linux-zen-server/arch/arm/mach-omap1/clock.c

841 lines
21 KiB
C
Raw Permalink Normal View History

2023-08-30 17:53:23 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/arch/arm/mach-omap1/clock.c
*
* Copyright (C) 2004 - 2005, 2009-2010 Nokia Corporation
* Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
*
* Modified to use omap shared clock framework by
* Tony Lindgren <tony@atomide.com>
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/soc/ti/omap1-io.h>
#include <linux/spinlock.h>
#include <asm/mach-types.h>
#include "hardware.h"
#include "soc.h"
#include "iomap.h"
#include "clock.h"
#include "opp.h"
#include "sram.h"
__u32 arm_idlect1_mask;
/* provide direct internal access (not via clk API) to some clocks */
struct omap1_clk *api_ck_p, *ck_dpll1_p, *ck_ref_p;
/* protect registeres shared among clk_enable/disable() and clk_set_rate() operations */
static DEFINE_SPINLOCK(arm_ckctl_lock);
static DEFINE_SPINLOCK(arm_idlect2_lock);
static DEFINE_SPINLOCK(mod_conf_ctrl_0_lock);
static DEFINE_SPINLOCK(mod_conf_ctrl_1_lock);
static DEFINE_SPINLOCK(swd_clk_div_ctrl_sel_lock);
/*
* Omap1 specific clock functions
*/
unsigned long omap1_uart_recalc(struct omap1_clk *clk, unsigned long p_rate)
{
unsigned int val = __raw_readl(clk->enable_reg);
return val & 1 << clk->enable_bit ? 48000000 : 12000000;
}
unsigned long omap1_sossi_recalc(struct omap1_clk *clk, unsigned long p_rate)
{
u32 div = omap_readl(MOD_CONF_CTRL_1);
div = (div >> 17) & 0x7;
div++;
return p_rate / div;
}
static void omap1_clk_allow_idle(struct omap1_clk *clk)
{
struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
if (!(clk->flags & CLOCK_IDLE_CONTROL))
return;
if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
arm_idlect1_mask |= 1 << iclk->idlect_shift;
}
static void omap1_clk_deny_idle(struct omap1_clk *clk)
{
struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
if (!(clk->flags & CLOCK_IDLE_CONTROL))
return;
if (iclk->no_idle_count++ == 0)
arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
}
static __u16 verify_ckctl_value(__u16 newval)
{
/* This function checks for following limitations set
* by the hardware (all conditions must be true):
* DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
* ARM_CK >= TC_CK
* DSP_CK >= TC_CK
* DSPMMU_CK >= TC_CK
*
* In addition following rules are enforced:
* LCD_CK <= TC_CK
* ARMPER_CK <= TC_CK
*
* However, maximum frequencies are not checked for!
*/
__u8 per_exp;
__u8 lcd_exp;
__u8 arm_exp;
__u8 dsp_exp;
__u8 tc_exp;
__u8 dspmmu_exp;
per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
if (dspmmu_exp < dsp_exp)
dspmmu_exp = dsp_exp;
if (dspmmu_exp > dsp_exp+1)
dspmmu_exp = dsp_exp+1;
if (tc_exp < arm_exp)
tc_exp = arm_exp;
if (tc_exp < dspmmu_exp)
tc_exp = dspmmu_exp;
if (tc_exp > lcd_exp)
lcd_exp = tc_exp;
if (tc_exp > per_exp)
per_exp = tc_exp;
newval &= 0xf000;
newval |= per_exp << CKCTL_PERDIV_OFFSET;
newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
newval |= tc_exp << CKCTL_TCDIV_OFFSET;
newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
return newval;
}
static int calc_dsor_exp(unsigned long rate, unsigned long realrate)
{
/* Note: If target frequency is too low, this function will return 4,
* which is invalid value. Caller must check for this value and act
* accordingly.
