linux-zen-desktop/drivers/power/supply/bq25890_charger.c

1662 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* TI BQ25890 charger driver
*
* Copyright (C) 2015 Intel Corporation
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/power_supply.h>
#include <linux/power/bq25890_charger.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/types.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/usb/phy.h>
#include <linux/acpi.h>
#include <linux/of.h>
#define BQ25890_MANUFACTURER "Texas Instruments"
#define BQ25890_IRQ_PIN "bq25890_irq"
#define BQ25890_ID 3
#define BQ25895_ID 7
#define BQ25896_ID 0
#define PUMP_EXPRESS_START_DELAY (5 * HZ)
#define PUMP_EXPRESS_MAX_TRIES 6
#define PUMP_EXPRESS_VBUS_MARGIN_uV 1000000
enum bq25890_chip_version {
BQ25890,
BQ25892,
BQ25895,
BQ25896,
};
static const char *const bq25890_chip_name[] = {
"BQ25890",
"BQ25892",
"BQ25895",
"BQ25896",
};
enum bq25890_fields {
F_EN_HIZ, F_EN_ILIM, F_IINLIM, /* Reg00 */
F_BHOT, F_BCOLD, F_VINDPM_OFS, /* Reg01 */
F_CONV_START, F_CONV_RATE, F_BOOSTF, F_ICO_EN,
F_HVDCP_EN, F_MAXC_EN, F_FORCE_DPM, F_AUTO_DPDM_EN, /* Reg02 */
F_BAT_LOAD_EN, F_WD_RST, F_OTG_CFG, F_CHG_CFG, F_SYSVMIN,
F_MIN_VBAT_SEL, /* Reg03 */
F_PUMPX_EN, F_ICHG, /* Reg04 */
F_IPRECHG, F_ITERM, /* Reg05 */
F_VREG, F_BATLOWV, F_VRECHG, /* Reg06 */
F_TERM_EN, F_STAT_DIS, F_WD, F_TMR_EN, F_CHG_TMR,
F_JEITA_ISET, /* Reg07 */
F_BATCMP, F_VCLAMP, F_TREG, /* Reg08 */
F_FORCE_ICO, F_TMR2X_EN, F_BATFET_DIS, F_JEITA_VSET,
F_BATFET_DLY, F_BATFET_RST_EN, F_PUMPX_UP, F_PUMPX_DN, /* Reg09 */
F_BOOSTV, F_PFM_OTG_DIS, F_BOOSTI, /* Reg0A */
F_VBUS_STAT, F_CHG_STAT, F_PG_STAT, F_SDP_STAT, F_0B_RSVD,
F_VSYS_STAT, /* Reg0B */
F_WD_FAULT, F_BOOST_FAULT, F_CHG_FAULT, F_BAT_FAULT,
F_NTC_FAULT, /* Reg0C */
F_FORCE_VINDPM, F_VINDPM, /* Reg0D */
F_THERM_STAT, F_BATV, /* Reg0E */
F_SYSV, /* Reg0F */
F_TSPCT, /* Reg10 */
F_VBUS_GD, F_VBUSV, /* Reg11 */
F_ICHGR, /* Reg12 */
F_VDPM_STAT, F_IDPM_STAT, F_IDPM_LIM, /* Reg13 */
F_REG_RST, F_ICO_OPTIMIZED, F_PN, F_TS_PROFILE, F_DEV_REV, /* Reg14 */
F_MAX_FIELDS
};
/* initial field values, converted to register values */
struct bq25890_init_data {
u8 ichg; /* charge current */
u8 vreg; /* regulation voltage */
u8 iterm; /* termination current */
u8 iprechg; /* precharge current */
u8 sysvmin; /* minimum system voltage limit */
u8 boostv; /* boost regulation voltage */
u8 boosti; /* boost current limit */
u8 boostf; /* boost frequency */
u8 ilim_en; /* enable ILIM pin */
u8 treg; /* thermal regulation threshold */
u8 rbatcomp; /* IBAT sense resistor value */
u8 vclamp; /* IBAT compensation voltage limit */
};
struct bq25890_state {
u8 online;
u8 hiz;
u8 chrg_status;
u8 chrg_fault;
u8 vsys_status;
u8 boost_fault;
u8 bat_fault;
u8 ntc_fault;
};
struct bq25890_device {
struct i2c_client *client;
struct device *dev;
struct power_supply *charger;
struct power_supply *secondary_chrg;
struct power_supply_desc desc;
char name[28]; /* "bq25890-charger-%d" */
int id;
struct usb_phy *usb_phy;
struct notifier_block usb_nb;
struct work_struct usb_work;
struct delayed_work pump_express_work;
unsigned long usb_event;
struct regmap *rmap;
struct regmap_field *rmap_fields[F_MAX_FIELDS];
bool skip_reset;
bool read_back_init_data;
bool force_hiz;
u32 pump_express_vbus_max;
u32 iinlim_percentage;
enum bq25890_chip_version chip_version;
struct bq25890_init_data init_data;
struct bq25890_state state;
struct mutex lock; /* protect state data */
};
static DEFINE_IDR(bq25890_id);
static DEFINE_MUTEX(bq25890_id_mutex);
static const struct regmap_range bq25890_readonly_reg_ranges[] = {
regmap_reg_range(0x0b, 0x0c),
regmap_reg_range(0x0e, 0x13),
};
static const struct regmap_access_table bq25890_writeable_regs = {
.no_ranges = bq25890_readonly_reg_ranges,
.n_no_ranges = ARRAY_SIZE(bq25890_readonly_reg_ranges),
};
static const struct regmap_range bq25890_volatile_reg_ranges[] = {
regmap_reg_range(0x00, 0x00),
