linux-zen-desktop/mm/mmu_gather.c

398 lines
9.8 KiB
C

#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/kernel.h>
#include <linux/mmdebug.h>
#include <linux/mm_types.h>
#include <linux/mm_inline.h>
#include <linux/pagemap.h>
#include <linux/rcupdate.h>
#include <linux/smp.h>
#include <linux/swap.h>
#include <linux/rmap.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#ifndef CONFIG_MMU_GATHER_NO_GATHER
static bool tlb_next_batch(struct mmu_gather *tlb)
{
struct mmu_gather_batch *batch;
/* Limit batching if we have delayed rmaps pending */
if (tlb->delayed_rmap && tlb->active != &tlb->local)
return false;
batch = tlb->active;
if (batch->next) {
tlb->active = batch->next;
return true;
}
if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
return false;
batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
if (!batch)
return false;
tlb->batch_count++;
batch->next = NULL;
batch->nr = 0;
batch->max = MAX_GATHER_BATCH;
tlb->active->next = batch;
tlb->active = batch;
return true;
}
#ifdef CONFIG_SMP
static void tlb_flush_rmap_batch(struct mmu_gather_batch *batch, struct vm_area_struct *vma)
{
for (int i = 0; i < batch->nr; i++) {
struct encoded_page *enc = batch->encoded_pages[i];
if (encoded_page_flags(enc)) {
struct page *page = encoded_page_ptr(enc);
page_remove_rmap(page, vma, false);
}
}
}
/**
* tlb_flush_rmaps - do pending rmap removals after we have flushed the TLB
* @tlb: the current mmu_gather
*
* Note that because of how tlb_next_batch() above works, we will
* never start multiple new batches with pending delayed rmaps, so
* we only need to walk through the current active batch and the
* original local one.
*/
void tlb_flush_rmaps(struct mmu_gather *tlb, struct vm_area_struct *vma)
{
if (!tlb->delayed_rmap)
return;
tlb_flush_rmap_batch(&tlb->local, vma);
if (tlb->active != &tlb->local)
tlb_flush_rmap_batch(tlb->active, vma);
tlb->delayed_rmap = 0;
}
#endif
static void tlb_batch_pages_flush(struct mmu_gather *tlb)
{
struct mmu_gather_batch *batch;
for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
struct encoded_page **pages = batch->encoded_pages;
do {
/*
* limit free batch count when PAGE_SIZE > 4K
*/
unsigned int nr = min(512U, batch->nr);
free_pages_and_swap_cache(pages, nr);
pages += nr;
batch->nr -= nr;
cond_resched();
} while (batch->nr);
}
tlb->active = &tlb->local;
}
static void tlb_batch_list_free(struct mmu_gather *tlb)
{
struct mmu_gather_batch *batch, *next;
for (batch = tlb->local.next; batch; batch = next) {
next = batch->next;
free_pages((unsigned long)batch, 0);
}
tlb->local.next = NULL;
}
bool __tlb_remove_page_size(struct mmu_gather *tlb, struct encoded_page *page, int page_size)
{
struct mmu_gather_batch *batch;
VM_BUG_ON(!tlb->end);
#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
VM_WARN_ON(tlb->page_size != page_size);
#endif
batch = tlb->active;
/*
* Add the page and check if we are full. If so
* force a flush.
*/
batch->encoded_pages[batch->nr++] = page;
if (batch->nr == batch->max) {
if (!tlb_next_batch(tlb))
return true;
batch = tlb->active;
}
VM_BUG_ON_PAGE(batch->nr > batch->max, encoded_page_ptr(page));
return false;
}
#endif /* MMU_GATHER_NO_GATHER */
#ifdef CONFIG_MMU_GATHER_TABLE_FREE
static void __tlb_remove_table_free(struct mmu_table_batch *batch)
{
int i;
for (i = 0; i < batch->nr; i++)
__tlb_remove_table(batch->tables[i]);
free_page((unsigned long)batch);
}
#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
/*
* Semi RCU freeing of the page directories.
*
* This is needed by some architectures to implement software pagetable walkers.
*
* gup_fast() and other software pagetable walkers do a lockless page-table
* walk and therefore needs some synchronization with the freeing of the page
* directories. The chosen means to accomplish that is by disabling IRQs over
* the walk.
*
* Architectures that use IPIs to flush TLBs will then automagically DTRT,
* since we unlink the page, flush TLBs, free the page. Since the disabling of
* IRQs delays the completion of the TLB flush we can never observe an already
* freed page.
*
* Architectures that do not have this (PPC) need to delay the freeing by some
* other means, this is that means.
*
* What we do is batch the freed directory pages (tables) and RCU free them.
* We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
* holds off grace periods.
*
* However, in order to batch these pages we need to allocate storage, this
* allocation is deep inside the MM code and can thus easily fail on memory
* pressure. To guarantee progress we fall back to single table freeing, see
* the implementation of tlb_remove_table_one().
*
*/
static void tlb_remove_table_smp_sync(void *arg)
{
/* Simply deliver the interrupt */
}
void tlb_remove_table_sync_one(void)
{
/*
* This isn't an RCU grace period and hence the page-tables cannot be
* assumed to be actually RCU-freed.
*
* It is however sufficient for software page-table walkers that rely on
* IRQ disabling.