*
* Note: This function does not check for following limitations set
* by the hardware (all conditions must be true):
* DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
* ARM_CK >= TC_CK
* DSP_CK >= TC_CK
* DSPMMU_CK >= TC_CK
*/
unsigned dsor_exp;
if (unlikely(realrate == 0))
return -EIO;
for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
if (realrate <= rate)
break;
realrate /= 2;
}
return dsor_exp;
}
unsigned long omap1_ckctl_recalc(struct omap1_clk *clk, unsigned long p_rate)
{
/* Calculate divisor encoded as 2-bit exponent */
int dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
/* update locally maintained rate, required by arm_ck for omap1_show_rates() */
clk->rate = p_rate / dsor;
return clk->rate;
}
static int omap1_clk_is_enabled(struct clk_hw *hw)
{
struct omap1_clk *clk = to_omap1_clk(hw);
bool api_ck_was_enabled = true;
__u32 regval32;
int ret;
if (!clk->ops) /* no gate -- always enabled */
return 1;
if (clk->ops == &clkops_dspck) {
api_ck_was_enabled = omap1_clk_is_enabled(&api_ck_p->hw);
if (!api_ck_was_enabled)
if (api_ck_p->ops->enable(api_ck_p) < 0)
return 0;
}
if (clk->flags & ENABLE_REG_32BIT)
regval32 = __raw_readl(clk->enable_reg);
else
regval32 = __raw_readw(clk->enable_reg);
ret = regval32 & (1 << clk->enable_bit);
if (!api_ck_was_enabled)
api_ck_p->ops->disable(api_ck_p);
return ret;
}
unsigned long omap1_ckctl_recalc_dsp_domain(struct omap1_clk *clk, unsigned long p_rate)
{
bool api_ck_was_enabled;
int dsor;
/* Calculate divisor encoded as 2-bit exponent
*
* The clock control bits are in DSP domain,
* so api_ck is needed for access.
* Note that DSP_CKCTL virt addr = phys addr, so
* we must use __raw_readw() instead of omap_readw().
*/
api_ck_was_enabled = omap1_clk_is_enabled(&api_ck_p->hw);
if (!api_ck_was_enabled)
api_ck_p->ops->enable(api_ck_p);
dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
if (!api_ck_was_enabled)
api_ck_p->ops->disable(api_ck_p);
return p_rate / dsor;
}
/* MPU virtual clock functions */
int omap1_select_table_rate(struct omap1_clk *clk, unsigned long rate, unsigned long p_rate)
{
/* Find the highest supported frequency <= rate and switch to it */
struct mpu_rate * ptr;
unsigned long ref_rate;
ref_rate = ck_ref_p->rate;
for (ptr = omap1_rate_table; ptr->rate; ptr++) {
if (!(ptr->flags & cpu_mask))
continue;
if (ptr->xtal != ref_rate)
continue;
/* Can check only after xtal frequency check */
if (ptr->rate <= rate)
break;
}
if (!ptr->rate)
return -EINVAL;
/*
* In most cases we should not need to reprogram DPLL.
* Reprogramming the DPLL is tricky, it must be done from SRAM.
*/
omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
/* XXX Do we need to recalculate the tree below DPLL1 at this point? */
ck_dpll1_p->rate = ptr->pll_rate;
return 0;
}
int omap1_clk_set_rate_dsp_domain(struct omap1_clk *clk, unsigned long rate, unsigned long p_rate)
{
int dsor_exp;
u16 regval;
dsor_exp = calc_dsor_exp(rate, p_rate);
if (dsor_exp > 3)
dsor_exp = -EINVAL;
if (dsor_exp < 0)
return dsor_exp;
regval = __raw_readw(DSP_CKCTL);
regval &= ~(3 << clk->rate_offset);
regval |= dsor_exp << clk->rate_offset;
__raw_writew(regval, DSP_CKCTL);
clk->rate = p_rate / (1 << dsor_exp);
return 0;
}
long omap1_clk_round_rate_ckctl_arm(struct omap1_clk *clk, unsigned long rate,
unsigned long *p_rate)
{
int dsor_exp = calc_dsor_exp(rate, *p_rate);
if (dsor_exp < 0)
return dsor_exp;