regmap_reg_range(0x02, 0x02),
regmap_reg_range(0x09, 0x09),
regmap_reg_range(0x0b, 0x14),
};
static const struct regmap_access_table bq25890_volatile_regs = {
.yes_ranges = bq25890_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(bq25890_volatile_reg_ranges),
};
static const struct regmap_config bq25890_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x14,
.cache_type = REGCACHE_RBTREE,
.wr_table = &bq25890_writeable_regs,
.volatile_table = &bq25890_volatile_regs,
};
static const struct reg_field bq25890_reg_fields[] = {
/* REG00 */
[F_EN_HIZ] = REG_FIELD(0x00, 7, 7),
[F_EN_ILIM] = REG_FIELD(0x00, 6, 6),
[F_IINLIM] = REG_FIELD(0x00, 0, 5),
/* REG01 */
[F_BHOT] = REG_FIELD(0x01, 6, 7),
[F_BCOLD] = REG_FIELD(0x01, 5, 5),
[F_VINDPM_OFS] = REG_FIELD(0x01, 0, 4),
/* REG02 */
[F_CONV_START] = REG_FIELD(0x02, 7, 7),
[F_CONV_RATE] = REG_FIELD(0x02, 6, 6),
[F_BOOSTF] = REG_FIELD(0x02, 5, 5),
[F_ICO_EN] = REG_FIELD(0x02, 4, 4),
[F_HVDCP_EN] = REG_FIELD(0x02, 3, 3), // reserved on BQ25896
[F_MAXC_EN] = REG_FIELD(0x02, 2, 2), // reserved on BQ25896
[F_FORCE_DPM] = REG_FIELD(0x02, 1, 1),
[F_AUTO_DPDM_EN] = REG_FIELD(0x02, 0, 0),
/* REG03 */
[F_BAT_LOAD_EN] = REG_FIELD(0x03, 7, 7),
[F_WD_RST] = REG_FIELD(0x03, 6, 6),
[F_OTG_CFG] = REG_FIELD(0x03, 5, 5),
[F_CHG_CFG] = REG_FIELD(0x03, 4, 4),
[F_SYSVMIN] = REG_FIELD(0x03, 1, 3),
[F_MIN_VBAT_SEL] = REG_FIELD(0x03, 0, 0), // BQ25896 only
/* REG04 */
[F_PUMPX_EN] = REG_FIELD(0x04, 7, 7),
[F_ICHG] = REG_FIELD(0x04, 0, 6),
/* REG05 */
[F_IPRECHG] = REG_FIELD(0x05, 4, 7),
[F_ITERM] = REG_FIELD(0x05, 0, 3),
/* REG06 */
[F_VREG] = REG_FIELD(0x06, 2, 7),
[F_BATLOWV] = REG_FIELD(0x06, 1, 1),
[F_VRECHG] = REG_FIELD(0x06, 0, 0),
/* REG07 */
[F_TERM_EN] = REG_FIELD(0x07, 7, 7),
[F_STAT_DIS] = REG_FIELD(0x07, 6, 6),
[F_WD] = REG_FIELD(0x07, 4, 5),
[F_TMR_EN] = REG_FIELD(0x07, 3, 3),
[F_CHG_TMR] = REG_FIELD(0x07, 1, 2),
[F_JEITA_ISET] = REG_FIELD(0x07, 0, 0), // reserved on BQ25895
/* REG08 */
[F_BATCMP] = REG_FIELD(0x08, 5, 7),
[F_VCLAMP] = REG_FIELD(0x08, 2, 4),
[F_TREG] = REG_FIELD(0x08, 0, 1),
/* REG09 */
[F_FORCE_ICO] = REG_FIELD(0x09, 7, 7),
[F_TMR2X_EN] = REG_FIELD(0x09, 6, 6),
[F_BATFET_DIS] = REG_FIELD(0x09, 5, 5),
[F_JEITA_VSET] = REG_FIELD(0x09, 4, 4), // reserved on BQ25895
[F_BATFET_DLY] = REG_FIELD(0x09, 3, 3),
[F_BATFET_RST_EN] = REG_FIELD(0x09, 2, 2),
[F_PUMPX_UP] = REG_FIELD(0x09, 1, 1),
[F_PUMPX_DN] = REG_FIELD(0x09, 0, 0),
/* REG0A */
[F_BOOSTV] = REG_FIELD(0x0A, 4, 7),
[F_BOOSTI] = REG_FIELD(0x0A, 0, 2), // reserved on BQ25895
[F_PFM_OTG_DIS] = REG_FIELD(0x0A, 3, 3), // BQ25896 only
/* REG0B */
[F_VBUS_STAT] = REG_FIELD(0x0B, 5, 7),
[F_CHG_STAT] = REG_FIELD(0x0B, 3, 4),
[F_PG_STAT] = REG_FIELD(0x0B, 2, 2),
[F_SDP_STAT] = REG_FIELD(0x0B, 1, 1), // reserved on BQ25896
[F_VSYS_STAT] = REG_FIELD(0x0B, 0, 0),
/* REG0C */
[F_WD_FAULT] = REG_FIELD(0x0C, 7, 7),
[F_BOOST_FAULT] = REG_FIELD(0x0C, 6, 6),
[F_CHG_FAULT] = REG_FIELD(0x0C, 4, 5),
[F_BAT_FAULT] = REG_FIELD(0x0C, 3, 3),
[F_NTC_FAULT] = REG_FIELD(0x0C, 0, 2),
/* REG0D */
[F_FORCE_VINDPM] = REG_FIELD(0x0D, 7, 7),
[F_VINDPM] = REG_FIELD(0x0D, 0, 6),
/* REG0E */
[F_THERM_STAT] = REG_FIELD(0x0E, 7, 7),
[F_BATV] = REG_FIELD(0x0E, 0, 6),
/* REG0F */
[F_SYSV] = REG_FIELD(0x0F, 0, 6),
/* REG10 */
[F_TSPCT] = REG_FIELD(0x10, 0, 6),
/* REG11 */
[F_VBUS_GD] = REG_FIELD(0x11, 7, 7),
[F_VBUSV] = REG_FIELD(0x11, 0, 6),
/* REG12 */
[F_ICHGR] = REG_FIELD(0x12, 0, 6),
/* REG13 */
[F_VDPM_STAT] = REG_FIELD(0x13, 7, 7),
[F_IDPM_STAT] = REG_FIELD(0x13, 6, 6),
[F_IDPM_LIM] = REG_FIELD(0x13, 0, 5),
/* REG14 */
[F_REG_RST] = REG_FIELD(0x14, 7, 7),
[F_ICO_OPTIMIZED] = REG_FIELD(0x14, 6, 6),
[F_PN] = REG_FIELD(0x14, 3, 5),
[F_TS_PROFILE] = REG_FIELD(0x14, 2, 2),
[F_DEV_REV] = REG_FIELD(0x14, 0, 1)
};
/*
* Most of the val -> idx conversions can be computed, given the minimum,
* maximum and the step between values. For the rest of conversions, we use
* lookup tables.