*/
smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
}
static void tlb_remove_table_rcu(struct rcu_head *head)
{
__tlb_remove_table_free(container_of(head, struct mmu_table_batch, rcu));
}
static void tlb_remove_table_free(struct mmu_table_batch *batch)
{
call_rcu(&batch->rcu, tlb_remove_table_rcu);
}
#else /* !CONFIG_MMU_GATHER_RCU_TABLE_FREE */
static void tlb_remove_table_free(struct mmu_table_batch *batch)
{
__tlb_remove_table_free(batch);
}
#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
/*
* If we want tlb_remove_table() to imply TLB invalidates.
*/
static inline void tlb_table_invalidate(struct mmu_gather *tlb)
{
if (tlb_needs_table_invalidate()) {
/*
* Invalidate page-table caches used by hardware walkers. Then
* we still need to RCU-sched wait while freeing the pages
* because software walkers can still be in-flight.
*/
tlb_flush_mmu_tlbonly(tlb);
}
}
static void tlb_remove_table_one(void *table)
{
tlb_remove_table_sync_one();
__tlb_remove_table(table);
}
static void tlb_table_flush(struct mmu_gather *tlb)
{
struct mmu_table_batch **batch = &tlb->batch;
if (*batch) {
tlb_table_invalidate(tlb);
tlb_remove_table_free(*batch);
*batch = NULL;
}
}
void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
struct mmu_table_batch **batch = &tlb->batch;
if (*batch == NULL) {
*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
if (*batch == NULL) {
tlb_table_invalidate(tlb);
tlb_remove_table_one(table);
return;
}
(*batch)->nr = 0;
}
(*batch)->tables[(*batch)->nr++] = table;
if ((*batch)->nr == MAX_TABLE_BATCH)
tlb_table_flush(tlb);
}
static inline void tlb_table_init(struct mmu_gather *tlb)
{
tlb->batch = NULL;
}
#else /* !CONFIG_MMU_GATHER_TABLE_FREE */
static inline void tlb_table_flush(struct mmu_gather *tlb) { }
static inline void tlb_table_init(struct mmu_gather *tlb) { }
#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
static void tlb_flush_mmu_free(struct mmu_gather *tlb)
{
tlb_table_flush(tlb);
#ifndef CONFIG_MMU_GATHER_NO_GATHER
tlb_batch_pages_flush(tlb);
#endif
}
void tlb_flush_mmu(struct mmu_gather *tlb)
{
tlb_flush_mmu_tlbonly(tlb);
tlb_flush_mmu_free(tlb);
}
static void __tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
bool fullmm)
{
tlb->mm = mm;
tlb->fullmm = fullmm;
#ifndef CONFIG_MMU_GATHER_NO_GATHER
tlb->need_flush_all = 0;
tlb->local.next = NULL;
tlb->local.nr = 0;
tlb->local.max = ARRAY_SIZE(tlb->__pages);
tlb->active = &tlb->local;
tlb->batch_count = 0;
#endif
tlb->delayed_rmap = 0;
tlb_table_init(tlb);
#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
tlb->page_size = 0;
#endif
__tlb_reset_range(tlb);
inc_tlb_flush_pending(tlb->mm);
}
/**
* tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
* @tlb: the mmu_gather structure to initialize
* @mm: the mm_struct of the target address space
*
* Called to initialize an (on-stack) mmu_gather structure for page-table
* tear-down from @mm.
*/
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm)
{
__tlb_gather_mmu(tlb, mm, false);
}
/**
* tlb_gather_mmu_fullmm - initialize an mmu_gather structure for page-table tear-down
* @tlb: the mmu_gather structure to initialize
* @mm: the mm_struct of the target address space
*
* In this case, @mm is without users and we're going to destroy the
* full address space (exit/execve).
*
* Called to initialize an (on-stack) mmu_gather structure for page-table
* tear-down from @mm.
*/
void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm)
{
__tlb_gather_mmu(tlb, mm, true);
}
/**
* tlb_finish_mmu - finish an mmu_gather structure
* @tlb: the mmu_gather structure to finish
*
* Called at the end of the shootdown operation to free up any resources that
* were required.
*/
void tlb_finish_mmu(struct mmu_gather *tlb)
{
/*
* If there are parallel threads are doing PTE changes on same range
* under non-exclusive lock (e.g., mmap_lock read-side) but defer TLB
* flush by batching, one thread may end up seeing inconsistent PTEs
* and result in having stale TLB entries. So flush TLB forcefully
* if we detect parallel PTE batching threads.
*
* However, some syscalls, e.g. munmap(), may free page tables, this
* needs force flush everything in the given range. Otherwise this
* may result in having stale TLB entries for some architectures,
* e.g. aarch64, that could specify flush what level TLB.
*/
if (mm_tlb_flush_nested(tlb->mm)) {
/*
* The aarch64 yields better performance with fullmm by
* avoiding multiple CPUs spamming TLBI messages at the
* same time.
*
* On x86 non-fullmm doesn't yield significant difference
* against fullmm.
*/
tlb->fullmm = 1;
__tlb_reset_range(tlb);
tlb->freed_tables = 1;
}
tlb_flush_mmu(tlb);
#ifndef CONFIG_MMU_GATHER_NO_GATHER
tlb_batch_list_free(tlb);
#endif
dec_tlb_flush_pending(tlb->mm);
}