if (dsor_exp > 3)
dsor_exp = 3;
return *p_rate / (1 << dsor_exp);
}
int omap1_clk_set_rate_ckctl_arm(struct omap1_clk *clk, unsigned long rate, unsigned long p_rate)
{
unsigned long flags;
int dsor_exp;
u16 regval;
dsor_exp = calc_dsor_exp(rate, p_rate);
if (dsor_exp > 3)
dsor_exp = -EINVAL;
if (dsor_exp < 0)
return dsor_exp;
/* protect ARM_CKCTL register from concurrent access via clk_enable/disable() */
spin_lock_irqsave(&arm_ckctl_lock, flags);
regval = omap_readw(ARM_CKCTL);
regval &= ~(3 << clk->rate_offset);
regval |= dsor_exp << clk->rate_offset;
regval = verify_ckctl_value(regval);
omap_writew(regval, ARM_CKCTL);
clk->rate = p_rate / (1 << dsor_exp);
spin_unlock_irqrestore(&arm_ckctl_lock, flags);
return 0;
}
long omap1_round_to_table_rate(struct omap1_clk *clk, unsigned long rate, unsigned long *p_rate)
{
/* Find the highest supported frequency <= rate */
struct mpu_rate * ptr;
long highest_rate;
unsigned long ref_rate;
ref_rate = ck_ref_p->rate;
highest_rate = -EINVAL;
for (ptr = omap1_rate_table; ptr->rate; ptr++) {
if (!(ptr->flags & cpu_mask))
continue;
if (ptr->xtal != ref_rate)
continue;
highest_rate = ptr->rate;
/* Can check only after xtal frequency check */
if (ptr->rate <= rate)
break;
}
return highest_rate;
}
static unsigned calc_ext_dsor(unsigned long rate)
{
unsigned dsor;
/* MCLK and BCLK divisor selection is not linear:
* freq = 96MHz / dsor
*
* RATIO_SEL range: dsor <-> RATIO_SEL
* 0..6: (RATIO_SEL+2) <-> (dsor-2)
* 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
* Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
* can not be used.
*/
for (dsor = 2; dsor < 96; ++dsor) {
if ((dsor & 1) && dsor > 8)
continue;
if (rate >= 96000000 / dsor)
break;
}
return dsor;
}
/* XXX Only needed on 1510 */
long omap1_round_uart_rate(struct omap1_clk *clk, unsigned long rate, unsigned long *p_rate)
{
return rate > 24000000 ? 48000000 : 12000000;
}
int omap1_set_uart_rate(struct omap1_clk *clk, unsigned long rate, unsigned long p_rate)
{
unsigned long flags;
unsigned int val;
if (rate == 12000000)
val = 0;
else if (rate == 48000000)
val = 1 << clk->enable_bit;
else
return -EINVAL;
/* protect MOD_CONF_CTRL_0 register from concurrent access via clk_enable/disable() */
spin_lock_irqsave(&mod_conf_ctrl_0_lock, flags);
val |= __raw_readl(clk->enable_reg) & ~(1 << clk->enable_bit);
__raw_writel(val, clk->enable_reg);
spin_unlock_irqrestore(&mod_conf_ctrl_0_lock, flags);
clk->rate = rate;
return 0;
}
/* External clock (MCLK & BCLK) functions */
int omap1_set_ext_clk_rate(struct omap1_clk *clk, unsigned long rate, unsigned long p_rate)
{
unsigned long flags;
unsigned dsor;
__u16 ratio_bits;
dsor = calc_ext_dsor(rate);
clk->rate = 96000000 / dsor;
if (dsor > 8)
ratio_bits = ((dsor - 8) / 2 + 6) << 2;
else
ratio_bits = (dsor - 2) << 2;
/* protect SWD_CLK_DIV_CTRL_SEL register from concurrent access via clk_enable/disable() */
spin_lock_irqsave(&swd_clk_div_ctrl_sel_lock, flags);
ratio_bits |= __raw_readw(clk->enable_reg) & ~0xfd;
__raw_writew(ratio_bits, clk->enable_reg);
spin_unlock_irqrestore(&swd_clk_div_ctrl_sel_lock, flags);
return 0;
}
static int calc_div_sossi(unsigned long rate, unsigned long p_rate)
{
int div;
/* Round towards slower frequency */
div = (p_rate + rate - 1) / rate;
return --div;
}
long omap1_round_sossi_rate(struct omap1_clk *clk, unsigned long rate, unsigned long *p_rate)
{
int div;
