293 lines
8.2 KiB
C
293 lines
8.2 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0 */
|
||
|
#ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
|
||
|
#define _ASM_POWERPC_NOHASH_PGTABLE_H
|
||
|
|
||
|
#if defined(CONFIG_PPC64)
|
||
|
#include <asm/nohash/64/pgtable.h>
|
||
|
#else
|
||
|
#include <asm/nohash/32/pgtable.h>
|
||
|
#endif
|
||
|
|
||
|
/* Permission masks used for kernel mappings */
|
||
|
#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
|
||
|
#define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
|
||
|
#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
|
||
|
#define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
|
||
|
#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
|
||
|
#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
/* Generic accessors to PTE bits */
|
||
|
#ifndef pte_write
|
||
|
static inline int pte_write(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) & _PAGE_RW;
|
||
|
}
|
||
|
#endif
|
||
|
static inline int pte_read(pte_t pte) { return 1; }
|
||
|
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
||
|
static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
|
||
|
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
|
||
|
static inline bool pte_hashpte(pte_t pte) { return false; }
|
||
|
static inline bool pte_ci(pte_t pte) { return pte_val(pte) & _PAGE_NO_CACHE; }
|
||
|
static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
|
||
|
|
||
|
#ifdef CONFIG_NUMA_BALANCING
|
||
|
/*
|
||
|
* These work without NUMA balancing but the kernel does not care. See the
|
||
|
* comment in include/linux/pgtable.h . On powerpc, this will only
|
||
|
* work for user pages and always return true for kernel pages.
|
||
|
*/
|
||
|
static inline int pte_protnone(pte_t pte)
|
||
|
{
|
||
|
return pte_present(pte) && !pte_user(pte);
|
||
|
}
|
||
|
|
||
|
static inline int pmd_protnone(pmd_t pmd)
|
||
|
{
|
||
|
return pte_protnone(pmd_pte(pmd));
|
||
|
}
|
||
|
#endif /* CONFIG_NUMA_BALANCING */
|
||
|
|
||
|
static inline int pte_present(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) & _PAGE_PRESENT;
|
||
|
}
|
||
|
|
||
|
static inline bool pte_hw_valid(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) & _PAGE_PRESENT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Don't just check for any non zero bits in __PAGE_USER, since for book3e
|
||
|
* and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in
|
||
|
* _PAGE_USER. Need to explicitly match _PAGE_BAP_UR bit in that case too.
|
||
|
*/
|
||
|
#ifndef pte_user
|
||
|
static inline bool pte_user(pte_t pte)
|
||
|
{
|
||
|
return (pte_val(pte) & _PAGE_USER) == _PAGE_USER;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* We only find page table entry in the last level
|
||
|
* Hence no need for other accessors
|
||
|
*/
|
||
|
#define pte_access_permitted pte_access_permitted
|
||
|
static inline bool pte_access_permitted(pte_t pte, bool write)
|
||
|
{
|
||
|
/*
|
||
|
* A read-only access is controlled by _PAGE_USER bit.
|
||
|
* We have _PAGE_READ set for WRITE and EXECUTE
|
||
|
*/
|
||
|
if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
|
||
|
return false;
|
||
|
|
||
|
if (write && !pte_write(pte))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* Conversion functions: convert a page and protection to a page entry,
|
||
|
* and a page entry and page directory to the page they refer to.
|
||
|
*
|
||
|
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
|
||
|
* long for now.
|
||
|
*/
|
||
|
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
|
||
|
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
|
||
|
pgprot_val(pgprot)); }
|
||
|
static inline unsigned long pte_pfn(pte_t pte) {
|
||
|
return pte_val(pte) >> PTE_RPN_SHIFT; }
|
||
|
|
||
|
/* Generic modifiers for PTE bits */
|
||
|
static inline pte_t pte_exprotect(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_EXEC);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkclean(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkold(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkspecial(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_SPECIAL);
|
||
|
}
|
||
|
|
||
|
#ifndef pte_mkhuge
|
||
|
static inline pte_t pte_mkhuge(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef pte_mkprivileged
|
||
|
static inline pte_t pte_mkprivileged(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_USER);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef pte_mkuser
|
||
|
static inline pte_t pte_mkuser(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_USER);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||
|
{
|
||
|
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
|
||
|
}
|
||
|
|
||
|
static inline int pte_swp_exclusive(pte_t pte)
|
||
|
{
|
||
|
return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_swp_mkexclusive(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
|
||
|
{
|
||
|
return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
|
||
|
}
|
||
|
|
||
|
/* Insert a PTE, top-level function is out of line. It uses an inline
|
||
|
* low level function in the respective pgtable-* files
|
||
|
*/
|
||
|
extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
|
||
|
pte_t pte);
|
||
|
|
||
|
/* This low level function performs the actual PTE insertion
|
||
|
* Setting the PTE depends on the MMU type and other factors. It's
|
||
|
* an horrible mess that I'm not going to try to clean up now but
|
||
|
* I'm keeping it in one place rather than spread around
|
||
|
*/
|
||
|
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||
|
pte_t *ptep, pte_t pte, int percpu)
|
||
|
{
|
||
|
/* Second case is 32-bit with 64-bit PTE. In this case, we
|
||
|
* can just store as long as we do the two halves in the right order
|
||
|
* with a barrier in between.