*/
enum bq25890_table_ids {
/* range tables */
TBL_ICHG,
TBL_ITERM,
TBL_IINLIM,
TBL_VREG,
TBL_BOOSTV,
TBL_SYSVMIN,
TBL_VBUSV,
TBL_VBATCOMP,
TBL_RBATCOMP,
/* lookup tables */
TBL_TREG,
TBL_BOOSTI,
TBL_TSPCT,
};
/* Thermal Regulation Threshold lookup table, in degrees Celsius */
static const u32 bq25890_treg_tbl[] = { 60, 80, 100, 120 };
#define BQ25890_TREG_TBL_SIZE ARRAY_SIZE(bq25890_treg_tbl)
/* Boost mode current limit lookup table, in uA */
static const u32 bq25890_boosti_tbl[] = {
500000, 700000, 1100000, 1300000, 1600000, 1800000, 2100000, 2400000
};
#define BQ25890_BOOSTI_TBL_SIZE ARRAY_SIZE(bq25890_boosti_tbl)
/* NTC 10K temperature lookup table in tenths of a degree */
static const u32 bq25890_tspct_tbl[] = {
850, 840, 830, 820, 810, 800, 790, 780,
770, 760, 750, 740, 730, 720, 710, 700,
690, 685, 680, 675, 670, 660, 650, 645,
640, 630, 620, 615, 610, 600, 590, 585,
580, 570, 565, 560, 550, 540, 535, 530,
520, 515, 510, 500, 495, 490, 480, 475,
470, 460, 455, 450, 440, 435, 430, 425,
420, 410, 405, 400, 390, 385, 380, 370,
365, 360, 355, 350, 340, 335, 330, 320,
310, 305, 300, 290, 285, 280, 275, 270,
260, 250, 245, 240, 230, 225, 220, 210,
205, 200, 190, 180, 175, 170, 160, 150,
145, 140, 130, 120, 115, 110, 100, 90,
80, 70, 60, 50, 40, 30, 20, 10,
0, -10, -20, -30, -40, -60, -70, -80,
-90, -10, -120, -140, -150, -170, -190, -210,
};
#define BQ25890_TSPCT_TBL_SIZE ARRAY_SIZE(bq25890_tspct_tbl)
struct bq25890_range {
u32 min;
u32 max;
u32 step;
};
struct bq25890_lookup {
const u32 *tbl;
u32 size;
};
static const union {
struct bq25890_range rt;
struct bq25890_lookup lt;
} bq25890_tables[] = {
/* range tables */
/* TODO: BQ25896 has max ICHG 3008 mA */
[TBL_ICHG] = { .rt = {0, 5056000, 64000} }, /* uA */
[TBL_ITERM] = { .rt = {64000, 1024000, 64000} }, /* uA */
[TBL_IINLIM] = { .rt = {100000, 3250000, 50000} }, /* uA */
[TBL_VREG] = { .rt = {3840000, 4608000, 16000} }, /* uV */
[TBL_BOOSTV] = { .rt = {4550000, 5510000, 64000} }, /* uV */
[TBL_SYSVMIN] = { .rt = {3000000, 3700000, 100000} }, /* uV */
[TBL_VBUSV] = { .rt = {2600000, 15300000, 100000} }, /* uV */
[TBL_VBATCOMP] = { .rt = {0, 224000, 32000} }, /* uV */
[TBL_RBATCOMP] = { .rt = {0, 140000, 20000} }, /* uOhm */
/* lookup tables */
[TBL_TREG] = { .lt = {bq25890_treg_tbl, BQ25890_TREG_TBL_SIZE} },
[TBL_BOOSTI] = { .lt = {bq25890_boosti_tbl, BQ25890_BOOSTI_TBL_SIZE} },
[TBL_TSPCT] = { .lt = {bq25890_tspct_tbl, BQ25890_TSPCT_TBL_SIZE} }
};
static int bq25890_field_read(struct bq25890_device *bq,
enum bq25890_fields field_id)
{
int ret;
int val;
ret = regmap_field_read(bq->rmap_fields[field_id], &val);
if (ret < 0)
return ret;
return val;
}
static int bq25890_field_write(struct bq25890_device *bq,
enum bq25890_fields field_id, u8 val)
{
return regmap_field_write(bq->rmap_fields[field_id], val);
}
static u8 bq25890_find_idx(u32 value, enum bq25890_table_ids id)
{
u8 idx;
if (id >= TBL_TREG) {
const u32 *tbl = bq25890_tables[id].lt.tbl;
u32 tbl_size = bq25890_tables[id].lt.size;
for (idx = 1; idx < tbl_size && tbl[idx] <= value; idx++)
;
} else {
const struct bq25890_range *rtbl = &bq25890_tables[id].rt;
u8 rtbl_size;
rtbl_size = (rtbl->max - rtbl->min) / rtbl->step + 1;
for (idx = 1;
idx < rtbl_size && (idx * rtbl->step + rtbl->min <= value);
idx++)
;
}
return idx - 1;
}
static u32 bq25890_find_val(u8 idx, enum bq25890_table_ids id)
{
const struct bq25890_range *rtbl;
/* lookup table? */
if (id >= TBL_TREG)
return bq25890_tables[id].lt.tbl[idx];
/* range table */
rtbl = &bq25890_tables[id].rt;
return (rtbl->min + idx * rtbl->step);
}
enum bq25890_status {
STATUS_NOT_CHARGING,
STATUS_PRE_CHARGING,
STATUS_FAST_CHARGING,
STATUS_TERMINATION_DONE,
};
enum bq25890_chrg_fault {
CHRG_FAULT_NORMAL,
CHRG_FAULT_INPUT,
CHRG_FAULT_THERMAL_SHUTDOWN,
CHRG_FAULT_TIMER_EXPIRED,
};
enum bq25890_ntc_fault {
NTC_FAULT_NORMAL = 0,
NTC_FAULT_WARM = 2,
NTC_FAULT_COOL = 3,
NTC_FAULT_COLD = 5,
NTC_FAULT_HOT = 6,
};
static bool bq25890_is_adc_property(enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_TEMP:
return true;
default:
return false;
}
}
static irqreturn_t __bq25890_handle_irq(struct bq25890_device *bq);
static int bq25890_get_vbus_voltage(struct bq25890_device *bq)
{
int ret;
ret = bq25890_field_read(bq, F_VBUSV);
if (ret < 0)
return ret;
return bq25890_find_val(ret, TBL_VBUSV);
}
static void bq25890_update_state(struct bq25890_device *bq,
enum power_supply_property psp,
struct bq25890_state *state)
{
bool do_adc_conv;
int ret;
mutex_lock(&bq->lock);
/* update state in case we lost an interrupt */
__bq25890_handle_irq(bq);
*state = bq->state;
do_adc_conv = (!state->online || state->hiz) && bq25890_is_adc_property(psp);
if (do_adc_conv)
bq25890_field_write(bq, F_CONV_START, 1);
mutex_unlock(&bq->lock);
if (do_adc_conv)
regmap_field_read_poll_timeout(bq->rmap_fields[F_CONV_START],
ret, !ret, 25000, 1000000);
}
static int bq25890_power_supply_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct bq25890_device *bq = power_supply_get_drvdata(psy);
struct bq25890_state state;
int ret;
bq25890_update_state(bq, psp, &state);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
if (!state.online || state.hiz)
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
else if (state.chrg_status == STATUS_NOT_CHARGING)
val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
else if (state.chrg_status == STATUS_PRE_CHARGING ||
state.chrg_status == STATUS_FAST_CHARGING)
val->intval = POWER_SUPPLY_STATUS_CHARGING;
else if (state.chrg_status == STATUS_TERMINATION_DONE)
val->intval = POWER_SUPPLY_STATUS_FULL;
else
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
if (!state.online || state.hiz ||
state.chrg_status == STATUS_NOT_CHARGING ||
state.chrg_status == STATUS_TERMINATION_DONE)
val->intval = POWER_SUPPLY_CHARGE_TYPE_NONE;
else if (state.chrg_status == STATUS_PRE_CHARGING)
val->intval = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
else if (state.chrg_status == STATUS_FAST_CHARGING)
