|
|
{
|
|
int i;
|
|
u8 mac_addr[ETH_ALEN];
|
|
|
|
for (i = 0; i < ETH_ALEN; i++)
|
|
mac_addr[i] = addr[ETH_ALEN - i - 1];
|
|
ether_addr_copy(addr, mac_addr);
|
|
}
|
|
|
|
struct iwl_mvm_rx_phy_data {
|
|
enum iwl_rx_phy_info_type info_type;
|
|
__le32 d0, d1, d2, d3;
|
|
__le16 d4;
|
|
|
|
u32 rate_n_flags;
|
|
u32 gp2_on_air_rise;
|
|
u16 phy_info;
|
|
u8 energy_a, energy_b;
|
|
u8 channel;
|
|
};
|
|
|
|
static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
|
|
struct iwl_mvm_rx_phy_data *phy_data,
|
|
struct ieee80211_radiotap_he_mu *he_mu)
|
|
{
|
|
u32 phy_data2 = le32_to_cpu(phy_data->d2);
|
|
u32 phy_data3 = le32_to_cpu(phy_data->d3);
|
|
u16 phy_data4 = le16_to_cpu(phy_data->d4);
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
|
|
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
|
|
he_mu->flags1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
|
|
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
|
|
phy_data4),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
|
|
|
|
he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
|
|
phy_data2);
|
|
he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
|
|
phy_data3);
|
|
he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
|
|
phy_data2);
|
|
he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
|
|
phy_data3);
|
|
}
|
|
|
|
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
|
|
(rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
|
|
he_mu->flags1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
|
|
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
|
|
phy_data4),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
|
|
|
|
he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
|
|
phy_data2);
|
|
he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
|
|
phy_data3);
|
|
he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
|
|
phy_data2);
|
|
he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
|
|
phy_data3);
|
|
}
|
|
}
|
|
|
|
static void
|
|
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
|
|
struct ieee80211_radiotap_he *he,
|
|
struct ieee80211_radiotap_he_mu *he_mu,
|
|
struct ieee80211_rx_status *rx_status)
|
|
{
|
|
/*
|
|
* Unfortunately, we have to leave the mac80211 data
|
|
* incorrect for the case that we receive an HE-MU
|
|
* transmission and *don't* have the HE phy data (due
|
|
* to the bits being used for TSF). This shouldn't
|
|
* happen though as management frames where we need
|
|
* the TSF/timers are not be transmitted in HE-MU.
|
|
*/
|
|
u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
|
|
u8 offs = 0;
|
|
|
|
rx_status->bw = RATE_INFO_BW_HE_RU;
|
|
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
|
|
|
|
switch (ru) {
|
|
case 0 ... 36:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
|
|
offs = ru;
|
|
break;
|
|
case 37 ... 52:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
|
|
offs = ru - 37;
|
|
break;
|
|
case 53 ... 60:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
|
|
offs = ru - 53;
|
|
break;
|
|
case 61 ... 64:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
|
|
offs = ru - 61;
|
|
break;
|
|
case 65 ... 66:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
|
|
offs = ru - 65;
|
|
break;
|
|
case 67:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
|
|
break;
|
|
case 68:
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
|
|
break;
|
|
}
|
|
he->data2 |= le16_encode_bits(offs,
|
|
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
|
|
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
|
|
if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
|
|
he->data2 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
|
|
|
|
#define CHECK_BW(bw) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
|
|
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
|
|
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
|
|
CHECK_BW(20);
|
|
CHECK_BW(40);
|
|
CHECK_BW(80);
|
|
CHECK_BW(160);
|
|
|
|
if (he_mu)
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
|
|
rate_n_flags),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
|
|
else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
|
|
he->data6 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
|
|
le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
|
|
rate_n_flags),
|
|
IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
|
|
}
|
|
|
|
static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
|
|
struct iwl_mvm_rx_phy_data *phy_data,
|
|
struct ieee80211_radiotap_he *he,
|
|
struct ieee80211_radiotap_he_mu *he_mu,
|
|
struct ieee80211_rx_status *rx_status,
|
|
int queue)
|
|
{
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_NONE:
|
|
case IWL_RX_PHY_INFO_TYPE_CCK:
|
|
case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
|
|
case IWL_RX_PHY_INFO_TYPE_HT:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_TB:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
|
|
return;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
|
|
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
|
|
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
|
|
fallthrough;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
/* HE common */
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
|
|
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
|
|
if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
|
|
phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_UPLINK),
|
|
IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
|
|
}
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
|
|
IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
|
|
IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
|
|
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
|
|
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA6_TXOP);
|
|
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_DOPPLER),
|
|
IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
|
|
break;
|
|
}
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
|
|
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
|
|
IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
|
|
break;
|
|
default:
|
|
/* nothing here */
|
|
break;
|
|
}
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->d4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
|
|
he_mu->flags1 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->d4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le16_get_bits(phy_data->d4,
|
|
IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
|
|
iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
|
|
fallthrough;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
|
|
he_mu->flags2 |=
|
|
le16_encode_bits(le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
|
|
fallthrough;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
|
|
break;
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
|
|
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
|
|
IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
|
|
IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
|
|
break;
|
|
default:
|
|
/* nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
|
|
struct iwl_mvm_rx_phy_data *phy_data,
|
|
int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_he *he = NULL;
|
|
struct ieee80211_radiotap_he_mu *he_mu = NULL;
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
|
|
u8 ltf;
|
|
static const struct ieee80211_radiotap_he known = {
|
|
.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
|
|
.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
|
|
};
|
|
static const struct ieee80211_radiotap_he_mu mu_known = {
|
|
.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
|
|
.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
|
|
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
|
|
};
|
|
u16 phy_info = phy_data->phy_info;
|
|
|
|
he = skb_put_data(skb, &known, sizeof(known));
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_HE;
|
|
|
|
if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
|
|
phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
|
|
he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
|
|
}
|
|
|
|
/* report the AMPDU-EOF bit on single frames */
|
|
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
|
|
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
|
|
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
|
|
}
|
|
|
|
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
|
|
iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
|
|
queue);
|
|
|
|
/* update aggregation data for monitor sake on default queue */
|
|
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
|
|
(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
|
|
bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
|
|
|
|
/* toggle is switched whenever new aggregation starts */
|
|
if (toggle_bit != mvm->ampdu_toggle) {
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
|
|
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
|
|
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
|
|
}
|
|
}
|
|
|
|
if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
|
|
rate_n_flags & RATE_MCS_HE_106T_MSK) {
|
|
rx_status->bw = RATE_INFO_BW_HE_RU;
|
|
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
|
|
}
|
|
|
|
/* actually data is filled in mac80211 */
|
|
if (he_type == RATE_MCS_HE_TYPE_SU ||
|
|
he_type == RATE_MCS_HE_TYPE_EXT_SU)
|
|
he->data1 |=
|
|
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
