490 lines
13 KiB
C
490 lines
13 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* arch/sparc64/kernel/kprobes.c
|
||
|
*
|
||
|
* Copyright (C) 2004 David S. Miller <davem@davemloft.net>
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/extable.h>
|
||
|
#include <linux/kdebug.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/context_tracking.h>
|
||
|
#include <asm/signal.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
|
||
|
/* We do not have hardware single-stepping on sparc64.
|
||
|
* So we implement software single-stepping with breakpoint
|
||
|
* traps. The top-level scheme is similar to that used
|
||
|
* in the x86 kprobes implementation.
|
||
|
*
|
||
|
* In the kprobe->ainsn.insn[] array we store the original
|
||
|
* instruction at index zero and a break instruction at
|
||
|
* index one.
|
||
|
*
|
||
|
* When we hit a kprobe we:
|
||
|
* - Run the pre-handler
|
||
|
* - Remember "regs->tnpc" and interrupt level stored in
|
||
|
* "regs->tstate" so we can restore them later
|
||
|
* - Disable PIL interrupts
|
||
|
* - Set regs->tpc to point to kprobe->ainsn.insn[0]
|
||
|
* - Set regs->tnpc to point to kprobe->ainsn.insn[1]
|
||
|
* - Mark that we are actively in a kprobe
|
||
|
*
|
||
|
* At this point we wait for the second breakpoint at
|
||
|
* kprobe->ainsn.insn[1] to hit. When it does we:
|
||
|
* - Run the post-handler
|
||
|
* - Set regs->tpc to "remembered" regs->tnpc stored above,
|
||
|
* restore the PIL interrupt level in "regs->tstate" as well
|
||
|
* - Make any adjustments necessary to regs->tnpc in order
|
||
|
* to handle relative branches correctly. See below.
|
||
|
* - Mark that we are no longer actively in a kprobe.
|
||
|
*/
|
||
|
|
||
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
||
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
||
|
|
||
|
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
|
||
|
|
||
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
if ((unsigned long) p->addr & 0x3UL)
|
||
|
return -EILSEQ;
|
||
|
|
||
|
p->ainsn.insn[0] = *p->addr;
|
||
|
flushi(&p->ainsn.insn[0]);
|
||
|
|
||
|
p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
|
||
|
flushi(&p->ainsn.insn[1]);
|
||
|
|
||
|
p->opcode = *p->addr;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
*p->addr = BREAKPOINT_INSTRUCTION;
|
||
|
flushi(p->addr);
|
||
|
}
|
||
|
|
||
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
*p->addr = p->opcode;
|
||
|
flushi(p->addr);
|
||
|
}
|
||
|
|
||
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
kcb->prev_kprobe.kp = kprobe_running();
|
||
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
||
|
kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
|
||
|
kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
|
||
|
}
|
||
|
|
||
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
||
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
||
|
kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
|
||
|
kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
|
||
|
}
|
||
|
|
||
|
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
||
|
struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, p);
|
||
|
kcb->kprobe_orig_tnpc = regs->tnpc;
|
||
|
kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
|
||
|
}
|
||
|
|
||
|
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
|
||
|
struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
regs->tstate |= TSTATE_PIL;
|
||
|
|
||
|
/*single step inline, if it a breakpoint instruction*/
|
||
|
if (p->opcode == BREAKPOINT_INSTRUCTION) {
|
||
|
regs->tpc = (unsigned long) p->addr;
|
||
|
regs->tnpc = kcb->kprobe_orig_tnpc;
|
||
|
} else {
|
||
|
regs->tpc = (unsigned long) &p->ainsn.insn[0];
|
||
|
regs->tnpc = (unsigned long) &p->ainsn.insn[1];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int __kprobes kprobe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe *p;
|
||
|
void *addr = (void *) regs->tpc;
|
||
|
int ret = 0;
|
||
|
struct kprobe_ctlblk *kcb;
|
||
|
|
||
|
/*
|
||
|
* We don't want to be preempted for the entire
|
||
|
* duration of kprobe processing
|
||
|
*/
|
||
|
preempt_disable();
|
||
|
kcb = get_kprobe_ctlblk();
|
||
|
|
||
|
if (kprobe_running()) {
|
||
|
p = get_kprobe(addr);
|
||
|
if (p) {
|
||
|
if (kcb->kprobe_status == KPROBE_HIT_SS) {
|
||
|
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
|
||
|
kcb->kprobe_orig_tstate_pil);
|
||
|
goto no_kprobe;
|
||
|
}
|
||
|
/* We have reentered the kprobe_handler(), since
|
||
|
* another probe was hit while within the handler.