val->intval = POWER_SUPPLY_CHARGE_TYPE_FAST;
else /* unreachable */
val->intval = POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
val->strval = BQ25890_MANUFACTURER;
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
val->strval = bq25890_chip_name[bq->chip_version];
break;
case POWER_SUPPLY_PROP_ONLINE:
val->intval = state.online && !state.hiz;
break;
case POWER_SUPPLY_PROP_HEALTH:
if (!state.chrg_fault && !state.bat_fault && !state.boost_fault)
val->intval = POWER_SUPPLY_HEALTH_GOOD;
else if (state.bat_fault)
val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
else if (state.chrg_fault == CHRG_FAULT_TIMER_EXPIRED)
val->intval = POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE;
else if (state.chrg_fault == CHRG_FAULT_THERMAL_SHUTDOWN)
val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
else
val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
break;
case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
val->intval = bq25890_find_val(bq->init_data.iprechg, TBL_ITERM);
break;
case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
val->intval = bq25890_find_val(bq->init_data.iterm, TBL_ITERM);
break;
case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT:
ret = bq25890_field_read(bq, F_IINLIM);
if (ret < 0)
return ret;
val->intval = bq25890_find_val(ret, TBL_IINLIM);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW: /* I_BAT now */
/*
* This is ADC-sampled immediate charge current supplied
* from charger to battery. The property name is confusing,
* for clarification refer to:
* Documentation/ABI/testing/sysfs-class-power
* /sys/class/power_supply/<supply_name>/current_now
*/
ret = bq25890_field_read(bq, F_ICHGR); /* read measured value */
if (ret < 0)
return ret;
/* converted_val = ADC_val * 50mA (table 10.3.19) */
val->intval = ret * -50000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: /* I_BAT user limit */
/*
* This is user-configured constant charge current supplied
* from charger to battery in first phase of charging, when
* battery voltage is below constant charge voltage.
*
* This value reflects the current hardware setting.
*
* The POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX is the
* maximum value of this property.
*/
ret = bq25890_field_read(bq, F_ICHG);
if (ret < 0)
return ret;
val->intval = bq25890_find_val(ret, TBL_ICHG);
/* When temperature is too low, charge current is decreased */
if (bq->state.ntc_fault == NTC_FAULT_COOL) {
ret = bq25890_field_read(bq, F_JEITA_ISET);
if (ret < 0)
return ret;
if (ret)
val->intval /= 5;
else
val->intval /= 2;
}
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: /* I_BAT max */
/*
* This is maximum allowed constant charge current supplied
* from charger to battery in first phase of charging, when
* battery voltage is below constant charge voltage.
*
* This value is constant for each battery and set from DT.
*/
val->intval = bq25890_find_val(bq->init_data.ichg, TBL_ICHG);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW: /* V_BAT now */
/*
* This is ADC-sampled immediate charge voltage supplied
* from charger to battery. The property name is confusing,
* for clarification refer to:
* Documentation/ABI/testing/sysfs-class-power
* /sys/class/power_supply/<supply_name>/voltage_now
*/
ret = bq25890_field_read(bq, F_BATV); /* read measured value */
if (ret < 0)
return ret;
/* converted_val = 2.304V + ADC_val * 20mV (table 10.3.15) */
val->intval = 2304000 + ret * 20000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: /* V_BAT user limit */
/*
* This is user-configured constant charge voltage supplied
* from charger to battery in second phase of charging, when
* battery voltage reached constant charge voltage.
*
* This value reflects the current hardware setting.
*
* The POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX is the
* maximum value of this property.
*/
ret = bq25890_field_read(bq, F_VREG);
if (ret < 0)
return ret;
val->intval = bq25890_find_val(ret, TBL_VREG);
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: /* V_BAT max */
/*
* This is maximum allowed constant charge voltage supplied
* from charger to battery in second phase of charging, when
* battery voltage reached constant charge voltage.
*
* This value is constant for each battery and set from DT.
*/
val->intval = bq25890_find_val(bq->init_data.vreg, TBL_VREG);
break;
case POWER_SUPPLY_PROP_TEMP:
ret = bq25890_field_read(bq, F_TSPCT);
if (ret < 0)
return ret;
/* convert TS percentage into rough temperature */
val->intval = bq25890_find_val(ret, TBL_TSPCT);
break;
default:
return -EINVAL;
}
return 0;
}
static int bq25890_power_supply_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct bq25890_device *bq = power_supply_get_drvdata(psy);
struct bq25890_state state;
int maxval, ret;
u8 lval;
switch (psp) {
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
maxval = bq25890_find_val(bq->init_data.ichg, TBL_ICHG);
lval = bq25890_find_idx(min(val->intval, maxval), TBL_ICHG);
return bq25890_field_write(bq, F_ICHG, lval);
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
maxval = bq25890_find_val(bq->init_data.vreg, TBL_VREG);
lval = bq25890_find_idx(min(val->intval, maxval), TBL_VREG);
return bq25890_field_write(bq, F_VREG, lval);
case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT:
lval = bq25890_find_idx(val->intval, TBL_IINLIM);
return bq25890_field_write(bq, F_IINLIM, lval);
case POWER_SUPPLY_PROP_ONLINE:
ret = bq25890_field_write(bq, F_EN_HIZ, !val->intval);
if (!ret)
bq->force_hiz = !val->intval;
bq25890_update_state(bq, psp, &state);
return ret;
default:
return -EINVAL;
}
}
static int bq25890_power_supply_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT:
case POWER_SUPPLY_PROP_ONLINE:
return true;
default:
return false;
}
}
/*
* If there are multiple chargers the maximum current the external power-supply
* can deliver needs to be divided over the chargers. This is done according
* to the bq->iinlim_percentage setting.