|
|
|
|
#define CHECK_TYPE(F) \
|
|
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
|
|
(RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
|
|
|
|
CHECK_TYPE(SU);
|
|
CHECK_TYPE(EXT_SU);
|
|
CHECK_TYPE(MU);
|
|
CHECK_TYPE(TRIG);
|
|
|
|
he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
|
|
|
|
if (rate_n_flags & RATE_MCS_BF_MSK)
|
|
he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
|
|
|
|
switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
|
|
RATE_MCS_HE_GI_LTF_POS) {
|
|
case 0:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
else
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
if (he_type == RATE_MCS_HE_TYPE_MU)
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
else
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
|
|
break;
|
|
case 1:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG)
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
else
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
|
|
break;
|
|
case 2:
|
|
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
} else {
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
|
|
}
|
|
break;
|
|
case 3:
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
break;
|
|
case 4:
|
|
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
|
|
break;
|
|
default:
|
|
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
|
|
}
|
|
|
|
he->data5 |= le16_encode_bits(ltf,
|
|
IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
|
|
}
|
|
|
|
static void iwl_mvm_decode_lsig(struct sk_buff *skb,
|
|
struct iwl_mvm_rx_phy_data *phy_data)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
struct ieee80211_radiotap_lsig *lsig;
|
|
|
|
switch (phy_data->info_type) {
|
|
case IWL_RX_PHY_INFO_TYPE_HT:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_SU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
|
|
case IWL_RX_PHY_INFO_TYPE_HE_TB:
|
|
lsig = skb_put(skb, sizeof(*lsig));
|
|
lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
|
|
lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
|
|
IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
|
|
rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
|
|
{
|
|
switch (phy_band) {
|
|
case PHY_BAND_24:
|
|
return NL80211_BAND_2GHZ;
|
|
case PHY_BAND_5:
|
|
return NL80211_BAND_5GHZ;
|
|
case PHY_BAND_6:
|
|
return NL80211_BAND_6GHZ;
|
|
default:
|
|
WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
|
|
return NL80211_BAND_5GHZ;
|
|
}
|
|
}
|
|
|
|
struct iwl_rx_sta_csa {
|
|
bool all_sta_unblocked;
|
|
struct ieee80211_vif *vif;
|
|
};
|
|
|
|
static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
|
|
{
|
|
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
struct iwl_rx_sta_csa *rx_sta_csa = data;
|
|
|
|
if (mvmsta->vif != rx_sta_csa->vif)
|
|
return;
|
|
|
|
if (mvmsta->disable_tx)
|
|
rx_sta_csa->all_sta_unblocked = false;
|
|
}
|
|
|
|
/*
|
|
* Note: requires also rx_status->band to be prefilled, as well
|
|
* as phy_data (apart from phy_data->info_type)
|
|
*/
|
|
static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
|
|
struct sk_buff *skb,
|
|
struct iwl_mvm_rx_phy_data *phy_data,
|
|
int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
|
|
u32 rate_n_flags = phy_data->rate_n_flags;
|
|
u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
|
|
u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
|
|
bool is_sgi;
|
|
|
|
phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
|
|
|
|
if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
|
|
phy_data->info_type =
|
|
le32_get_bits(phy_data->d1,
|
|
IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
|
|
|
|
/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
|
|
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
|
|
case RATE_MCS_CHAN_WIDTH_20:
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_40:
|
|
rx_status->bw = RATE_INFO_BW_40;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_80:
|
|
rx_status->bw = RATE_INFO_BW_80;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_160:
|
|
rx_status->bw = RATE_INFO_BW_160;
|
|
break;
|
|
case RATE_MCS_CHAN_WIDTH_320:
|
|
rx_status->bw = RATE_INFO_BW_320;
|
|
break;
|
|
}
|
|
|
|
/* must be before L-SIG data */
|
|
if (format == RATE_MCS_HE_MSK)
|
|
iwl_mvm_rx_he(mvm, skb, phy_data, queue);
|
|
|
|
iwl_mvm_decode_lsig(skb, phy_data);
|
|
|
|
rx_status->device_timestamp = phy_data->gp2_on_air_rise;
|
|
rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
|
|
rx_status->band);
|
|
iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
|
|
phy_data->energy_a, phy_data->energy_b);
|
|
|
|
if (unlikely(mvm->monitor_on))
|
|
iwl_mvm_add_rtap_sniffer_config(mvm, skb);
|
|
|
|
is_sgi = format == RATE_MCS_HE_MSK ?
