681 lines
21 KiB
C
681 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Hyper-V HvFlushVirtualAddress{List,Space}{,Ex} tests
|
|
*
|
|
* Copyright (C) 2022, Red Hat, Inc.
|
|
*
|
|
*/
|
|
|
|
#define _GNU_SOURCE /* for program_invocation_short_name */
|
|
#include <asm/barrier.h>
|
|
#include <pthread.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "kvm_util.h"
|
|
#include "processor.h"
|
|
#include "hyperv.h"
|
|
#include "test_util.h"
|
|
#include "vmx.h"
|
|
|
|
#define WORKER_VCPU_ID_1 2
|
|
#define WORKER_VCPU_ID_2 65
|
|
|
|
#define NTRY 100
|
|
#define NTEST_PAGES 2
|
|
|
|
struct hv_vpset {
|
|
u64 format;
|
|
u64 valid_bank_mask;
|
|
u64 bank_contents[];
|
|
};
|
|
|
|
enum HV_GENERIC_SET_FORMAT {
|
|
HV_GENERIC_SET_SPARSE_4K,
|
|
HV_GENERIC_SET_ALL,
|
|
};
|
|
|
|
#define HV_FLUSH_ALL_PROCESSORS BIT(0)
|
|
#define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1)
|
|
#define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2)
|
|
#define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3)
|
|
|
|
/* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
|
|
struct hv_tlb_flush {
|
|
u64 address_space;
|
|
u64 flags;
|
|
u64 processor_mask;
|
|
u64 gva_list[];
|
|
} __packed;
|
|
|
|
/* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
|
|
struct hv_tlb_flush_ex {
|
|
u64 address_space;
|
|
u64 flags;
|
|
struct hv_vpset hv_vp_set;
|
|
u64 gva_list[];
|
|
} __packed;
|
|
|
|
/*
|
|
* Pass the following info to 'workers' and 'sender'
|
|
* - Hypercall page's GVA
|
|
* - Hypercall page's GPA
|
|
* - Test pages GVA
|
|
* - GVAs of the test pages' PTEs
|
|
*/
|
|
struct test_data {
|
|
vm_vaddr_t hcall_gva;
|
|
vm_paddr_t hcall_gpa;
|
|
vm_vaddr_t test_pages;
|
|
vm_vaddr_t test_pages_pte[NTEST_PAGES];
|
|
};
|
|
|
|
/* 'Worker' vCPU code checking the contents of the test page */
|
|
static void worker_guest_code(vm_vaddr_t test_data)
|
|
{
|
|
struct test_data *data = (struct test_data *)test_data;
|
|
u32 vcpu_id = rdmsr(HV_X64_MSR_VP_INDEX);
|
|
void *exp_page = (void *)data->test_pages + PAGE_SIZE * NTEST_PAGES;
|
|
u64 *this_cpu = (u64 *)(exp_page + vcpu_id * sizeof(u64));
|
|
u64 expected, val;
|
|
|
|
x2apic_enable();
|
|
wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
|
|
|
|
for (;;) {
|
|
cpu_relax();
|
|
|
|
expected = READ_ONCE(*this_cpu);
|
|
|
|
/*
|
|
* Make sure the value in the test page is read after reading
|
|
* the expectation for the first time. Pairs with wmb() in
|
|
* prepare_to_test().
|
|
*/
|
|
rmb();
|
|
|
|
val = READ_ONCE(*(u64 *)data->test_pages);
|
|
|
|
/*
|
|
* Make sure the value in the test page is read after before
|
|
* reading the expectation for the second time. Pairs with wmb()
|
|
* post_test().
|
|
*/
|
|
rmb();
|
|
|
|
/*
|
|
* '0' indicates the sender is between iterations, wait until
|
|
* the sender is ready for this vCPU to start checking again.
|
|
*/
|
|
if (!expected)
|
|
continue;
|
|
|
|
/*
|
|
* Re-read the per-vCPU byte to ensure the sender didn't move
|
|
* onto a new iteration.