|
||
|
* We here save the original kprobes variables and
|
||
|
* just single step on the instruction of the new probe
|
||
|
* without calling any user handlers.
|
||
|
*/
|
||
|
save_previous_kprobe(kcb);
|
||
|
set_current_kprobe(p, regs, kcb);
|
||
|
kprobes_inc_nmissed_count(p);
|
||
|
kcb->kprobe_status = KPROBE_REENTER;
|
||
|
prepare_singlestep(p, regs, kcb);
|
||
|
return 1;
|
||
|
} else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
|
||
|
/* The breakpoint instruction was removed by
|
||
|
* another cpu right after we hit, no further
|
||
|
* handling of this interrupt is appropriate
|
||
|
*/
|
||
|
ret = 1;
|
||
|
}
|
||
|
goto no_kprobe;
|
||
|
}
|
||
|
|
||
|
p = get_kprobe(addr);
|
||
|
if (!p) {
|
||
|
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
|
||
|
/*
|
||
|
* The breakpoint instruction was removed right
|
||
|
* after we hit it. Another cpu has removed
|
||
|
* either a probepoint or a debugger breakpoint
|
||
|
* at this address. In either case, no further
|
||
|
* handling of this interrupt is appropriate.
|
||
|
*/
|
||
|
ret = 1;
|
||
|
}
|
||
|
/* Not one of ours: let kernel handle it */
|
||
|
goto no_kprobe;
|
||
|
}
|
||
|
|
||
|
set_current_kprobe(p, regs, kcb);
|
||
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
||
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
||
|
reset_current_kprobe();
|
||
|
preempt_enable_no_resched();
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
prepare_singlestep(p, regs, kcb);
|
||
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
||
|
return 1;
|
||
|
|
||
|
no_kprobe:
|
||
|
preempt_enable_no_resched();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* If INSN is a relative control transfer instruction,
|
||
|
* return the corrected branch destination value.
|
||
|
*
|
||
|
* regs->tpc and regs->tnpc still hold the values of the
|
||
|
* program counters at the time of trap due to the execution
|
||
|
* of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
|
||
|
*
|
||
|
*/
|
||
|
static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long real_pc = (unsigned long) p->addr;
|
||
|
|
||
|
/* Branch not taken, no mods necessary. */
|
||
|
if (regs->tnpc == regs->tpc + 0x4UL)
|
||
|
return real_pc + 0x8UL;
|
||
|
|
||
|
/* The three cases are call, branch w/prediction,
|
||
|
* and traditional branch.
|
||
|
*/
|
||
|
if ((insn & 0xc0000000) == 0x40000000 ||
|
||
|
(insn & 0xc1c00000) == 0x00400000 ||
|
||
|
(insn & 0xc1c00000) == 0x00800000) {
|
||
|
unsigned long ainsn_addr;
|
||
|
|
||
|
ainsn_addr = (unsigned long) &p->ainsn.insn[0];
|
||
|
|
||
|
/* The instruction did all the work for us
|
||
|
* already, just apply the offset to the correct
|
||
|
* instruction location.
|
||
|
*/
|
||
|
return (real_pc + (regs->tnpc - ainsn_addr));
|
||
|
}
|
||
|
|
||
|
/* It is jmpl or some other absolute PC modification instruction,
|
||
|
* leave NPC as-is.
|
||
|
*/
|
||
|
return regs->tnpc;
|
||
|
}
|
||
|
|
||
|
/* If INSN is an instruction which writes it's PC location
|
||
|
* into a destination register, fix that up.