*/
static int bq25890_charger_get_scaled_iinlim_regval(struct bq25890_device *bq,
int iinlim_ua)
{
iinlim_ua = iinlim_ua * bq->iinlim_percentage / 100;
return bq25890_find_idx(iinlim_ua, TBL_IINLIM);
}
/* On the BQ25892 try to get charger-type info from our supplier */
static void bq25890_charger_external_power_changed(struct power_supply *psy)
{
struct bq25890_device *bq = power_supply_get_drvdata(psy);
union power_supply_propval val;
int input_current_limit, ret;
if (bq->chip_version != BQ25892)
return;
ret = power_supply_get_property_from_supplier(psy,
POWER_SUPPLY_PROP_USB_TYPE,
&val);
if (ret)
return;
switch (val.intval) {
case POWER_SUPPLY_USB_TYPE_DCP:
input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 2000000);
if (bq->pump_express_vbus_max) {
queue_delayed_work(system_power_efficient_wq,
&bq->pump_express_work,
PUMP_EXPRESS_START_DELAY);
}
break;
case POWER_SUPPLY_USB_TYPE_CDP:
case POWER_SUPPLY_USB_TYPE_ACA:
input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 1500000);
break;
case POWER_SUPPLY_USB_TYPE_SDP:
default:
input_current_limit = bq25890_charger_get_scaled_iinlim_regval(bq, 500000);
}
bq25890_field_write(bq, F_IINLIM, input_current_limit);
power_supply_changed(psy);
}
static int bq25890_get_chip_state(struct bq25890_device *bq,
struct bq25890_state *state)
{
int i, ret;
struct {
enum bq25890_fields id;
u8 *data;
} state_fields[] = {
{F_CHG_STAT, &state->chrg_status},
{F_PG_STAT, &state->online},
{F_EN_HIZ, &state->hiz},
{F_VSYS_STAT, &state->vsys_status},
{F_BOOST_FAULT, &state->boost_fault},
{F_BAT_FAULT, &state->bat_fault},
{F_CHG_FAULT, &state->chrg_fault},
{F_NTC_FAULT, &state->ntc_fault}
};
for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
ret = bq25890_field_read(bq, state_fields[i].id);
if (ret < 0)
return ret;
*state_fields[i].data = ret;
}
dev_dbg(bq->dev, "S:CHG/PG/HIZ/VSYS=%d/%d/%d/%d, F:CHG/BOOST/BAT/NTC=%d/%d/%d/%d\n",
state->chrg_status, state->online,
state->hiz, state->vsys_status,
state->chrg_fault, state->boost_fault,
state->bat_fault, state->ntc_fault);
return 0;
}
static irqreturn_t __bq25890_handle_irq(struct bq25890_device *bq)
{
bool adc_conv_rate, new_adc_conv_rate;
struct bq25890_state new_state;
int ret;
ret = bq25890_get_chip_state(bq, &new_state);
if (ret < 0)
return IRQ_NONE;
if (!memcmp(&bq->state, &new_state, sizeof(new_state)))
return IRQ_NONE;
/*
* Restore HiZ bit in case it was set by user. The chip does not retain
* this bit on cable replug, hence the bit must be reset manually here.
*/
if (new_state.online && !bq->state.online && bq->force_hiz) {
ret = bq25890_field_write(bq, F_EN_HIZ, bq->force_hiz);
if (ret < 0)
goto error;
new_state.hiz = 1;
}
/* Should period ADC sampling be enabled? */
adc_conv_rate = bq->state.online && !bq->state.hiz;
new_adc_conv_rate = new_state.online && !new_state.hiz;
if (new_adc_conv_rate != adc_conv_rate) {
ret = bq25890_field_write(bq, F_CONV_RATE, new_adc_conv_rate);
if (ret < 0)
goto error;
}
bq->state = new_state;
power_supply_changed(bq->charger);
return IRQ_HANDLED;
error:
dev_err(bq->dev, "Error communicating with the chip: %pe\n",
ERR_PTR(ret));
return IRQ_HANDLED;
}
static irqreturn_t bq25890_irq_handler_thread(int irq, void *private)
{
struct bq25890_device *bq = private;
irqreturn_t ret;
mutex_lock(&bq->lock);
ret = __bq25890_handle_irq(bq);
mutex_unlock(&bq->lock);
return ret;
}
static int bq25890_chip_reset(struct bq25890_device *bq)
{
int ret;
int rst_check_counter = 10;
ret = bq25890_field_write(bq, F_REG_RST, 1);
if (ret < 0)
return ret;
do {
ret = bq25890_field_read(bq, F_REG_RST);
if (ret < 0)
return ret;
usleep_range(5, 10);
} while (ret == 1 && --rst_check_counter);
if (!rst_check_counter)
return -ETIMEDOUT;
return 0;
}
static int bq25890_rw_init_data(struct bq25890_device *bq)
{
bool write = !bq->read_back_init_data;
int ret;
int i;
const struct {
enum bq25890_fields id;
u8 *value;
} init_data[] = {
{F_ICHG, &bq->init_data.ichg},
{F_VREG, &bq->init_data.vreg},
{F_ITERM, &bq->init_data.iterm},
{F_IPRECHG, &bq->init_data.iprechg},
{F_SYSVMIN, &bq->init_data.sysvmin},
{F_BOOSTV, &bq->init_data.boostv},
{F_BOOSTI, &bq->init_data.boosti},
{F_BOOSTF, &bq->init_data.boostf},
{F_EN_ILIM, &bq->init_data.ilim_en},
{F_TREG, &bq->init_data.treg},
{F_BATCMP, &bq->init_data.rbatcomp},
{F_VCLAMP, &bq->init_data.vclamp},
};
for (i = 0; i < ARRAY_SIZE(init_data); i++) {
if (write) {
ret = bq25890_field_write(bq, init_data[i].id,
*init_data[i].value);
} else {
ret = bq25890_field_read(bq, init_data[i].id);
if (ret >= 0)
*init_data[i].value = ret;
}
if (ret < 0) {
dev_dbg(bq->dev, "Accessing init data failed %d\n", ret);
return ret;
}
}
return 0;
}
static int bq25890_hw_init(struct bq25890_device *bq)
{
int ret;
if (!bq->skip_reset) {
ret = bq25890_chip_reset(bq);
if (ret < 0) {
dev_dbg(bq->dev, "Reset failed %d\n", ret);
return ret;
}
} else {
/*
* Ensure charging is enabled, on some boards where the fw
* takes care of initalizition F_CHG_CFG is set to 0 before
* handing control over to the OS.