|
|
*/
|
|
if (expected != READ_ONCE(*this_cpu))
|
|
continue;
|
|
|
|
GUEST_ASSERT(val == expected);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write per-CPU info indicating what each 'worker' CPU is supposed to see in
|
|
* test page. '0' means don't check.
|
|
*/
|
|
static void set_expected_val(void *addr, u64 val, int vcpu_id)
|
|
{
|
|
void *exp_page = addr + PAGE_SIZE * NTEST_PAGES;
|
|
|
|
*(u64 *)(exp_page + vcpu_id * sizeof(u64)) = val;
|
|
}
|
|
|
|
/*
|
|
* Update PTEs swapping two test pages.
|
|
* TODO: use swap()/xchg() when these are provided.
|
|
*/
|
|
static void swap_two_test_pages(vm_paddr_t pte_gva1, vm_paddr_t pte_gva2)
|
|
{
|
|
uint64_t tmp = *(uint64_t *)pte_gva1;
|
|
|
|
*(uint64_t *)pte_gva1 = *(uint64_t *)pte_gva2;
|
|
*(uint64_t *)pte_gva2 = tmp;
|
|
}
|
|
|
|
/*
|
|
* TODO: replace the silly NOP loop with a proper udelay() implementation.
|
|
*/
|
|
static inline void do_delay(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 1000000; i++)
|
|
asm volatile("nop");
|
|
}
|
|
|
|
/*
|
|
* Prepare to test: 'disable' workers by setting the expectation to '0',
|
|
* clear hypercall input page and then swap two test pages.
|
|
*/
|
|
static inline void prepare_to_test(struct test_data *data)
|
|
{
|
|
/* Clear hypercall input page */
|
|
memset((void *)data->hcall_gva, 0, PAGE_SIZE);
|
|
|
|
/* 'Disable' workers */
|
|
set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_1);
|
|
set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_2);
|
|
|
|
/* Make sure workers are 'disabled' before we swap PTEs. */
|
|
wmb();
|
|
|
|
/* Make sure workers have enough time to notice */
|
|
do_delay();
|
|
|
|
/* Swap test page mappings */
|
|
swap_two_test_pages(data->test_pages_pte[0], data->test_pages_pte[1]);
|
|
}
|
|
|
|
/*
|
|
* Finalize the test: check hypercall resule set the expected val for
|
|
* 'worker' CPUs and give them some time to test.
|
|
*/
|
|
static inline void post_test(struct test_data *data, u64 exp1, u64 exp2)
|
|
{
|
|
/* Make sure we change the expectation after swapping PTEs */
|
|
wmb();
|
|
|
|
/* Set the expectation for workers, '0' means don't test */
|
|
set_expected_val((void *)data->test_pages, exp1, WORKER_VCPU_ID_1);
|
|
set_expected_val((void *)data->test_pages, exp2, WORKER_VCPU_ID_2);
|
|
|
|
/* Make sure workers have enough time to test */
|
|
do_delay();
|
|
}
|
|
|
|
#define TESTVAL1 0x0101010101010101
|
|
#define TESTVAL2 0x0202020202020202
|
|
|
|
/* Main vCPU doing the test */
|
|
static void sender_guest_code(vm_vaddr_t test_data)
|
|
{
|
|
struct test_data *data = (struct test_data *)test_data;
|
|
struct hv_tlb_flush *flush = (struct hv_tlb_flush *)data->hcall_gva;
|
|
struct hv_tlb_flush_ex *flush_ex = (struct hv_tlb_flush_ex *)data->hcall_gva;
|
|
vm_paddr_t hcall_gpa = data->hcall_gpa;
|
|
int i, stage = 1;
|
|
|
|
wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
|
|
wrmsr(HV_X64_MSR_HYPERCALL, data->hcall_gpa);
|
|
|
|
/* "Slow" hypercalls */
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
|
|
hcall_gpa + PAGE_SIZE);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
|
|
flush->gva_list[0] = (u64)data->test_pages;
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
hcall_gpa, hcall_gpa + PAGE_SIZE);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
|
|
HV_FLUSH_ALL_PROCESSORS;
|
|
flush->processor_mask = 0;
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
|
|
hcall_gpa + PAGE_SIZE);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
|
|
HV_FLUSH_ALL_PROCESSORS;
|
|
flush->gva_list[0] = (u64)data->test_pages;
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
hcall_gpa, hcall_gpa + PAGE_SIZE);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
|
|