div = calc_div_sossi(rate, *p_rate);
if (div < 0)
div = 0;
else if (div > 7)
div = 7;
return *p_rate / (div + 1);
}
int omap1_set_sossi_rate(struct omap1_clk *clk, unsigned long rate, unsigned long p_rate)
{
unsigned long flags;
u32 l;
int div;
div = calc_div_sossi(rate, p_rate);
if (div < 0 || div > 7)
return -EINVAL;
/* protect MOD_CONF_CTRL_1 register from concurrent access via clk_enable/disable() */
spin_lock_irqsave(&mod_conf_ctrl_1_lock, flags);
l = omap_readl(MOD_CONF_CTRL_1);
l &= ~(7 << 17);
l |= div << 17;
omap_writel(l, MOD_CONF_CTRL_1);
clk->rate = p_rate / (div + 1);
spin_unlock_irqrestore(&mod_conf_ctrl_1_lock, flags);
return 0;
}
long omap1_round_ext_clk_rate(struct omap1_clk *clk, unsigned long rate, unsigned long *p_rate)
{
return 96000000 / calc_ext_dsor(rate);
}
int omap1_init_ext_clk(struct omap1_clk *clk)
{
unsigned dsor;
__u16 ratio_bits;
/* Determine current rate and ensure clock is based on 96MHz APLL */
ratio_bits = __raw_readw(clk->enable_reg) & ~1;
__raw_writew(ratio_bits, clk->enable_reg);
ratio_bits = (ratio_bits & 0xfc) >> 2;
if (ratio_bits > 6)
dsor = (ratio_bits - 6) * 2 + 8;
else
dsor = ratio_bits + 2;
clk-> rate = 96000000 / dsor;
return 0;
}
static int omap1_clk_enable(struct clk_hw *hw)
{
struct omap1_clk *clk = to_omap1_clk(hw), *parent = to_omap1_clk(clk_hw_get_parent(hw));
int ret = 0;
if (parent && clk->flags & CLOCK_NO_IDLE_PARENT)
omap1_clk_deny_idle(parent);
if (clk->ops && !(WARN_ON(!clk->ops->enable)))
ret = clk->ops->enable(clk);
return ret;
}
static void omap1_clk_disable(struct clk_hw *hw)
{
struct omap1_clk *clk = to_omap1_clk(hw), *parent = to_omap1_clk(clk_hw_get_parent(hw));
if (clk->ops && !(WARN_ON(!clk->ops->disable)))
clk->ops->disable(clk);
if (likely(parent) && clk->flags & CLOCK_NO_IDLE_PARENT)
omap1_clk_allow_idle(parent);
}
static int omap1_clk_enable_generic(struct omap1_clk *clk)
{
unsigned long flags;
__u16 regval16;
__u32 regval32;
if (unlikely(clk->enable_reg == NULL)) {
printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
clk_hw_get_name(&clk->hw));
return -EINVAL;
}
/* protect clk->enable_reg from concurrent access via clk_set_rate() */
if (clk->enable_reg == OMAP1_IO_ADDRESS(ARM_CKCTL))
spin_lock_irqsave(&arm_ckctl_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(ARM_IDLECT2))
spin_lock_irqsave(&arm_idlect2_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(MOD_CONF_CTRL_0))
spin_lock_irqsave(&mod_conf_ctrl_0_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(MOD_CONF_CTRL_1))
spin_lock_irqsave(&mod_conf_ctrl_1_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(SWD_CLK_DIV_CTRL_SEL))
spin_lock_irqsave(&swd_clk_div_ctrl_sel_lock, flags);
if (clk->flags & ENABLE_REG_32BIT) {
regval32 = __raw_readl(clk->enable_reg);
regval32 |= (1 << clk->enable_bit);
__raw_writel(regval32, clk->enable_reg);
} else {
regval16 = __raw_readw(clk->enable_reg);
regval16 |= (1 << clk->enable_bit);
__raw_writew(regval16, clk->enable_reg);
}
if (clk->enable_reg == OMAP1_IO_ADDRESS(ARM_CKCTL))
spin_unlock_irqrestore(&arm_ckctl_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(ARM_IDLECT2))
spin_unlock_irqrestore(&arm_idlect2_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(MOD_CONF_CTRL_0))
spin_unlock_irqrestore(&mod_conf_ctrl_0_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(MOD_CONF_CTRL_1))
spin_unlock_irqrestore(&mod_conf_ctrl_1_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(SWD_CLK_DIV_CTRL_SEL))