|
|
iwl_he_is_sgi(rate_n_flags) :
|
|
rate_n_flags & RATE_MCS_SGI_MSK;
|
|
|
|
if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
|
|
|
|
if (rate_n_flags & RATE_MCS_LDPC_MSK)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
|
|
|
|
switch (format) {
|
|
case RATE_MCS_VHT_MSK:
|
|
rx_status->encoding = RX_ENC_VHT;
|
|
break;
|
|
case RATE_MCS_HE_MSK:
|
|
rx_status->encoding = RX_ENC_HE;
|
|
rx_status->he_dcm =
|
|
!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
|
|
break;
|
|
case RATE_MCS_EHT_MSK:
|
|
rx_status->encoding = RX_ENC_EHT;
|
|
break;
|
|
}
|
|
|
|
switch (format) {
|
|
case RATE_MCS_HT_MSK:
|
|
rx_status->encoding = RX_ENC_HT;
|
|
rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
break;
|
|
case RATE_MCS_VHT_MSK:
|
|
case RATE_MCS_HE_MSK:
|
|
case RATE_MCS_EHT_MSK:
|
|
rx_status->nss =
|
|
u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
|
|
rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
|
|
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
|
|
break;
|
|
default: {
|
|
int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
|
|
rx_status->band);
|
|
|
|
rx_status->rate_idx = rate;
|
|
|
|
if ((rate < 0 || rate > 0xFF)) {
|
|
rx_status->rate_idx = 0;
|
|
if (net_ratelimit())
|
|
IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
|
|
rate_n_flags, rx_status->band);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status;
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
|
|
struct ieee80211_hdr *hdr;
|
|
u32 len;
|
|
u32 pkt_len = iwl_rx_packet_payload_len(pkt);
|
|
struct ieee80211_sta *sta = NULL;
|
|
struct sk_buff *skb;
|
|
u8 crypt_len = 0;
|
|
size_t desc_size;
|
|
struct iwl_mvm_rx_phy_data phy_data = {};
|
|
u32 format;
|
|
|
|
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
|
|
return;
|
|
|
|
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
|
|
desc_size = sizeof(*desc);
|
|
else
|
|
desc_size = IWL_RX_DESC_SIZE_V1;
|
|
|
|
if (unlikely(pkt_len < desc_size)) {
|
|
IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
|
|
return;
|
|
}
|
|
|
|
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
|
phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
|
|
phy_data.channel = desc->v3.channel;
|
|
phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
|
|
phy_data.energy_a = desc->v3.energy_a;
|
|
phy_data.energy_b = desc->v3.energy_b;
|
|
|
|
phy_data.d0 = desc->v3.phy_data0;
|
|
phy_data.d1 = desc->v3.phy_data1;
|
|
phy_data.d2 = desc->v3.phy_data2;
|
|
phy_data.d3 = desc->v3.phy_data3;
|
|
} else {
|
|
phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
|
|
phy_data.channel = desc->v1.channel;
|
|
phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
|
|
phy_data.energy_a = desc->v1.energy_a;
|
|
phy_data.energy_b = desc->v1.energy_b;
|
|
|
|
phy_data.d0 = desc->v1.phy_data0;
|
|
phy_data.d1 = desc->v1.phy_data1;
|
|
phy_data.d2 = desc->v1.phy_data2;
|
|
phy_data.d3 = desc->v1.phy_data3;
|
|
}
|
|
|
|
if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
|
|
REPLY_RX_MPDU_CMD, 0) < 4) {
|
|
phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
|
|
IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
|
|
phy_data.rate_n_flags);
|
|
}
|
|
|
|
format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
|
|
|
|
len = le16_to_cpu(desc->mpdu_len);
|
|
|
|
if (unlikely(len + desc_size > pkt_len)) {
|
|
IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
|
|
return;
|
|
}
|
|
|
|
phy_data.phy_info = le16_to_cpu(desc->phy_info);
|
|
phy_data.d4 = desc->phy_data4;
|
|
|
|
hdr = (void *)(pkt->data + desc_size);
|
|
/* Dont use dev_alloc_skb(), we'll have enough headroom once
|
|
* ieee80211_hdr pulled.
|
|
*/
|
|
skb = alloc_skb(128, GFP_ATOMIC);
|
|
if (!skb) {
|
|
IWL_ERR(mvm, "alloc_skb failed\n");
|
|
return;
|
|
}
|
|
|
|
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
|
|
/*
|
|
* If the device inserted padding it means that (it thought)
|
|
* the 802.11 header wasn't a multiple of 4 bytes long. In
|
|
* this case, reserve two bytes at the start of the SKB to
|
|
* align the payload properly in case we end up copying it.