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
|
|
(1 << HV_HYPERCALL_VARHEAD_OFFSET),
|
|
hcall_gpa, hcall_gpa + PAGE_SIZE);
|
|
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
|
|
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
|
|
/* bank_contents and gva_list occupy the same space, thus [1] */
|
|
flush_ex->gva_list[1] = (u64)data->test_pages;
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
|
|
(1 << HV_HYPERCALL_VARHEAD_OFFSET) |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
hcall_gpa, hcall_gpa + PAGE_SIZE);
|
|
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
|
|
BIT_ULL(WORKER_VCPU_ID_1 / 64);
|
|
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
|
|
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
|
|
(2 << HV_HYPERCALL_VARHEAD_OFFSET),
|
|
hcall_gpa, hcall_gpa + PAGE_SIZE);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
|
|
BIT_ULL(WORKER_VCPU_ID_2 / 64);
|
|
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
|
|
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
|
|
/* bank_contents and gva_list occupy the same space, thus [2] */
|
|
flush_ex->gva_list[2] = (u64)data->test_pages;
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
|
|
(2 << HV_HYPERCALL_VARHEAD_OFFSET) |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
hcall_gpa, hcall_gpa + PAGE_SIZE);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX,
|
|
hcall_gpa, hcall_gpa + PAGE_SIZE);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
|
|
flush_ex->gva_list[0] = (u64)data->test_pages;
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
hcall_gpa, hcall_gpa + PAGE_SIZE);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
/* "Fast" hypercalls */
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
|
|
hyperv_write_xmm_input(&flush->processor_mask, 1);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
|
|
HV_HYPERCALL_FAST_BIT, 0x0,
|
|
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush->processor_mask = BIT(WORKER_VCPU_ID_1);
|
|
flush->gva_list[0] = (u64)data->test_pages;
|
|
hyperv_write_xmm_input(&flush->processor_mask, 1);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
|
|
HV_HYPERCALL_FAST_BIT |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
hyperv_write_xmm_input(&flush->processor_mask, 1);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
|
|
HV_HYPERCALL_FAST_BIT, 0x0,
|
|
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
|
|
HV_FLUSH_ALL_PROCESSORS);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush->gva_list[0] = (u64)data->test_pages;
|
|
hyperv_write_xmm_input(&flush->processor_mask, 1);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
|
|
HV_HYPERCALL_FAST_BIT |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0,
|
|
HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
|
|
HV_FLUSH_ALL_PROCESSORS);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
|
|
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
|
|
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
|
|
HV_HYPERCALL_FAST_BIT |
|
|
(1 << HV_HYPERCALL_VARHEAD_OFFSET),
|
|
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
|
|
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
|
|
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
|
|
/* bank_contents and gva_list occupy the same space, thus [1] */
|
|
flush_ex->gva_list[1] = (u64)data->test_pages;
|
|
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
|
|
HV_HYPERCALL_FAST_BIT |
|
|
(1 << HV_HYPERCALL_VARHEAD_OFFSET) |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
|
|
post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
|
|
BIT_ULL(WORKER_VCPU_ID_1 / 64);
|
|
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
|
|
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