|
||
|
*/
|
||
|
static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
|
||
|
unsigned long real_pc)
|
||
|
{
|
||
|
unsigned long *slot = NULL;
|
||
|
|
||
|
/* Simplest case is 'call', which always uses %o7 */
|
||
|
if ((insn & 0xc0000000) == 0x40000000) {
|
||
|
slot = ®s->u_regs[UREG_I7];
|
||
|
}
|
||
|
|
||
|
/* 'jmpl' encodes the register inside of the opcode */
|
||
|
if ((insn & 0xc1f80000) == 0x81c00000) {
|
||
|
unsigned long rd = ((insn >> 25) & 0x1f);
|
||
|
|
||
|
if (rd <= 15) {
|
||
|
slot = ®s->u_regs[rd];
|
||
|
} else {
|
||
|
/* Hard case, it goes onto the stack. */
|
||
|
flushw_all();
|
||
|
|
||
|
rd -= 16;
|
||
|
slot = (unsigned long *)
|
||
|
(regs->u_regs[UREG_FP] + STACK_BIAS);
|
||
|
slot += rd;
|
||
|
}
|
||
|
}
|
||
|
if (slot != NULL)
|
||
|
*slot = real_pc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called after single-stepping. p->addr is the address of the
|
||
|
* instruction which has been replaced by the breakpoint
|
||
|
* instruction. To avoid the SMP problems that can occur when we
|
||
|
* temporarily put back the original opcode to single-step, we
|
||
|
* single-stepped a copy of the instruction. The address of this
|
||
|
* copy is &p->ainsn.insn[0].
|
||
|
*
|
||
|
* This function prepares to return from the post-single-step
|
||
|
* breakpoint trap.
|
||
|
*/
|
||
|
static void __kprobes resume_execution(struct kprobe *p,
|
||
|
struct pt_regs *regs, struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
u32 insn = p->ainsn.insn[0];
|
||
|
|
||
|
regs->tnpc = relbranch_fixup(insn, p, regs);
|
||
|
|
||
|
/* This assignment must occur after relbranch_fixup() */
|
||
|
regs->tpc = kcb->kprobe_orig_tnpc;
|
||
|
|
||
|
retpc_fixup(regs, insn, (unsigned long) p->addr);
|
||
|
|
||
|
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
|
||
|
kcb->kprobe_orig_tstate_pil);
|
||
|
}
|
||
|
|
||
|
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe *cur = kprobe_running();
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
|
||
|
if (!cur)
|
||
|
return 0;
|
||
|
|
||
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
||
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||
|
cur->post_handler(cur, regs, 0);
|
||
|
}
|
||
|
|
||
|
resume_execution(cur, regs, kcb);
|
||
|
|
||
|
/*Restore back the original saved kprobes variables and continue. */
|
||
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
||
|
restore_previous_kprobe(kcb);
|
||
|
goto out;
|
||
|
}
|
||
|
reset_current_kprobe();
|
||
|
out:
|
||
|
preempt_enable_no_resched();
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
struct kprobe *cur = kprobe_running();
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
const struct exception_table_entry *entry;
|
||
|
|
||
|
switch(kcb->kprobe_status) {
|
||
|
case KPROBE_HIT_SS:
|
||
|
case KPROBE_REENTER:
|
||
|
/*
|
||
|
* We are here because the instruction being single
|
||
|
* stepped caused a page fault. We reset the current
|
||
|
* kprobe and the tpc points back to the probe address
|
||
|
* and allow the page fault handler to continue as a
|
||
|
* normal page fault.
|
||
|
*/
|
||
|
regs->tpc = (unsigned long)cur->addr;
|
||
|
regs->tnpc = kcb->kprobe_orig_tnpc;
|
||
|
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
|
||
|
kcb->kprobe_orig_tstate_pil);
|
||
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
||
|
restore_previous_kprobe(kcb);
|
||
|
else
|
||
|
reset_current_kprobe();
|
||
|
preempt_enable_no_resched();
|
||
|
break;
|
||
|
case KPROBE_HIT_ACTIVE:
|
||
|
case KPROBE_HIT_SSDONE:
|
||
|
/*
|
||
|
* In case the user-specified fault handler returned
|
||
|
* zero, try to fix up.