|
|
*/
|
|
skb_reserve(skb, 2);
|
|
}
|
|
|
|
rx_status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
/*
|
|
* Keep packets with CRC errors (and with overrun) for monitor mode
|
|
* (otherwise the firmware discards them) but mark them as bad.
|
|
*/
|
|
if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
|
|
!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
|
|
IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
|
|
le32_to_cpu(desc->status));
|
|
rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
}
|
|
|
|
/* set the preamble flag if appropriate */
|
|
if (format == RATE_MCS_CCK_MSK &&
|
|
phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
|
|
rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
|
|
|
|
if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
|
|
u64 tsf_on_air_rise;
|
|
|
|
if (mvm->trans->trans_cfg->device_family >=
|
|
IWL_DEVICE_FAMILY_AX210)
|
|
tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
|
|
else
|
|
tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
|
|
|
|
rx_status->mactime = tsf_on_air_rise;
|
|
/* TSF as indicated by the firmware is at INA time */
|
|
rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
|
|
}
|
|
|
|
if (iwl_mvm_is_band_in_rx_supported(mvm)) {
|
|
u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
|
|
|
|
rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
|
|
} else {
|
|
rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
|
|
NL80211_BAND_2GHZ;
|
|
}
|
|
|
|
/* update aggregation data for monitor sake on default queue */
|
|
if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
|
|
bool toggle_bit;
|
|
|
|
toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
|
|
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
|
|
/*
|
|
* Toggle is switched whenever new aggregation starts. Make
|
|
* sure ampdu_reference is never 0 so we can later use it to
|
|
* see if the frame was really part of an A-MPDU or not.
|
|
*/
|
|
if (toggle_bit != mvm->ampdu_toggle) {
|
|
mvm->ampdu_ref++;
|
|
if (mvm->ampdu_ref == 0)
|
|
mvm->ampdu_ref++;
|
|
mvm->ampdu_toggle = toggle_bit;
|
|
}
|
|
rx_status->ampdu_reference = mvm->ampdu_ref;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
|
|
if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
|
|
u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
|
|
|
|
if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
|
|
sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
|
|
if (IS_ERR(sta))
|
|
sta = NULL;
|
|
}
|
|
} else if (!is_multicast_ether_addr(hdr->addr2)) {
|
|
/*
|
|
* This is fine since we prevent two stations with the same
|
|
* address from being added.
|
|
*/
|
|
sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
|
|
}
|
|
|
|
if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
|
|
le32_to_cpu(pkt->len_n_flags), queue,
|
|
&crypt_len)) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
|
|
|
|
if (sta) {
|
|
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
struct ieee80211_vif *tx_blocked_vif =
|
|
rcu_dereference(mvm->csa_tx_blocked_vif);
|
|
u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
|
|
IWL_RX_MPDU_REORDER_BAID_MASK) >>
|
|
IWL_RX_MPDU_REORDER_BAID_SHIFT);
|
|
struct iwl_fw_dbg_trigger_tlv *trig;
|
|
struct ieee80211_vif *vif = mvmsta->vif;
|
|
|
|
if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
|
|
!is_multicast_ether_addr(hdr->addr1) &&
|
|
ieee80211_is_data(hdr->frame_control) &&
|
|
time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
|
|
schedule_delayed_work(&mvm->tcm.work, 0);
|
|
|
|
/*
|
|
* We have tx blocked stations (with CS bit). If we heard
|
|
* frames from a blocked station on a new channel we can
|
|
* TX to it again.
