293 lines
8.8 KiB
C
293 lines
8.8 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#define _GNU_SOURCE /* for program_invocation_short_name */
|
|
|
|
#include "test_util.h"
|
|
#include "kvm_util.h"
|
|
#include "processor.h"
|
|
#include "vmx.h"
|
|
#include "svm_util.h"
|
|
|
|
#define L2_GUEST_STACK_SIZE 256
|
|
|
|
/*
|
|
* Arbitrary, never shoved into KVM/hardware, just need to avoid conflict with
|
|
* the "real" exceptions used, #SS/#GP/#DF (12/13/8).
|
|
*/
|
|
#define FAKE_TRIPLE_FAULT_VECTOR 0xaa
|
|
|
|
/* Arbitrary 32-bit error code injected by this test. */
|
|
#define SS_ERROR_CODE 0xdeadbeef
|
|
|
|
/*
|
|
* Bit '0' is set on Intel if the exception occurs while delivering a previous
|
|
* event/exception. AMD's wording is ambiguous, but presumably the bit is set
|
|
* if the exception occurs while delivering an external event, e.g. NMI or INTR,
|
|
* but not for exceptions that occur when delivering other exceptions or
|
|
* software interrupts.
|
|
*
|
|
* Note, Intel's name for it, "External event", is misleading and much more
|
|
* aligned with AMD's behavior, but the SDM is quite clear on its behavior.
|
|
*/
|
|
#define ERROR_CODE_EXT_FLAG BIT(0)
|
|
|
|
/*
|
|
* Bit '1' is set if the fault occurred when looking up a descriptor in the
|
|
* IDT, which is the case here as the IDT is empty/NULL.
|
|
*/
|
|
#define ERROR_CODE_IDT_FLAG BIT(1)
|
|
|
|
/*
|
|
* The #GP that occurs when vectoring #SS should show the index into the IDT
|
|
* for #SS, plus have the "IDT flag" set.
|
|
*/
|
|
#define GP_ERROR_CODE_AMD ((SS_VECTOR * 8) | ERROR_CODE_IDT_FLAG)
|
|
#define GP_ERROR_CODE_INTEL ((SS_VECTOR * 8) | ERROR_CODE_IDT_FLAG | ERROR_CODE_EXT_FLAG)
|
|
|
|
/*
|
|
* Intel and AMD both shove '0' into the error code on #DF, regardless of what
|
|
* led to the double fault.
|
|
*/
|
|
#define DF_ERROR_CODE 0
|
|
|
|
#define INTERCEPT_SS (BIT_ULL(SS_VECTOR))
|
|
#define INTERCEPT_SS_DF (INTERCEPT_SS | BIT_ULL(DF_VECTOR))
|
|
#define INTERCEPT_SS_GP_DF (INTERCEPT_SS_DF | BIT_ULL(GP_VECTOR))
|
|
|
|
static void l2_ss_pending_test(void)
|
|
{
|
|
GUEST_SYNC(SS_VECTOR);
|
|
}
|
|
|
|
static void l2_ss_injected_gp_test(void)
|
|
{
|
|
GUEST_SYNC(GP_VECTOR);
|
|
}
|
|
|
|
static void l2_ss_injected_df_test(void)
|
|
{
|
|
GUEST_SYNC(DF_VECTOR);
|
|
}
|
|
|
|
static void l2_ss_injected_tf_test(void)
|
|
{
|
|
GUEST_SYNC(FAKE_TRIPLE_FAULT_VECTOR);
|
|
}
|
|
|
|
static void svm_run_l2(struct svm_test_data *svm, void *l2_code, int vector,
|
|
uint32_t error_code)
|
|
{
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
struct vmcb_control_area *ctrl = &vmcb->control;
|
|
|
|
vmcb->save.rip = (u64)l2_code;
|
|
run_guest(vmcb, svm->vmcb_gpa);
|
|
|
|
if (vector == FAKE_TRIPLE_FAULT_VECTOR)
|
|
return;
|
|
|
|
GUEST_ASSERT_EQ(ctrl->exit_code, (SVM_EXIT_EXCP_BASE + vector));
|
|
GUEST_ASSERT_EQ(ctrl->exit_info_1, error_code);
|
|
}
|
|
|
|
static void l1_svm_code(struct svm_test_data *svm)
|
|
{
|
|
struct vmcb_control_area *ctrl = &svm->vmcb->control;
|
|
unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
|
|
|
|
generic_svm_setup(svm, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
|
|
svm->vmcb->save.idtr.limit = 0;
|
|
ctrl->intercept |= BIT_ULL(INTERCEPT_SHUTDOWN);
|
|
|
|
ctrl->intercept_exceptions = INTERCEPT_SS_GP_DF;
|
|
svm_run_l2(svm, l2_ss_pending_test, SS_VECTOR, SS_ERROR_CODE);
|
|
svm_run_l2(svm, l2_ss_injected_gp_test, GP_VECTOR, GP_ERROR_CODE_AMD);
|
|
|
|
ctrl->intercept_exceptions = INTERCEPT_SS_DF;
|
|
svm_run_l2(svm, l2_ss_injected_df_test, DF_VECTOR, DF_ERROR_CODE);
|
|
|
|
ctrl->intercept_exceptions = INTERCEPT_SS;
|
|
svm_run_l2(svm, l2_ss_injected_tf_test, FAKE_TRIPLE_FAULT_VECTOR, 0);
|
|
GUEST_ASSERT_EQ(ctrl->exit_code, SVM_EXIT_SHUTDOWN);
