364 lines
9.3 KiB
C
364 lines
9.3 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* kexec for arm64
|
||
|
*
|
||
|
* Copyright (C) Linaro.
|
||
|
* Copyright (C) Huawei Futurewei Technologies.
|
||
|
*/
|
||
|
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/irq.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/kexec.h>
|
||
|
#include <linux/page-flags.h>
|
||
|
#include <linux/set_memory.h>
|
||
|
#include <linux/smp.h>
|
||
|
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/cpu_ops.h>
|
||
|
#include <asm/daifflags.h>
|
||
|
#include <asm/memory.h>
|
||
|
#include <asm/mmu.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/sections.h>
|
||
|
#include <asm/trans_pgd.h>
|
||
|
|
||
|
/**
|
||
|
* kexec_image_info - For debugging output.
|
||
|
*/
|
||
|
#define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
|
||
|
static void _kexec_image_info(const char *func, int line,
|
||
|
const struct kimage *kimage)
|
||
|
{
|
||
|
unsigned long i;
|
||
|
|
||
|
pr_debug("%s:%d:\n", func, line);
|
||
|
pr_debug(" kexec kimage info:\n");
|
||
|
pr_debug(" type: %d\n", kimage->type);
|
||
|
pr_debug(" start: %lx\n", kimage->start);
|
||
|
pr_debug(" head: %lx\n", kimage->head);
|
||
|
pr_debug(" nr_segments: %lu\n", kimage->nr_segments);
|
||
|
pr_debug(" dtb_mem: %pa\n", &kimage->arch.dtb_mem);
|
||
|
pr_debug(" kern_reloc: %pa\n", &kimage->arch.kern_reloc);
|
||
|
pr_debug(" el2_vectors: %pa\n", &kimage->arch.el2_vectors);
|
||
|
|
||
|
for (i = 0; i < kimage->nr_segments; i++) {
|
||
|
pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
|
||
|
i,
|
||
|
kimage->segment[i].mem,
|
||
|
kimage->segment[i].mem + kimage->segment[i].memsz,
|
||
|
kimage->segment[i].memsz,
|
||
|
kimage->segment[i].memsz / PAGE_SIZE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void machine_kexec_cleanup(struct kimage *kimage)
|
||
|
{
|
||
|
/* Empty routine needed to avoid build errors. */
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* machine_kexec_prepare - Prepare for a kexec reboot.
|
||
|
*
|
||
|
* Called from the core kexec code when a kernel image is loaded.
|
||
|
* Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
|
||
|
* are stuck in the kernel. This avoids a panic once we hit machine_kexec().
|
||
|
*/
|
||
|
int machine_kexec_prepare(struct kimage *kimage)
|
||
|
{
|
||
|
if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
|
||
|
pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* kexec_segment_flush - Helper to flush the kimage segments to PoC.
|
||
|
*/
|
||
|
static void kexec_segment_flush(const struct kimage *kimage)
|
||
|
{
|
||
|
unsigned long i;
|
||
|
|
||
|
pr_debug("%s:\n", __func__);
|
||
|
|
||
|
for (i = 0; i < kimage->nr_segments; i++) {
|
||
|
pr_debug(" segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
|
||
|
i,
|
||
|
kimage->segment[i].mem,
|
||
|
kimage->segment[i].mem + kimage->segment[i].memsz,
|
||
|
kimage->segment[i].memsz,
|
||
|
kimage->segment[i].memsz / PAGE_SIZE);
|
||
|
|
||
|
dcache_clean_inval_poc(
|
||
|
(unsigned long)phys_to_virt(kimage->segment[i].mem),
|
||
|
(unsigned long)phys_to_virt(kimage->segment[i].mem) +
|
||
|
kimage->segment[i].memsz);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Allocates pages for kexec page table */
|
||
|
static void *kexec_page_alloc(void *arg)
|
||
|
{
|
||
|
struct kimage *kimage = (struct kimage *)arg;
|
||
|
struct page *page = kimage_alloc_control_pages(kimage, 0);
|
||
|
void *vaddr = NULL;
|
||
|
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
vaddr = page_address(page);
|
||
|
memset(vaddr, 0, PAGE_SIZE);
|
||
|
|
||
|
return vaddr;
|
||
|
}
|
||
|
|
||
|
int machine_kexec_post_load(struct kimage *kimage)
|
||
|
{
|
||
|
int rc;
|
||
|
pgd_t *trans_pgd;
|
||
|
void *reloc_code = page_to_virt(kimage->control_code_page);
|
||
|
long reloc_size;
|
||
|