|
||
|
* In the percpu case, we also fallback to the simple update
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) {
|
||
|
__asm__ __volatile__("\
|
||
|
stw%X0 %2,%0\n\
|
||
|
mbar\n\
|
||
|
stw%X1 %L2,%1"
|
||
|
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
|
||
|
: "r" (pte) : "memory");
|
||
|
return;
|
||
|
}
|
||
|
/* Anything else just stores the PTE normally. That covers all 64-bit
|
||
|
* cases, and 32-bit non-hash with 32-bit PTEs.
|
||
|
*/
|
||
|
#if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES)
|
||
|
ptep->pte3 = ptep->pte2 = ptep->pte1 = ptep->pte = pte_val(pte);
|
||
|
#else
|
||
|
*ptep = pte;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* With hardware tablewalk, a sync is needed to ensure that
|
||
|
* subsequent accesses see the PTE we just wrote. Unlike userspace
|
||
|
* mappings, we can't tolerate spurious faults, so make sure
|
||
|
* the new PTE will be seen the first time.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr))
|
||
|
mb();
|
||
|
}
|
||
|
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
||
|
extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
||
|
pte_t *ptep, pte_t entry, int dirty);
|
||
|
|
||
|
/*
|
||
|
* Macro to mark a page protection value as "uncacheable".
|
||
|
*/
|
||
|
|
||
|
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
|
||
|
_PAGE_WRITETHRU)
|
||
|
|
||
|
#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||
|
_PAGE_NO_CACHE | _PAGE_GUARDED))
|
||
|
|
||
|
#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||
|
_PAGE_NO_CACHE))
|
||
|
|
||
|
#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||
|
_PAGE_COHERENT))
|
||
|
|
||
|
#if _PAGE_WRITETHRU != 0
|
||
|
#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||
|
_PAGE_COHERENT | _PAGE_WRITETHRU))
|
||
|
#else
|
||
|
#define pgprot_cached_wthru(prot) pgprot_noncached(prot)
|
||
|
#endif
|
||
|
|
||
|
#define pgprot_cached_noncoherent(prot) \
|
||
|
(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
|
||
|
|
||
|
#define pgprot_writecombine pgprot_noncached_wc
|
||
|
|
||
|
struct file;
|
||
|
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
||
|
unsigned long size, pgprot_t vma_prot);
|
||
|
#define __HAVE_PHYS_MEM_ACCESS_PROT
|
||
|
|
||
|
#ifdef CONFIG_HUGETLB_PAGE
|
||
|
static inline int hugepd_ok(hugepd_t hpd)
|
||
|
{
|
||
|
#ifdef CONFIG_PPC_8xx
|
||
|
return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M);
|
||
|
#else
|
||
|
/* We clear the top bit to indicate hugepd */
|
||
|
return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline int pmd_huge(pmd_t pmd)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int pud_huge(pud_t pud)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define is_hugepd(hpd) (hugepd_ok(hpd))
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* This gets called at the end of handling a page fault, when
|
||
|
* the kernel has put a new PTE into the page table for the process.
|
||
|
* We use it to ensure coherency between the i-cache and d-cache
|
||
|
* for the page which has just been mapped in.
|
||
|
*/
|
||
|
#if defined(CONFIG_PPC_E500) && defined(CONFIG_HUGETLB_PAGE)
|
||
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep);
|
||
|
#else
|
||
|
static inline
|
||
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) {}
|
||
|
#endif
|
||
|
|
||
|
#endif /* __ASSEMBLY__ */
|
||
|
#endif
|