|
|
*/
|
|
if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
|
|
struct iwl_mvm_vif *mvmvif =
|
|
iwl_mvm_vif_from_mac80211(tx_blocked_vif);
|
|
struct iwl_rx_sta_csa rx_sta_csa = {
|
|
.all_sta_unblocked = true,
|
|
.vif = tx_blocked_vif,
|
|
};
|
|
|
|
if (mvmvif->csa_target_freq == rx_status->freq)
|
|
iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
|
|
false);
|
|
ieee80211_iterate_stations_atomic(mvm->hw,
|
|
iwl_mvm_rx_get_sta_block_tx,
|
|
&rx_sta_csa);
|
|
|
|
if (rx_sta_csa.all_sta_unblocked) {
|
|
RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
|
|
/* Unblock BCAST / MCAST station */
|
|
iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
|
|
cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
|
|
}
|
|
}
|
|
|
|
rs_update_last_rssi(mvm, mvmsta, rx_status);
|
|
|
|
trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
|
|
ieee80211_vif_to_wdev(vif),
|
|
FW_DBG_TRIGGER_RSSI);
|
|
|
|
if (trig && ieee80211_is_beacon(hdr->frame_control)) {
|
|
struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
|
|
s32 rssi;
|
|
|
|
rssi_trig = (void *)trig->data;
|
|
rssi = le32_to_cpu(rssi_trig->rssi);
|
|
|
|
if (rx_status->signal < rssi)
|
|
iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
|
|
NULL);
|
|
}
|
|
|
|
if (ieee80211_is_data(hdr->frame_control))
|
|
iwl_mvm_rx_csum(mvm, sta, skb, pkt);
|
|
|
|
if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Our hardware de-aggregates AMSDUs but copies the mac header
|
|
* as it to the de-aggregated MPDUs. We need to turn off the
|
|
* AMSDU bit in the QoS control ourselves.
|
|
* In addition, HW reverses addr3 and addr4 - reverse it back.
|
|
*/
|
|
if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
|
|
!WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
|
|
u8 *qc = ieee80211_get_qos_ctl(hdr);
|
|
|
|
*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
|
|
|
|
if (mvm->trans->trans_cfg->device_family ==
|
|
IWL_DEVICE_FAMILY_9000) {
|
|
iwl_mvm_flip_address(hdr->addr3);
|
|
|
|
if (ieee80211_has_a4(hdr->frame_control))
|
|
iwl_mvm_flip_address(hdr->addr4);
|
|
}
|
|
}
|
|
if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
|
|
u32 reorder_data = le32_to_cpu(desc->reorder_data);
|
|
|
|
iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
|
|
}
|
|
}
|
|
|
|
/* management stuff on default queue */
|
|
if (!queue) {
|
|
if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
|
|
ieee80211_is_probe_resp(hdr->frame_control)) &&
|
|
mvm->sched_scan_pass_all ==
|
|
SCHED_SCAN_PASS_ALL_ENABLED))
|
|
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
|
|
|
|
if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
|
|
ieee80211_is_probe_resp(hdr->frame_control)))
|
|
rx_status->boottime_ns = ktime_get_boottime_ns();
|
|
}
|
|
|
|
if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
|
|
iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
|
|
sta);
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct ieee80211_rx_status *rx_status;
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
|
|
u32 rssi;
|
|
u32 info_type;
|
|
struct ieee80211_sta *sta = NULL;
|
|
struct sk_buff *skb;
|
|
struct iwl_mvm_rx_phy_data phy_data;
|
|
u32 format;
|
|
|
|
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
|
|
return;
|
|
|
|
if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
|
|
return;
|
|
|
|
rssi = le32_to_cpu(desc->rssi);
|
|
info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
|
|
phy_data.d0 = desc->phy_info[0];
|
|
phy_data.d1 = desc->phy_info[1];
|
|
phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
|
|
phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
|
|
phy_data.rate_n_flags = le32_to_cpu(desc->rate);
|
|
phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
|
|
phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
|
|
phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
|
|
|
|
if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
|
|
RX_NO_DATA_NOTIF, 0) < 2) {
|
|
IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
|
|
phy_data.rate_n_flags);
|
|
phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
|
|
IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
|
|
phy_data.rate_n_flags);
|
|
}
|
|
|
|
format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
|
|
|
|
if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
|
|
RX_NO_DATA_NOTIF, 0) >= 3) {
|
|
if (unlikely(iwl_rx_packet_payload_len(pkt) <
|
|
sizeof(struct iwl_rx_no_data_ver_3)))
|
|
/* invalid len for ver 3 */
|
|
return;
|
|
} else {
|
|
if (format == RATE_MCS_EHT_MSK)
|
|
/* no support for EHT before version 3 API */
|
|
return;
|
|
}
|
|
|
|
/* Dont use dev_alloc_skb(), we'll have enough headroom once
|
|
* ieee80211_hdr pulled.