spin_unlock_irqrestore(&swd_clk_div_ctrl_sel_lock, flags);
return 0;
}
static void omap1_clk_disable_generic(struct omap1_clk *clk)
{
unsigned long flags;
__u16 regval16;
__u32 regval32;
if (clk->enable_reg == NULL)
return;
/* protect clk->enable_reg from concurrent access via clk_set_rate() */
if (clk->enable_reg == OMAP1_IO_ADDRESS(ARM_CKCTL))
spin_lock_irqsave(&arm_ckctl_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(ARM_IDLECT2))
spin_lock_irqsave(&arm_idlect2_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(MOD_CONF_CTRL_0))
spin_lock_irqsave(&mod_conf_ctrl_0_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(MOD_CONF_CTRL_1))
spin_lock_irqsave(&mod_conf_ctrl_1_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(SWD_CLK_DIV_CTRL_SEL))
spin_lock_irqsave(&swd_clk_div_ctrl_sel_lock, flags);
if (clk->flags & ENABLE_REG_32BIT) {
regval32 = __raw_readl(clk->enable_reg);
regval32 &= ~(1 << clk->enable_bit);
__raw_writel(regval32, clk->enable_reg);
} else {
regval16 = __raw_readw(clk->enable_reg);
regval16 &= ~(1 << clk->enable_bit);
__raw_writew(regval16, clk->enable_reg);
}
if (clk->enable_reg == OMAP1_IO_ADDRESS(ARM_CKCTL))
spin_unlock_irqrestore(&arm_ckctl_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(ARM_IDLECT2))
spin_unlock_irqrestore(&arm_idlect2_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(MOD_CONF_CTRL_0))
spin_unlock_irqrestore(&mod_conf_ctrl_0_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(MOD_CONF_CTRL_1))
spin_unlock_irqrestore(&mod_conf_ctrl_1_lock, flags);
else if (clk->enable_reg == OMAP1_IO_ADDRESS(SWD_CLK_DIV_CTRL_SEL))
spin_unlock_irqrestore(&swd_clk_div_ctrl_sel_lock, flags);
}
const struct clkops clkops_generic = {
.enable = omap1_clk_enable_generic,
.disable = omap1_clk_disable_generic,
};
static int omap1_clk_enable_dsp_domain(struct omap1_clk *clk)
{
bool api_ck_was_enabled;
int retval = 0;
api_ck_was_enabled = omap1_clk_is_enabled(&api_ck_p->hw);
if (!api_ck_was_enabled)
retval = api_ck_p->ops->enable(api_ck_p);
if (!retval) {
retval = omap1_clk_enable_generic(clk);
if (!api_ck_was_enabled)
api_ck_p->ops->disable(api_ck_p);
}
return retval;
}
static void omap1_clk_disable_dsp_domain(struct omap1_clk *clk)
{
bool api_ck_was_enabled;
api_ck_was_enabled = omap1_clk_is_enabled(&api_ck_p->hw);
if (!api_ck_was_enabled)
if (api_ck_p->ops->enable(api_ck_p) < 0)
return;
omap1_clk_disable_generic(clk);
if (!api_ck_was_enabled)
api_ck_p->ops->disable(api_ck_p);
}
const struct clkops clkops_dspck = {
.enable = omap1_clk_enable_dsp_domain,
.disable = omap1_clk_disable_dsp_domain,
};
/* XXX SYSC register handling does not belong in the clock framework */
static int omap1_clk_enable_uart_functional_16xx(struct omap1_clk *clk)
{
int ret;
struct uart_clk *uclk;
ret = omap1_clk_enable_generic(clk);
if (ret == 0) {
/* Set smart idle acknowledgement mode */
uclk = (struct uart_clk *)clk;
omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
uclk->sysc_addr);
}
return ret;
}
/* XXX SYSC register handling does not belong in the clock framework */
static void omap1_clk_disable_uart_functional_16xx(struct omap1_clk *clk)
{
struct uart_clk *uclk;
/* Set force idle acknowledgement mode */
uclk = (struct uart_clk *)clk;
omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
omap1_clk_disable_generic(clk);
}