*/
ret = bq25890_field_write(bq, F_CHG_CFG, 1);
if (ret < 0) {
dev_dbg(bq->dev, "Enabling charging failed %d\n", ret);
return ret;
}
}
/* disable watchdog */
ret = bq25890_field_write(bq, F_WD, 0);
if (ret < 0) {
dev_dbg(bq->dev, "Disabling watchdog failed %d\n", ret);
return ret;
}
/* initialize currents/voltages and other parameters */
ret = bq25890_rw_init_data(bq);
if (ret)
return ret;
ret = bq25890_get_chip_state(bq, &bq->state);
if (ret < 0) {
dev_dbg(bq->dev, "Get state failed %d\n", ret);
return ret;
}
/* Configure ADC for continuous conversions when charging */
ret = bq25890_field_write(bq, F_CONV_RATE, bq->state.online && !bq->state.hiz);
if (ret < 0) {
dev_dbg(bq->dev, "Config ADC failed %d\n", ret);
return ret;
}
return 0;
}
static const enum power_supply_property bq25890_power_supply_props[] = {
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_MODEL_NAME,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_TEMP,
};
static char *bq25890_charger_supplied_to[] = {
"main-battery",
};
static const struct power_supply_desc bq25890_power_supply_desc = {
.type = POWER_SUPPLY_TYPE_USB,
.properties = bq25890_power_supply_props,
.num_properties = ARRAY_SIZE(bq25890_power_supply_props),
.get_property = bq25890_power_supply_get_property,
.set_property = bq25890_power_supply_set_property,
.property_is_writeable = bq25890_power_supply_property_is_writeable,
.external_power_changed = bq25890_charger_external_power_changed,
};
static int bq25890_power_supply_init(struct bq25890_device *bq)
{
struct power_supply_config psy_cfg = { .drv_data = bq, };
/* Get ID for the device */
mutex_lock(&bq25890_id_mutex);
bq->id = idr_alloc(&bq25890_id, bq, 0, 0, GFP_KERNEL);
mutex_unlock(&bq25890_id_mutex);
if (bq->id < 0)
return bq->id;
snprintf(bq->name, sizeof(bq->name), "bq25890-charger-%d", bq->id);
bq->desc = bq25890_power_supply_desc;
bq->desc.name = bq->name;
psy_cfg.supplied_to = bq25890_charger_supplied_to;
psy_cfg.num_supplicants = ARRAY_SIZE(bq25890_charger_supplied_to);
bq->charger = devm_power_supply_register(bq->dev, &bq->desc, &psy_cfg);
return PTR_ERR_OR_ZERO(bq->charger);
}
static int bq25890_set_otg_cfg(struct bq25890_device *bq, u8 val)
{
int ret;
ret = bq25890_field_write(bq, F_OTG_CFG, val);
if (ret < 0)
dev_err(bq->dev, "Error switching to boost/charger mode: %d\n", ret);
return ret;
}
static void bq25890_pump_express_work(struct work_struct *data)
{
struct bq25890_device *bq =
container_of(data, struct bq25890_device, pump_express_work.work);
union power_supply_propval value;
int voltage, i, ret;
dev_dbg(bq->dev, "Start to request input voltage increasing\n");
/* If there is a second charger put in Hi-Z mode */
if (bq->secondary_chrg) {
value.intval = 0;
power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &value);
}
/* Enable current pulse voltage control protocol */
ret = bq25890_field_write(bq, F_PUMPX_EN, 1);
if (ret < 0)
goto error_print;
for (i = 0; i < PUMP_EXPRESS_MAX_TRIES; i++) {
voltage = bq25890_get_vbus_voltage(bq);
if (voltage < 0)
goto error_print;
dev_dbg(bq->dev, "input voltage = %d uV\n", voltage);
if ((voltage + PUMP_EXPRESS_VBUS_MARGIN_uV) >
bq->pump_express_vbus_max)
break;
ret = bq25890_field_write(bq, F_PUMPX_UP, 1);
if (ret < 0)
goto error_print;
/* Note a single PUMPX up pulse-sequence takes 2.1s */
ret = regmap_field_read_poll_timeout(bq->rmap_fields[F_PUMPX_UP],
ret, !ret, 100000, 3000000);
if (ret < 0)
goto error_print;
/* Make sure ADC has sampled Vbus before checking again */
msleep(1000);
}
bq25890_field_write(bq, F_PUMPX_EN, 0);
if (bq->secondary_chrg) {
value.intval = 1;
power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &value);
}
dev_info(bq->dev, "Hi-voltage charging requested, input voltage is %d mV\n",
voltage);
power_supply_changed(bq->charger);
return;
error_print:
bq25890_field_write(bq, F_PUMPX_EN, 0);
dev_err(bq->dev, "Failed to request hi-voltage charging\n");
}
static void bq25890_usb_work(struct work_struct *data)
{
int ret;
struct bq25890_device *bq =
container_of(data, struct bq25890_device, usb_work);
switch (bq->usb_event) {
case USB_EVENT_ID:
/* Enable boost mode */
bq25890_set_otg_cfg(bq, 1);
break;
case USB_EVENT_NONE:
/* Disable boost mode */
ret = bq25890_set_otg_cfg(bq, 0);
if (ret == 0)
power_supply_changed(bq->charger);
break;
}
}
static int bq25890_usb_notifier(struct notifier_block *nb, unsigned long val,
void *priv)
{
struct bq25890_device *bq =
container_of(nb, struct bq25890_device, usb_nb);
bq->usb_event = val;
queue_work(system_power_efficient_wq, &bq->usb_work);
return NOTIFY_OK;
}
#ifdef CONFIG_REGULATOR
static int bq25890_vbus_enable(struct regulator_dev *rdev)
{
struct bq25890_device *bq = rdev_get_drvdata(rdev);
union power_supply_propval val = {
.intval = 0,
};
/*
* When enabling 5V boost / Vbus output, we need to put the secondary
* charger in Hi-Z mode to avoid it trying to charge the secondary
* battery from the 5V boost output.