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static void vmx_run_l2(void *l2_code, int vector, uint32_t error_code)
|
|
{
|
|
GUEST_ASSERT(!vmwrite(GUEST_RIP, (u64)l2_code));
|
|
|
|
GUEST_ASSERT_EQ(vector == SS_VECTOR ? vmlaunch() : vmresume(), 0);
|
|
|
|
if (vector == FAKE_TRIPLE_FAULT_VECTOR)
|
|
return;
|
|
|
|
GUEST_ASSERT_EQ(vmreadz(VM_EXIT_REASON), EXIT_REASON_EXCEPTION_NMI);
|
|
GUEST_ASSERT_EQ((vmreadz(VM_EXIT_INTR_INFO) & 0xff), vector);
|
|
GUEST_ASSERT_EQ(vmreadz(VM_EXIT_INTR_ERROR_CODE), error_code);
|
|
}
|
|
|
|
static void l1_vmx_code(struct vmx_pages *vmx)
|
|
{
|
|
unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
|
|
|
|
GUEST_ASSERT_EQ(prepare_for_vmx_operation(vmx), true);
|
|
|
|
GUEST_ASSERT_EQ(load_vmcs(vmx), true);
|
|
|
|
prepare_vmcs(vmx, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
|
|
GUEST_ASSERT_EQ(vmwrite(GUEST_IDTR_LIMIT, 0), 0);
|
|
|
|
/*
|
|
* VMX disallows injecting an exception with error_code[31:16] != 0,
|
|
* and hardware will never generate a VM-Exit with bits 31:16 set.
|
|
* KVM should likewise truncate the "bad" userspace value.
|
|
*/
|
|
GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS_GP_DF), 0);
|
|
vmx_run_l2(l2_ss_pending_test, SS_VECTOR, (u16)SS_ERROR_CODE);
|
|
vmx_run_l2(l2_ss_injected_gp_test, GP_VECTOR, GP_ERROR_CODE_INTEL);
|
|
|
|
GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS_DF), 0);
|
|
vmx_run_l2(l2_ss_injected_df_test, DF_VECTOR, DF_ERROR_CODE);
|
|
|
|
GUEST_ASSERT_EQ(vmwrite(EXCEPTION_BITMAP, INTERCEPT_SS), 0);
|
|
vmx_run_l2(l2_ss_injected_tf_test, FAKE_TRIPLE_FAULT_VECTOR, 0);
|
|
GUEST_ASSERT_EQ(vmreadz(VM_EXIT_REASON), EXIT_REASON_TRIPLE_FAULT);
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static void __attribute__((__flatten__)) l1_guest_code(void *test_data)
|
|
{
|
|
if (this_cpu_has(X86_FEATURE_SVM))
|
|
l1_svm_code(test_data);
|
|
else
|
|
l1_vmx_code(test_data);
|
|
}
|
|
|
|
static void assert_ucall_vector(struct kvm_vcpu *vcpu, int vector)
|
|
{
|
|
struct ucall uc;
|
|
|
|
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
|
|
|
|
switch (get_ucall(vcpu, &uc)) {
|
|
case UCALL_SYNC:
|
|
TEST_ASSERT(vector == uc.args[1],
|
|
"Expected L2 to ask for %d, got %ld", vector, uc.args[1]);
|
|
break;
|
|
case UCALL_DONE:
|
|
TEST_ASSERT(vector == -1,
|
|
"Expected L2 to ask for %d, L2 says it's done", vector);
|
|
break;
|
|
case UCALL_ABORT:
|
|
TEST_FAIL("%s at %s:%ld (0x%lx != 0x%lx)",
|
|
(const char *)uc.args[0], __FILE__, uc.args[1],
|
|
uc.args[2], uc.args[3]);
|
|
break;
|
|
default:
|
|
TEST_FAIL("Expected L2 to ask for %d, got unexpected ucall %lu", vector, uc.cmd);
|
|
}
|
|
}
|
|
|
|
static void queue_ss_exception(struct kvm_vcpu *vcpu, bool inject)
|
|
{
|
|
struct kvm_vcpu_events events;
|
|
|
|
vcpu_events_get(vcpu, &events);
|
|
|
|
TEST_ASSERT(!events.exception.pending,
|
|
"Vector %d unexpectedlt pending", events.exception.nr);
|
|
TEST_ASSERT(!events.exception.injected,
|
|
"Vector %d unexpectedly injected", events.exception.nr);
|
|
|
|
events.flags = KVM_VCPUEVENT_VALID_PAYLOAD;
|
|
events.exception.pending = !inject;
|
|
events.exception.injected = inject;
|
|
events.exception.nr = SS_VECTOR;
|
|
events.exception.has_error_code = true;
|
|
events.exception.error_code = SS_ERROR_CODE;
|
|
vcpu_events_set(vcpu, &events);
|
|
}
|
|
|
|
/*
|
|
* Verify KVM_{G,S}ET_EVENTS play nice with pending vs. injected exceptions
|
|
* when an exception is being queued for L2. Specifically, verify that KVM
|
|
* honors L1 exception intercept controls when a #SS is pending/injected,
|
|
* triggers a #GP on vectoring the #SS, morphs to #DF if #GP isn't intercepted
|
|
* by L1, and finally causes (nested) SHUTDOWN if #DF isn't intercepted by L1.