|
|
*/
|
|
skb = alloc_skb(128, GFP_ATOMIC);
|
|
if (!skb) {
|
|
IWL_ERR(mvm, "alloc_skb failed\n");
|
|
return;
|
|
}
|
|
|
|
rx_status = IEEE80211_SKB_RXCB(skb);
|
|
|
|
/* 0-length PSDU */
|
|
rx_status->flag |= RX_FLAG_NO_PSDU;
|
|
|
|
switch (info_type) {
|
|
case RX_NO_DATA_INFO_TYPE_NDP:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
|
|
break;
|
|
case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
|
|
case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
|
|
break;
|
|
default:
|
|
rx_status->zero_length_psdu_type =
|
|
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
|
|
break;
|
|
}
|
|
|
|
rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
|
|
NL80211_BAND_2GHZ;
|
|
|
|
iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
|
|
|
|
/* no more radio tap info should be put after this point.
|
|
*
|
|
* We mark it as mac header, for upper layers to know where
|
|
* all radio tap header ends.
|
|
*
|
|
* Since data doesn't move data while putting data on skb and that is
|
|
* the only way we use, data + len is the next place that hdr would be put
|
|
*/
|
|
skb_set_mac_header(skb, skb->len);
|
|
|
|
/*
|
|
* Override the nss from the rx_vec since the rate_n_flags has
|
|
* only 2 bits for the nss which gives a max of 4 ss but there
|
|
* may be up to 8 spatial streams.
|
|
*/
|
|
switch (format) {
|
|
case RATE_MCS_VHT_MSK:
|
|
rx_status->nss =
|
|
le32_get_bits(desc->rx_vec[0],
|
|
RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
|
|
break;
|
|
case RATE_MCS_HE_MSK:
|
|
rx_status->nss =
|
|
le32_get_bits(desc->rx_vec[0],
|
|
RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
|
|
break;
|
|
case RATE_MCS_EHT_MSK:
|
|
rx_status->nss =
|
|
le32_get_bits(desc->rx_vec[2],
|
|
RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
ieee80211_rx_napi(mvm->hw, sta, skb, napi);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_frame_release *release = (void *)pkt->data;
|
|
|
|
if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
|
|
return;
|
|
|
|
iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
|
|
le16_to_cpu(release->nssn),
|
|
queue, 0);
|
|
}
|
|
|
|
void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
|
|
struct iwl_rx_cmd_buffer *rxb, int queue)
|
|
{
|
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
|
struct iwl_bar_frame_release *release = (void *)pkt->data;
|
|
unsigned int baid = le32_get_bits(release->ba_info,
|
|
IWL_BAR_FRAME_RELEASE_BAID_MASK);
|
|
unsigned int nssn = le32_get_bits(release->ba_info,
|
|
IWL_BAR_FRAME_RELEASE_NSSN_MASK);
|
|
unsigned int sta_id = le32_get_bits(release->sta_tid,
|
|
IWL_BAR_FRAME_RELEASE_STA_MASK);
|
|
unsigned int tid = le32_get_bits(release->sta_tid,
|
|
IWL_BAR_FRAME_RELEASE_TID_MASK);
|
|
struct iwl_mvm_baid_data *baid_data;
|
|
|
|
if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
|
|
baid >= ARRAY_SIZE(mvm->baid_map)))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
baid_data = rcu_dereference(mvm->baid_map[baid]);
|
|
if (!baid_data) {
|
|
IWL_DEBUG_RX(mvm,
|
|
"Got valid BAID %d but not allocated, invalid BAR release!\n",
|
|
baid);
|
|
goto out;
|
|
}
|
|
|
|
if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
|
|
"baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
|
|
baid, baid_data->sta_id, baid_data->tid, sta_id,
|
|
tid))
|
|
goto out;
|
|
|
|
iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|