*/
if (bq->secondary_chrg)
power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &val);
return bq25890_set_otg_cfg(bq, 1);
}
static int bq25890_vbus_disable(struct regulator_dev *rdev)
{
struct bq25890_device *bq = rdev_get_drvdata(rdev);
union power_supply_propval val = {
.intval = 1,
};
int ret;
ret = bq25890_set_otg_cfg(bq, 0);
if (ret)
return ret;
if (bq->secondary_chrg)
power_supply_set_property(bq->secondary_chrg, POWER_SUPPLY_PROP_ONLINE, &val);
return 0;
}
static int bq25890_vbus_is_enabled(struct regulator_dev *rdev)
{
struct bq25890_device *bq = rdev_get_drvdata(rdev);
return bq25890_field_read(bq, F_OTG_CFG);
}
static int bq25890_vbus_get_voltage(struct regulator_dev *rdev)
{
struct bq25890_device *bq = rdev_get_drvdata(rdev);
return bq25890_get_vbus_voltage(bq);
}
static int bq25890_vsys_get_voltage(struct regulator_dev *rdev)
{
struct bq25890_device *bq = rdev_get_drvdata(rdev);
int ret;
/* Should be some output voltage ? */
ret = bq25890_field_read(bq, F_SYSV); /* read measured value */
if (ret < 0)
return ret;
/* converted_val = 2.304V + ADC_val * 20mV (table 10.3.15) */
return 2304000 + ret * 20000;
}
static const struct regulator_ops bq25890_vbus_ops = {
.enable = bq25890_vbus_enable,
.disable = bq25890_vbus_disable,
.is_enabled = bq25890_vbus_is_enabled,
.get_voltage = bq25890_vbus_get_voltage,
};
static const struct regulator_desc bq25890_vbus_desc = {
.name = "usb_otg_vbus",
.of_match = "usb-otg-vbus",
.type = REGULATOR_VOLTAGE,
.owner = THIS_MODULE,
.ops = &bq25890_vbus_ops,
};
static const struct regulator_ops bq25890_vsys_ops = {
.get_voltage = bq25890_vsys_get_voltage,
};
static const struct regulator_desc bq25890_vsys_desc = {
.name = "vsys",
.of_match = "vsys",
.type = REGULATOR_VOLTAGE,
.owner = THIS_MODULE,
.ops = &bq25890_vsys_ops,
};
static int bq25890_register_regulator(struct bq25890_device *bq)
{
struct bq25890_platform_data *pdata = dev_get_platdata(bq->dev);
struct regulator_config cfg = {
.dev = bq->dev,
.driver_data = bq,
};
struct regulator_dev *reg;
if (pdata)
cfg.init_data = pdata->regulator_init_data;
reg = devm_regulator_register(bq->dev, &bq25890_vbus_desc, &cfg);
if (IS_ERR(reg)) {
return dev_err_probe(bq->dev, PTR_ERR(reg),
"registering vbus regulator");
}
/* pdata->regulator_init_data is for vbus only */
cfg.init_data = NULL;
reg = devm_regulator_register(bq->dev, &bq25890_vsys_desc, &cfg);
if (IS_ERR(reg)) {
return dev_err_probe(bq->dev, PTR_ERR(reg),
"registering vsys regulator");
}
return 0;
}
#else
static inline int
bq25890_register_regulator(struct bq25890_device *bq)
{
return 0;
}
#endif
static int bq25890_get_chip_version(struct bq25890_device *bq)
{
int id, rev;
id = bq25890_field_read(bq, F_PN);
if (id < 0) {
dev_err(bq->dev, "Cannot read chip ID: %d\n", id);
return id;
}
rev = bq25890_field_read(bq, F_DEV_REV);
if (rev < 0) {
dev_err(bq->dev, "Cannot read chip revision: %d\n", rev);
return rev;
}
switch (id) {
case BQ25890_ID:
bq->chip_version = BQ25890;
break;
/* BQ25892 and BQ25896 share same ID 0 */
case BQ25896_ID:
switch (rev) {
case 2:
bq->chip_version = BQ25896;
break;
case 1:
bq->chip_version = BQ25892;
break;
default:
dev_err(bq->dev,
"Unknown device revision %d, assume BQ25892\n",
rev);
bq->chip_version = BQ25892;
}
break;
case BQ25895_ID:
bq->chip_version = BQ25895;
break;
default:
dev_err(bq->dev, "Unknown chip ID %d\n", id);
return -ENODEV;
}
return 0;
}
static int bq25890_irq_probe(struct bq25890_device *bq)
{
struct gpio_desc *irq;
irq = devm_gpiod_get(bq->dev, BQ25890_IRQ_PIN, GPIOD_IN);
if (IS_ERR(irq))
return dev_err_probe(bq->dev, PTR_ERR(irq),
"Could not probe irq pin.\n");
return gpiod_to_irq(irq);
}
static int bq25890_fw_read_u32_props(struct bq25890_device *bq)
{
int ret;
u32 property;
int i;
struct bq25890_init_data *init = &bq->init_data;
struct {
char *name;
bool optional;
enum bq25890_table_ids tbl_id;
u8 *conv_data; /* holds converted value from given property */
} props[] = {
/* required properties */
{"ti,charge-current", false, TBL_ICHG, &init->ichg},
{"ti,battery-regulation-voltage", false, TBL_VREG, &init->vreg},
{"ti,termination-current", false, TBL_ITERM, &init->iterm},
{"ti,precharge-current", false, TBL_ITERM, &init->iprechg},
{"ti,minimum-sys-voltage", false, TBL_SYSVMIN, &init->sysvmin},
{"ti,boost-voltage", false, TBL_BOOSTV, &init->boostv},
{"ti,boost-max-current", false, TBL_BOOSTI, &init->boosti},
/* optional properties */
{"ti,thermal-regulation-threshold", true, TBL_TREG, &init->treg},
{"ti,ibatcomp-micro-ohms", true, TBL_RBATCOMP, &init->rbatcomp},
{"ti,ibatcomp-clamp-microvolt", true, TBL_VBATCOMP, &init->vclamp},
};
/* initialize data for optional properties */
init->treg = 3; /* 120 degrees Celsius */
init->rbatcomp = init->vclamp = 0; /* IBAT compensation disabled */
for (i = 0; i < ARRAY_SIZE(props); i++) {
ret = device_property_read_u32(bq->dev, props[i].name,
&property);
if (ret < 0) {
if (props[i].optional)
continue;
dev_err(bq->dev, "Unable to read property %d %s\n", ret,
props[i].name);
return ret;
}
*props[i].conv_data = bq25890_find_idx(property,
props[i].tbl_id);
}
return 0;
}
static int bq25890_fw_probe(struct bq25890_device *bq)
{
int ret;
struct bq25890_init_data *init = &bq->init_data;
const char *str;
u32 val;
ret = device_property_read_string(bq->dev, "linux,secondary-charger-name", &str);
if (ret == 0) {
bq->secondary_chrg = power_supply_get_by_name(str);
if (!bq->secondary_chrg)
return -EPROBE_DEFER;
}
/* Optional, left at 0 if property is not present */
device_property_read_u32(bq->dev, "linux,pump-express-vbus-max",
&bq->pump_express_vbus_max);
ret = device_property_read_u32(bq->dev, "linux,iinlim-percentage", &val);
if (ret == 0) {
if (val > 100) {
dev_err(bq->dev, "Error linux,iinlim-percentage %u > 100\n", val);