|
|
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
|
|
HV_HYPERCALL_FAST_BIT |
|
|
(2 << HV_HYPERCALL_VARHEAD_OFFSET),
|
|
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
|
|
post_test(data, i % 2 ? TESTVAL1 :
|
|
TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
|
|
flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
|
|
BIT_ULL(WORKER_VCPU_ID_2 / 64);
|
|
flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
|
|
flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
|
|
/* bank_contents and gva_list occupy the same space, thus [2] */
|
|
flush_ex->gva_list[2] = (u64)data->test_pages;
|
|
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 3);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
|
|
HV_HYPERCALL_FAST_BIT |
|
|
(2 << HV_HYPERCALL_VARHEAD_OFFSET) |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
|
|
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
|
|
HV_HYPERCALL_FAST_BIT,
|
|
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_SYNC(stage++);
|
|
|
|
/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
|
|
for (i = 0; i < NTRY; i++) {
|
|
prepare_to_test(data);
|
|
flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
|
|
flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
|
|
flush_ex->gva_list[0] = (u64)data->test_pages;
|
|
hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
|
|
hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
|
|
HV_HYPERCALL_FAST_BIT |
|
|
(1UL << HV_HYPERCALL_REP_COMP_OFFSET),
|
|
0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
|
|
post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
|
|
i % 2 ? TESTVAL1 : TESTVAL2);
|
|
}
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static void *vcpu_thread(void *arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)arg;
|
|
struct ucall uc;
|
|
int old;
|
|
int r;
|
|
|
|
r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
|
|
TEST_ASSERT(!r, "pthread_setcanceltype failed on vcpu_id=%u with errno=%d",
|
|
vcpu->id, r);
|
|
|
|
vcpu_run(vcpu);
|
|
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
|
|
|
|
switch (get_ucall(vcpu, &uc)) {
|
|
case UCALL_ABORT:
|
|
REPORT_GUEST_ASSERT(uc);
|
|
/* NOT REACHED */
|
|
default:
|
|
TEST_FAIL("Unexpected ucall %lu, vCPU %d", uc.cmd, vcpu->id);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void cancel_join_vcpu_thread(pthread_t thread, struct kvm_vcpu *vcpu)
|
|
{
|
|
void *retval;
|
|
int r;
|
|
|
|
r = pthread_cancel(thread);
|
|
TEST_ASSERT(!r, "pthread_cancel on vcpu_id=%d failed with errno=%d",
|
|
vcpu->id, r);
|
|
|
|
r = pthread_join(thread, &retval);
|
|
TEST_ASSERT(!r, "pthread_join on vcpu_id=%d failed with errno=%d",
|
|
vcpu->id, r);
|
|
TEST_ASSERT(retval == PTHREAD_CANCELED,
|
|
"expected retval=%p, got %p", PTHREAD_CANCELED,
|
|
retval);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
struct kvm_vm *vm;
|
|
struct kvm_vcpu *vcpu[3];
|
|
pthread_t threads[2];
|
|
vm_vaddr_t test_data_page, gva;
|
|
vm_paddr_t gpa;
|
|
uint64_t *pte;
|
|
struct test_data *data;
|
|
struct ucall uc;
|
|
int stage = 1, r, i;
|
|
|
|
vm = vm_create_with_one_vcpu(&vcpu[0], sender_guest_code);
|
|
|
|
/* Test data page */
|
|
test_data_page = vm_vaddr_alloc_page(vm);
|
|
data = (struct test_data *)addr_gva2hva(vm, test_data_page);
|
|
|
|
/* Hypercall input/output */
|
|
data->hcall_gva = vm_vaddr_alloc_pages(vm, 2);
|
|
data->hcall_gpa = addr_gva2gpa(vm, data->hcall_gva);
|
|
memset(addr_gva2hva(vm, data->hcall_gva), 0x0, 2 * PAGE_SIZE);
|
|
|
|
/*
|
|
* Test pages: the first one is filled with '0x01's, the second with '0x02's
|
|
* and the test will swap their mappings. The third page keeps the indication
|
|
* about the current state of mappings.