struct trans_pgd_info info = {
|
||
|
.trans_alloc_page = kexec_page_alloc,
|
||
|
.trans_alloc_arg = kimage,
|
||
|
};
|
||
|
|
||
|
/* If in place, relocation is not used, only flush next kernel */
|
||
|
if (kimage->head & IND_DONE) {
|
||
|
kexec_segment_flush(kimage);
|
||
|
kexec_image_info(kimage);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
kimage->arch.el2_vectors = 0;
|
||
|
if (is_hyp_nvhe()) {
|
||
|
rc = trans_pgd_copy_el2_vectors(&info,
|
||
|
&kimage->arch.el2_vectors);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Create a copy of the linear map */
|
||
|
trans_pgd = kexec_page_alloc(kimage);
|
||
|
if (!trans_pgd)
|
||
|
return -ENOMEM;
|
||
|
rc = trans_pgd_create_copy(&info, &trans_pgd, PAGE_OFFSET, PAGE_END);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
kimage->arch.ttbr1 = __pa(trans_pgd);
|
||
|
kimage->arch.zero_page = __pa_symbol(empty_zero_page);
|
||
|
|
||
|
reloc_size = __relocate_new_kernel_end - __relocate_new_kernel_start;
|
||
|
memcpy(reloc_code, __relocate_new_kernel_start, reloc_size);
|
||
|
kimage->arch.kern_reloc = __pa(reloc_code);
|
||
|
rc = trans_pgd_idmap_page(&info, &kimage->arch.ttbr0,
|
||
|
&kimage->arch.t0sz, reloc_code);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
kimage->arch.phys_offset = virt_to_phys(kimage) - (long)kimage;
|
||
|
|
||
|
/* Flush the reloc_code in preparation for its execution. */
|
||
|
dcache_clean_inval_poc((unsigned long)reloc_code,
|
||
|
(unsigned long)reloc_code + reloc_size);
|
||
|
icache_inval_pou((uintptr_t)reloc_code,
|
||
|
(uintptr_t)reloc_code + reloc_size);
|
||
|
kexec_image_info(kimage);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* machine_kexec - Do the kexec reboot.
|
||
|
*
|
||
|
* Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
|
||
|
*/
|
||
|
void machine_kexec(struct kimage *kimage)
|
||
|
{
|
||
|
bool in_kexec_crash = (kimage == kexec_crash_image);
|
||
|
bool stuck_cpus = cpus_are_stuck_in_kernel();
|
||
|
|
||
|
/*
|
||
|
* New cpus may have become stuck_in_kernel after we loaded the image.
|
||
|
*/
|
||
|
BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
|
||
|
WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
|
||
|
"Some CPUs may be stale, kdump will be unreliable.\n");
|
||
|
|
||
|
pr_info("Bye!\n");
|
||
|
|
||
|
local_daif_mask();
|
||
|
|
||
|
/*
|
||
|
* Both restart and kernel_reloc will shutdown the MMU, disable data
|
||
|
* caches. However, restart will start new kernel or purgatory directly,
|
||
|
* kernel_reloc contains the body of arm64_relocate_new_kernel
|
||
|
* In kexec case, kimage->start points to purgatory assuming that
|
||
|
* kernel entry and dtb address are embedded in purgatory by
|
||
|
* userspace (kexec-tools).
|
||
|
* In kexec_file case, the kernel starts directly without purgatory.
|
||
|
*/
|
||
|
if (kimage->head & IND_DONE) {
|
||
|
typeof(cpu_soft_restart) *restart;
|
||
|
|
||
|
cpu_install_idmap();
|
||
|
restart = (void *)__pa_symbol(cpu_soft_restart);
|
||
|
restart(is_hyp_nvhe(), kimage->start, kimage->arch.dtb_mem,
|
||
|
0, 0);
|
||
|
} else {
|
||
|
void (*kernel_reloc)(struct kimage *kimage);
|
||
|
|
||
|
if (is_hyp_nvhe())
|
||
|
__hyp_set_vectors(kimage->arch.el2_vectors);
|
||
|
cpu_install_ttbr0(kimage->arch.ttbr0, kimage->arch.t0sz);
|
||
|
kernel_reloc = (void *)kimage->arch.kern_reloc;
|
||
|
kernel_reloc(kimage);
|
||
|
}
|
||
|
|
||
|
BUG(); /* Should never get here. */
|
||
|
}
|
||
|
|
||
|
static void machine_kexec_mask_interrupts(void)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
struct irq_desc *desc;
|
||
|
|
||
|
for_each_irq_desc(i, desc) {
|
||
|
struct irq_chip *chip;
|
||
|
int ret;
|
||
|
|
||
|
chip = irq_desc_get_chip(desc);
|
||
|
if (!chip)
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* First try to remove the active state. If this
|
||
|
* fails, try to EOI the interrupt.