return -EINVAL;
}
bq->iinlim_percentage = val;
} else {
bq->iinlim_percentage = 100;
}
bq->skip_reset = device_property_read_bool(bq->dev, "linux,skip-reset");
bq->read_back_init_data = device_property_read_bool(bq->dev,
"linux,read-back-settings");
if (bq->read_back_init_data)
return 0;
ret = bq25890_fw_read_u32_props(bq);
if (ret < 0)
return ret;
init->ilim_en = device_property_read_bool(bq->dev, "ti,use-ilim-pin");
init->boostf = device_property_read_bool(bq->dev, "ti,boost-low-freq");
return 0;
}
static void bq25890_non_devm_cleanup(void *data)
{
struct bq25890_device *bq = data;
cancel_delayed_work_sync(&bq->pump_express_work);
if (bq->id >= 0) {
mutex_lock(&bq25890_id_mutex);
idr_remove(&bq25890_id, bq->id);
mutex_unlock(&bq25890_id_mutex);
}
}
static int bq25890_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct bq25890_device *bq;
int ret;
bq = devm_kzalloc(dev, sizeof(*bq), GFP_KERNEL);
if (!bq)
return -ENOMEM;
bq->client = client;
bq->dev = dev;
bq->id = -1;
mutex_init(&bq->lock);
INIT_DELAYED_WORK(&bq->pump_express_work, bq25890_pump_express_work);
bq->rmap = devm_regmap_init_i2c(client, &bq25890_regmap_config);
if (IS_ERR(bq->rmap))
return dev_err_probe(dev, PTR_ERR(bq->rmap),
"failed to allocate register map\n");
ret = devm_regmap_field_bulk_alloc(dev, bq->rmap, bq->rmap_fields,
bq25890_reg_fields, F_MAX_FIELDS);
if (ret)
return ret;
i2c_set_clientdata(client, bq);
ret = bq25890_get_chip_version(bq);
if (ret) {
dev_err(dev, "Cannot read chip ID or unknown chip: %d\n", ret);
return ret;
}
ret = bq25890_fw_probe(bq);
if (ret < 0)
return dev_err_probe(dev, ret, "reading device properties\n");
ret = bq25890_hw_init(bq);
if (ret < 0) {
dev_err(dev, "Cannot initialize the chip: %d\n", ret);
return ret;
}
if (client->irq <= 0)
client->irq = bq25890_irq_probe(bq);
if (client->irq < 0) {
dev_err(dev, "No irq resource found.\n");
return client->irq;
}
/* OTG reporting */
bq->usb_phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
/*
* This must be before bq25890_power_supply_init(), so that it runs
* after devm unregisters the power_supply.
*/
ret = devm_add_action_or_reset(dev, bq25890_non_devm_cleanup, bq);
if (ret)
return ret;
ret = bq25890_register_regulator(bq);
if (ret)
return ret;
ret = bq25890_power_supply_init(bq);
if (ret < 0)
return dev_err_probe(dev, ret, "registering power supply\n");
ret = devm_request_threaded_irq(dev, client->irq, NULL,
bq25890_irq_handler_thread,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
BQ25890_IRQ_PIN, bq);
if (ret)
return ret;
if (!IS_ERR_OR_NULL(bq->usb_phy)) {
INIT_WORK(&bq->usb_work, bq25890_usb_work);
bq->usb_nb.notifier_call = bq25890_usb_notifier;
usb_register_notifier(bq->usb_phy, &bq->usb_nb);
}
return 0;
}
static void bq25890_remove(struct i2c_client *client)
{
struct bq25890_device *bq = i2c_get_clientdata(client);
if (!IS_ERR_OR_NULL(bq->usb_phy)) {
usb_unregister_notifier(bq->usb_phy, &bq->usb_nb);
cancel_work_sync(&bq->usb_work);
}
if (!bq->skip_reset) {
/* reset all registers to default values */
bq25890_chip_reset(bq);
}
}
static void bq25890_shutdown(struct i2c_client *client)
{
struct bq25890_device *bq = i2c_get_clientdata(client);
/*
* TODO this if + return should probably be removed, but that would
* introduce a function change for boards using the usb-phy framework.
* This needs to be tested on such a board before making this change.
*/
if (!IS_ERR_OR_NULL(bq->usb_phy))
return;
/*
* Turn off the 5v Boost regulator which outputs Vbus to the device's
* Micro-USB or Type-C USB port. Leaving this on drains power and
* this avoids the PMIC on some device-models seeing this as Vbus
* getting inserted after shutdown, causing the device to immediately
* power-up again.
*/
bq25890_set_otg_cfg(bq, 0);
}
#ifdef CONFIG_PM_SLEEP
static int bq25890_suspend(struct device *dev)
{
struct bq25890_device *bq = dev_get_drvdata(dev);
/*
* If charger is removed, while in suspend, make sure ADC is diabled
* since it consumes slightly more power.
*/
return bq25890_field_write(bq, F_CONV_RATE, 0);
}
static int bq25890_resume(struct device *dev)
{
int ret;
struct bq25890_device *bq = dev_get_drvdata(dev);
mutex_lock(&bq->lock);
ret = bq25890_get_chip_state(bq, &bq->state);
if (ret < 0)
goto unlock;
/* Re-enable ADC only if charger is plugged in. */
if (bq->state.online) {
ret = bq25890_field_write(bq, F_CONV_RATE, 1);
if (ret < 0)
goto unlock;
}
/* signal userspace, maybe state changed while suspended */
power_supply_changed(bq->charger);
unlock:
mutex_unlock(&bq->lock);
return ret;
}
#endif
static const struct dev_pm_ops bq25890_pm = {
SET_SYSTEM_SLEEP_PM_OPS(bq25890_suspend, bq25890_resume)
};
static const struct i2c_device_id bq25890_i2c_ids[] = {
{ "bq25890", 0 },
{ "bq25892", 0 },
{ "bq25895", 0 },
{ "bq25896", 0 },
{},
};
MODULE_DEVICE_TABLE(i2c, bq25890_i2c_ids);
static const struct of_device_id bq25890_of_match[] = {
{ .compatible = "ti,bq25890", },
{ .compatible = "ti,bq25892", },
{ .compatible = "ti,bq25895", },
{ .compatible = "ti,bq25896", },
{ },
};
MODULE_DEVICE_TABLE(of, bq25890_of_match);
#ifdef CONFIG_ACPI
static const struct acpi_device_id bq25890_acpi_match[] = {
{"BQ258900", 0},
{},
};
MODULE_DEVICE_TABLE(acpi, bq25890_acpi_match);
#endif
static struct i2c_driver bq25890_driver = {
.driver = {
.name = "bq25890-charger",
.of_match_table = of_match_ptr(bq25890_of_match),
.acpi_match_table = ACPI_PTR(bq25890_acpi_match),
.pm = &bq25890_pm,
},
.probe_new = bq25890_probe,
.remove = bq25890_remove,
.shutdown = bq25890_shutdown,
.id_table = bq25890_i2c_ids,
};
module_i2c_driver(bq25890_driver);
MODULE_AUTHOR("Laurentiu Palcu <laurentiu.palcu@intel.com>");
MODULE_DESCRIPTION("bq25890 charger driver");
MODULE_LICENSE("GPL");