|
|
*/
|
|
int main(int argc, char *argv[])
|
|
{
|
|
vm_vaddr_t nested_test_data_gva;
|
|
struct kvm_vcpu_events events;
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvm_vm *vm;
|
|
|
|
TEST_REQUIRE(kvm_has_cap(KVM_CAP_EXCEPTION_PAYLOAD));
|
|
TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_SVM) || kvm_cpu_has(X86_FEATURE_VMX));
|
|
|
|
vm = vm_create_with_one_vcpu(&vcpu, l1_guest_code);
|
|
vm_enable_cap(vm, KVM_CAP_EXCEPTION_PAYLOAD, -2ul);
|
|
|
|
if (kvm_cpu_has(X86_FEATURE_SVM))
|
|
vcpu_alloc_svm(vm, &nested_test_data_gva);
|
|
else
|
|
vcpu_alloc_vmx(vm, &nested_test_data_gva);
|
|
|
|
vcpu_args_set(vcpu, 1, nested_test_data_gva);
|
|
|
|
/* Run L1 => L2. L2 should sync and request #SS. */
|
|
vcpu_run(vcpu);
|
|
assert_ucall_vector(vcpu, SS_VECTOR);
|
|
|
|
/* Pend #SS and request immediate exit. #SS should still be pending. */
|
|
queue_ss_exception(vcpu, false);
|
|
vcpu->run->immediate_exit = true;
|
|
vcpu_run_complete_io(vcpu);
|
|
|
|
/* Verify the pending events comes back out the same as it went in. */
|
|
vcpu_events_get(vcpu, &events);
|
|
ASSERT_EQ(events.flags & KVM_VCPUEVENT_VALID_PAYLOAD,
|
|
KVM_VCPUEVENT_VALID_PAYLOAD);
|
|
ASSERT_EQ(events.exception.pending, true);
|
|
ASSERT_EQ(events.exception.nr, SS_VECTOR);
|
|
ASSERT_EQ(events.exception.has_error_code, true);
|
|
ASSERT_EQ(events.exception.error_code, SS_ERROR_CODE);
|
|
|
|
/*
|
|
* Run for real with the pending #SS, L1 should get a VM-Exit due to
|
|
* #SS interception and re-enter L2 to request #GP (via injected #SS).
|
|
*/
|
|
vcpu->run->immediate_exit = false;
|
|
vcpu_run(vcpu);
|
|
assert_ucall_vector(vcpu, GP_VECTOR);
|
|
|
|
/*
|
|
* Inject #SS, the #SS should bypass interception and cause #GP, which
|
|
* L1 should intercept before KVM morphs it to #DF. L1 should then
|
|
* disable #GP interception and run L2 to request #DF (via #SS => #GP).
|
|
*/
|
|
queue_ss_exception(vcpu, true);
|
|
vcpu_run(vcpu);
|
|
assert_ucall_vector(vcpu, DF_VECTOR);
|
|
|
|
/*
|
|
* Inject #SS, the #SS should bypass interception and cause #GP, which
|
|
* L1 is no longer interception, and so should see a #DF VM-Exit. L1
|
|
* should then signal that is done.
|
|
*/
|
|
queue_ss_exception(vcpu, true);
|
|
vcpu_run(vcpu);
|
|
assert_ucall_vector(vcpu, FAKE_TRIPLE_FAULT_VECTOR);
|
|
|
|
/*
|
|
* Inject #SS yet again. L1 is not intercepting #GP or #DF, and so
|
|
* should see nested TRIPLE_FAULT / SHUTDOWN.
|
|
*/
|
|
queue_ss_exception(vcpu, true);
|
|
vcpu_run(vcpu);
|
|
assert_ucall_vector(vcpu, -1);
|
|
|
|
kvm_vm_free(vm);
|
|
}
|