|
||
|
*/
|
||
|
ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
|
||
|
|
||
|
if (ret && irqd_irq_inprogress(&desc->irq_data) &&
|
||
|
chip->irq_eoi)
|
||
|
chip->irq_eoi(&desc->irq_data);
|
||
|
|
||
|
if (chip->irq_mask)
|
||
|
chip->irq_mask(&desc->irq_data);
|
||
|
|
||
|
if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
|
||
|
chip->irq_disable(&desc->irq_data);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* machine_crash_shutdown - shutdown non-crashing cpus and save registers
|
||
|
*/
|
||
|
void machine_crash_shutdown(struct pt_regs *regs)
|
||
|
{
|
||
|
local_irq_disable();
|
||
|
|
||
|
/* shutdown non-crashing cpus */
|
||
|
crash_smp_send_stop();
|
||
|
|
||
|
/* for crashing cpu */
|
||
|
crash_save_cpu(regs, smp_processor_id());
|
||
|
machine_kexec_mask_interrupts();
|
||
|
|
||
|
pr_info("Starting crashdump kernel...\n");
|
||
|
}
|
||
|
|
||
|
void arch_kexec_protect_crashkres(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < kexec_crash_image->nr_segments; i++)
|
||
|
set_memory_valid(
|
||
|
__phys_to_virt(kexec_crash_image->segment[i].mem),
|
||
|
kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
|
||
|
}
|
||
|
|
||
|
void arch_kexec_unprotect_crashkres(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < kexec_crash_image->nr_segments; i++)
|
||
|
set_memory_valid(
|
||
|
__phys_to_virt(kexec_crash_image->segment[i].mem),
|
||
|
kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_HIBERNATION
|
||
|
/*
|
||
|
* To preserve the crash dump kernel image, the relevant memory segments
|
||
|
* should be mapped again around the hibernation.
|
||
|
*/
|
||
|
void crash_prepare_suspend(void)
|
||
|
{
|
||
|
if (kexec_crash_image)
|
||
|
arch_kexec_unprotect_crashkres();
|
||
|
}
|
||
|
|
||
|
void crash_post_resume(void)
|
||
|
{
|
||
|
if (kexec_crash_image)
|
||
|
arch_kexec_protect_crashkres();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* crash_is_nosave
|
||
|
*
|
||
|
* Return true only if a page is part of reserved memory for crash dump kernel,
|
||
|
* but does not hold any data of loaded kernel image.
|
||
|
*
|
||
|
* Note that all the pages in crash dump kernel memory have been initially
|
||
|
* marked as Reserved as memory was allocated via memblock_reserve().
|
||
|
*
|
||
|
* In hibernation, the pages which are Reserved and yet "nosave" are excluded
|
||
|
* from the hibernation iamge. crash_is_nosave() does thich check for crash
|
||
|
* dump kernel and will reduce the total size of hibernation image.
|
||
|
*/
|
||
|
|
||
|
bool crash_is_nosave(unsigned long pfn)
|
||
|
{
|
||
|
int i;
|
||
|
phys_addr_t addr;
|
||
|
|
||
|
if (!crashk_res.end)
|
||
|
return false;
|
||
|
|
||
|
/* in reserved memory? */
|
||
|
addr = __pfn_to_phys(pfn);
|
||
|
if ((addr < crashk_res.start) || (crashk_res.end < addr)) {
|
||
|
if (!crashk_low_res.end)
|
||
|
return false;
|
||
|
|
||
|
if ((addr < crashk_low_res.start) || (crashk_low_res.end < addr))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (!kexec_crash_image)
|
||
|
return true;
|
||
|
|
||
|
/* not part of loaded kernel image? */
|
||
|
for (i = 0; i < kexec_crash_image->nr_segments; i++)
|
||
|
if (addr >= kexec_crash_image->segment[i].mem &&
|
||
|
addr < (kexec_crash_image->segment[i].mem +
|
||
|
kexec_crash_image->segment[i].memsz))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
|
||
|
{
|
||
|
unsigned long addr;
|
||
|
struct page *page;
|
||
|
|
||
|
for (addr = begin; addr < end; addr += PAGE_SIZE) {
|
||
|
page = phys_to_page(addr);
|
||
|
free_reserved_page(page);
|
||
|
}
|
||
|
}
|
||
|
#endif /* CONFIG_HIBERNATION */
|