|
||
|
*/
|
||
|
|
||
|
entry = search_exception_tables(regs->tpc);
|
||
|
if (entry) {
|
||
|
regs->tpc = entry->fixup;
|
||
|
regs->tnpc = regs->tpc + 4;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* fixup_exception() could not handle it,
|
||
|
* Let do_page_fault() fix it.
|
||
|
*/
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wrapper routine to for handling exceptions.
|
||
|
*/
|
||
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
||
|
unsigned long val, void *data)
|
||
|
{
|
||
|
struct die_args *args = (struct die_args *)data;
|
||
|
int ret = NOTIFY_DONE;
|
||
|
|
||
|
if (args->regs && user_mode(args->regs))
|
||
|
return ret;
|
||
|
|
||
|
switch (val) {
|
||
|
case DIE_DEBUG:
|
||
|
if (kprobe_handler(args->regs))
|
||
|
ret = NOTIFY_STOP;
|
||
|
break;
|
||
|
case DIE_DEBUG_2:
|
||
|
if (post_kprobe_handler(args->regs))
|
||
|
ret = NOTIFY_STOP;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
enum ctx_state prev_state = exception_enter();
|
||
|
|
||
|
BUG_ON(trap_level != 0x170 && trap_level != 0x171);
|
||
|
|
||
|
if (user_mode(regs)) {
|
||
|
local_irq_enable();
|
||
|
bad_trap(regs, trap_level);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* trap_level == 0x170 --> ta 0x70
|
||
|
* trap_level == 0x171 --> ta 0x71
|
||
|
*/
|
||
|
if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
|
||
|
(trap_level == 0x170) ? "debug" : "debug_2",
|
||
|
regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
|
||
|
bad_trap(regs, trap_level);
|
||
|
out:
|
||
|
exception_exit(prev_state);
|
||
|
}
|
||
|
|
||
|
/* The value stored in the return address register is actually 2
|
||
|
* instructions before where the callee will return to.
|
||
|
* Sequences usually look something like this
|
||
|
*
|
||
|
* call some_function <--- return register points here
|
||
|
* nop <--- call delay slot
|
||
|
* whatever <--- where callee returns to
|
||
|
*
|
||
|
* To keep trampoline_probe_handler logic simpler, we normalize the
|
||
|
* value kept in ri->ret_addr so we don't need to keep adjusting it
|
||
|
* back and forth.
|
||
|
*/
|
||
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
|
||
|
ri->fp = NULL;
|
||
|
|
||
|
/* Replace the return addr with trampoline addr */
|
||
|
regs->u_regs[UREG_RETPC] =
|
||
|
((unsigned long)__kretprobe_trampoline) - 8;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when the probe at kretprobe trampoline is hit
|
||
|
*/
|
||
|
static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long orig_ret_address = 0;
|
||
|
|
||
|
orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
|
||
|
regs->tpc = orig_ret_address;
|
||
|
regs->tnpc = orig_ret_address + 4;
|
||
|
|
||
|
/*
|
||
|
* By returning a non-zero value, we are telling
|
||
|
* kprobe_handler() that we don't want the post_handler
|
||
|
* to run (and have re-enabled preemption)
|
||
|
*/
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static void __used kretprobe_trampoline_holder(void)
|
||
|
{
|
||
|
asm volatile(".global __kretprobe_trampoline\n"
|
||
|
"__kretprobe_trampoline:\n"
|
||
|
"\tnop\n"
|
||
|
"\tnop\n");
|
||
|
}
|
||
|
static struct kprobe trampoline_p = {
|
||
|
.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
|
||
|
.pre_handler = trampoline_probe_handler
|
||
|
};
|
||
|
|
||
|
int __init arch_init_kprobes(void)
|
||
|
{
|
||
|
return register_kprobe(&trampoline_p);
|
||
|
}
|
||
|
|
||
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|