/* XXX SYSC register handling does not belong in the clock framework */
const struct clkops clkops_uart_16xx = {
.enable = omap1_clk_enable_uart_functional_16xx,
.disable = omap1_clk_disable_uart_functional_16xx,
};
static unsigned long omap1_clk_recalc_rate(struct clk_hw *hw, unsigned long p_rate)
{
struct omap1_clk *clk = to_omap1_clk(hw);
if (clk->recalc)
return clk->recalc(clk, p_rate);
return clk->rate;
}
static long omap1_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *p_rate)
{
struct omap1_clk *clk = to_omap1_clk(hw);
if (clk->round_rate != NULL)
return clk->round_rate(clk, rate, p_rate);
return omap1_clk_recalc_rate(hw, *p_rate);
}
static int omap1_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long p_rate)
{
struct omap1_clk *clk = to_omap1_clk(hw);
int ret = -EINVAL;
if (clk->set_rate)
ret = clk->set_rate(clk, rate, p_rate);
return ret;
}
/*
* Omap1 clock reset and init functions
*/
static int omap1_clk_init_op(struct clk_hw *hw)
{
struct omap1_clk *clk = to_omap1_clk(hw);
if (clk->init)
return clk->init(clk);
return 0;
}
#ifdef CONFIG_OMAP_RESET_CLOCKS
static void omap1_clk_disable_unused(struct clk_hw *hw)
{
struct omap1_clk *clk = to_omap1_clk(hw);
const char *name = clk_hw_get_name(hw);
/* Clocks in the DSP domain need api_ck. Just assume bootloader
* has not enabled any DSP clocks */
if (clk->enable_reg == DSP_IDLECT2) {
pr_info("Skipping reset check for DSP domain clock \"%s\"\n", name);
return;
}
pr_info("Disabling unused clock \"%s\"... ", name);
omap1_clk_disable(hw);
printk(" done\n");
}
#endif
const struct clk_ops omap1_clk_gate_ops = {
.enable = omap1_clk_enable,
.disable = omap1_clk_disable,
.is_enabled = omap1_clk_is_enabled,
#ifdef CONFIG_OMAP_RESET_CLOCKS
.disable_unused = omap1_clk_disable_unused,
#endif
};
const struct clk_ops omap1_clk_rate_ops = {
.recalc_rate = omap1_clk_recalc_rate,
.round_rate = omap1_clk_round_rate,
.set_rate = omap1_clk_set_rate,
.init = omap1_clk_init_op,
};
const struct clk_ops omap1_clk_full_ops = {
.enable = omap1_clk_enable,
.disable = omap1_clk_disable,
.is_enabled = omap1_clk_is_enabled,
#ifdef CONFIG_OMAP_RESET_CLOCKS
.disable_unused = omap1_clk_disable_unused,
#endif
.recalc_rate = omap1_clk_recalc_rate,
.round_rate = omap1_clk_round_rate,
.set_rate = omap1_clk_set_rate,
.init = omap1_clk_init_op,
};
/*
* OMAP specific clock functions shared between omap1 and omap2
*/
/* Used for clocks that always have same value as the parent clock */
unsigned long followparent_recalc(struct omap1_clk *clk, unsigned long p_rate)
{
return p_rate;
}
/*
* Used for clocks that have the same value as the parent clock,
* divided by some factor
*/
unsigned long omap_fixed_divisor_recalc(struct omap1_clk *clk, unsigned long p_rate)
{
WARN_ON(!clk->fixed_div);
return p_rate / clk->fixed_div;
}
/* Propagate rate to children */
void propagate_rate(struct omap1_clk *tclk)
{
struct clk *clkp;
/* depend on CCF ability to recalculate new rates across whole clock subtree */
if (WARN_ON(!(clk_hw_get_flags(&tclk->hw) & CLK_GET_RATE_NOCACHE)))
return;
clkp = clk_get_sys(NULL, clk_hw_get_name(&tclk->hw));
if (WARN_ON(!clkp))
return;
clk_get_rate(clkp);
clk_put(clkp);
}
const struct clk_ops omap1_clk_null_ops = {
};
/*
* Dummy clock
*
* Used for clock aliases that are needed on some OMAPs, but not others
*/
struct omap1_clk dummy_ck __refdata = {
.hw.init = CLK_HW_INIT_NO_PARENT("dummy", &omap1_clk_null_ops, 0),
};