|
|
*/
|
|
data->test_pages = vm_vaddr_alloc_pages(vm, NTEST_PAGES + 1);
|
|
for (i = 0; i < NTEST_PAGES; i++)
|
|
memset(addr_gva2hva(vm, data->test_pages + PAGE_SIZE * i),
|
|
(u8)(i + 1), PAGE_SIZE);
|
|
set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_1);
|
|
set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_2);
|
|
|
|
/*
|
|
* Get PTE pointers for test pages and map them inside the guest.
|
|
* Use separate page for each PTE for simplicity.
|
|
*/
|
|
gva = vm_vaddr_unused_gap(vm, NTEST_PAGES * PAGE_SIZE, KVM_UTIL_MIN_VADDR);
|
|
for (i = 0; i < NTEST_PAGES; i++) {
|
|
pte = vm_get_page_table_entry(vm, data->test_pages + i * PAGE_SIZE);
|
|
gpa = addr_hva2gpa(vm, pte);
|
|
__virt_pg_map(vm, gva + PAGE_SIZE * i, gpa & PAGE_MASK, PG_LEVEL_4K);
|
|
data->test_pages_pte[i] = gva + (gpa & ~PAGE_MASK);
|
|
}
|
|
|
|
/*
|
|
* Sender vCPU which performs the test: swaps test pages, sets expectation
|
|
* for 'workers' and issues TLB flush hypercalls.
|
|
*/
|
|
vcpu_args_set(vcpu[0], 1, test_data_page);
|
|
vcpu_set_hv_cpuid(vcpu[0]);
|
|
|
|
/* Create worker vCPUs which check the contents of the test pages */
|
|
vcpu[1] = vm_vcpu_add(vm, WORKER_VCPU_ID_1, worker_guest_code);
|
|
vcpu_args_set(vcpu[1], 1, test_data_page);
|
|
vcpu_set_msr(vcpu[1], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_1);
|
|
vcpu_set_hv_cpuid(vcpu[1]);
|
|
|
|
vcpu[2] = vm_vcpu_add(vm, WORKER_VCPU_ID_2, worker_guest_code);
|
|
vcpu_args_set(vcpu[2], 1, test_data_page);
|
|
vcpu_set_msr(vcpu[2], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_2);
|
|
vcpu_set_hv_cpuid(vcpu[2]);
|
|
|
|
r = pthread_create(&threads[0], NULL, vcpu_thread, vcpu[1]);
|
|
TEST_ASSERT(!r, "pthread_create() failed");
|
|
|
|
r = pthread_create(&threads[1], NULL, vcpu_thread, vcpu[2]);
|
|
TEST_ASSERT(!r, "pthread_create() failed");
|
|
|
|
while (true) {
|
|
vcpu_run(vcpu[0]);
|
|
TEST_ASSERT_KVM_EXIT_REASON(vcpu[0], KVM_EXIT_IO);
|
|
|
|
switch (get_ucall(vcpu[0], &uc)) {
|
|
case UCALL_SYNC:
|
|
TEST_ASSERT(uc.args[1] == stage,
|
|
"Unexpected stage: %ld (%d expected)\n",
|
|
uc.args[1], stage);
|
|
break;
|
|
case UCALL_ABORT:
|
|
REPORT_GUEST_ASSERT(uc);
|
|
/* NOT REACHED */
|
|
case UCALL_DONE:
|
|
goto done;
|
|
default:
|
|
TEST_FAIL("Unknown ucall %lu", uc.cmd);
|
|
}
|
|
|
|
stage++;
|
|
}
|
|
|
|
done:
|
|
cancel_join_vcpu_thread(threads[0], vcpu[1]);
|
|
cancel_join_vcpu_thread(threads[1], vcpu[2]);
|
|
kvm_vm_free(vm);
|
|
|
|
return 0;
|
|
}
|